用户名: 密码: 验证码:
杉木叶形态特征与叶面积估算模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Leaf morphological characteristics and leaf area estimation model for Cunninghamia lanceolata
  • 作者:彭曦 ; 闫文德 ; 王光军 ; 赵梅芳
  • 英文作者:PENG Xi;YAN Wende;WANG Guangjun;ZHAO Meifang;Faculty of Life Science and Technology,Central South University of Forestry and Technology;Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Huitong;National Engineering Laboratory for Applied Forest Ecological Technology in Southern China;
  • 关键词:杉木 ; 形态特征 ; 叶面积 ; 模型
  • 英文关键词:Cunninghamia lanceolata;;morphological characteristics;;leaf area;;estimation model
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中南林业科技大学生命科学与技术学院;湖南会同杉木林国家重点野外科学观测研究站;南方林业生态应用技术国家工程实验室;
  • 出版日期:2018-02-01 16:24
  • 出版单位:生态学报
  • 年:2018
  • 期:v.38
  • 基金:国家林业公益性行业科研专项(201404316);; 杉木叶脉特征与比叶性状的关联分析及过程调控研究(31600355);; 湖南省科技计划项目(2015SK20022)
  • 语种:中文;
  • 页:STXB201810022
  • 页数:12
  • CN:10
  • ISSN:11-2031/Q
  • 分类号:218-229
摘要
植物叶片是碳水交换和能量平衡过程最重要的场所,是农林生产经营中的模型估算以及物种结构变异-功能适应机制分析的关键参考量。采用游标卡尺和手持叶面积仪,测量杉木(Cunninghamia lanceolata)单叶叶长(LL)、最大叶宽(LW_(max))、最大叶厚(LT_(max))3个直测指标,和叶面积(LA)、平均叶宽(LW_(mean))、平均叶厚(LT_(mean))、叶延长率(LE)和叶周长(LP)5个间接转算指标。分析8个形态学指标的统计分布及其相关性,用多变量线性回归模型和非线性回归指数模型对7个形态学指标和杉木单叶叶面积进行拟合,结果表明:杉木单叶面积大部分值(95%CI)分布在0.758—0.836 cm~2,其叶面积的变异程度最大(CV=0.513),叶长、叶宽与叶面积相关性达到极显著(r=0.896,0.682)。拟合LA的多元线性模型为:Y=-0.388+0.165X_1-0.023X_2+1.453X_3(R~2=0.981,SE=0.053),X_1—X_3分别为LP、LE、LW_(mean)。从简便性上考虑,LL的单变量指数模型适合对LA进行估算:LA=0.1×(1+LL)~(1.398)(R~2=0.77,!~2=0.39)。研究结果为准确估测其他叶片功能性状指标提供了方法,为杉木叶面积估算模型提供了基础数据。
        Leaves are considered a significant site of carbon-water exchange and the energy-balance process. The characteristics of leaf response to the external environment,functional traits,coordination mechanisms,and trade-off strategies,as well as the structure and variation of leaves,have recently attracted huge interest. Further,leaf size could directly affect their capacity for light interception and carbon acquisition. Leaf area( LA) and related leaf traits such as specific leaf area( SLA),leaf area index( LAI),and normalized difference vegetation index( NDVI) are the key indicators in crop breeding,agroforestry production and management,model estimation,and species structure variation and functional adaptation mechanisms. The leaf traits are based on leaf area and influenced by leaf morphology and size,and determination of leaf area is the basis to discuss plant photosynthetic production and the physiological-ecological process.However,the uncertainty of needle leaf area,which is due to the difficulty of measurement,could be a hindrance toefficient production and management,effective risk assessment,and development of correlational research. Thus,it is significant to explore the appropriate measurement methods to obtain accurate values of leaf area. There is lack of comparative studies between different methods of measuring leaf area,resulting in inconsistency of associated concepts and definitions. Presently,instrument-based measurement methods of LA are pervasive and prevalent,but lack calibration by artificial measurements. Additionally,studies with regression estimation models based on plant leaf area and morphometric characteristics are concentrated on agronomy products such as crops and fruit and some broadleaf species. Research that centers on needle leaf area estimation models based on leaf morphological characteristics is still lacking. This study used Cunninghamia lanceolata,a common pioneer tree species in southern China,to measure 3 leaf morphometric characteristics( leaf length,leaf maximum width,leaf maximum thickness) and indirectly calculate 5 indicators( leaf mean width,leaf mean thickness,leaf area,leaf elongation,leaf perimeter) using Vernier calipers and portable leaf area meter. We present the statistical distribution and correlation analysis of the 8 morphological characteristics,fitting the leaf area with the 7 other indicators in multivariate linear regression models and nonlinear regression index models. We find that( 1) by manual measurement,the credible simple leaf area of Chinese fir ranges from 0. 758 cm~2 to 0. 836 cm~2,and shows a maximum coefficient of variation( CV = 0.513);( 2) leaf area significantly correlates with leaf length and width( r = 0.896,0.682);( 3) the multivariate linear regression model of leaf length and width that is most accurate: Y=-0.388 + 0.165 X_1-0.023 X_2+ 1.453 X~3( R~2= 0.981,SE = 0.053),where X_1,X_2,and X_3 are leaf perimeter,leaf elongation,and leaf mean width,respectively. From the point of view of simplicity,leaf length( LL) of a single variable index model is more suited for a leaf area estimation model: LA = 0.1 ×( 1 + LL)~(1.398)( R~2= 0.77),X~2= 0.39. The results demonstrated that this is a method of instrument calibration and accurate estimation of other leaf traits of Chinese fir,providing data about single leaf area and improving the model accuracy and stability for Chinese fir leaf area estimation. Moreover,this approach is effective in providing data to support advice to plantation management,and for verification and improvement of leaf morphology and leaf functional traits of other species.
引文
[1]Niinemets U,Portsmuth A,Tobias M.Leaf size modifies support biomass distribution among stems,petioles and mid-ribs in temperate plants.New Phytologist,2006,171(1):91-104.
    [2]Osnas J L D,Lichstein J W,Reich P B,Pacala S W.Global leaf trait relationships:mass,area,and the leaf economics spectrum.Science,2013,340(6133):741-744.
    [3]Wright I J,Reich P B,Westoby M,Ackerly D D,Baruch Z,Bongers F,Cavender-Bares J,Chapin T,Cornelissen J H C,Diemer M,Flexas J,Garnier E,Groom P K,Gulias J,Hikosaka K,Lamont B B,Lee T,Lee W,Lusk C,Midgley J J,Navas M L,Niinemets,Oleksyn J,Osada N,Poorter H,Poot P,Prior L,Pyankov V I,Roumet C,Thomas S C,Tjoelker M G,Veneklaas E J,Villar R.The worldwide leaf economics spectrum.Nature,2004,428(6985):821-827.
    [4]Cornelissen J H C,Lavorel S,Garnier E,Díaz S,Buchmann N,Gurvich D E,Reich P B,ter Steege H,Morgan H D,van der Heijden M G A,Pausas J G,Poorter H.A handbook of protocols for standardised and easy measurement of plant functional traits worldwide.Australian Journal of Botany,2003,51(4):335-380.
    [5]Stephenson N L,Das A J,Condit R,Russo S E,Baker P J,Beckman N G,Coomes D A,Lines E R,Morris W K,Rüger N,lvarez E,Blundo C,Bunyavejchewin S,Chuyong G,Davies S J,Duque,Ewango C N,Flores O,Franklin J F,Grau H R,Hao Z,Harmon M E,Hubbell S P,Kenfack D,Lin Y,Makana J R,Malizia A,Malizia L R,Pabst R J,Pongpattananurak N,Su S H,Sun I F,Tan S,Thomas D,van Mantgem P J,Wang X,Wiser S K,Zavala M A.Rate of tree carbon accumulation increases continuously with tree size.Nature,2014,507(7490):90-93.
    [6]Lizaso J I,Batchelor W D,Westgate M E.A leaf area model to simulate cultivar-specific expansion and senescence of maize leaves.Field Crops Research,2003,80(1):1-17.
    [7]Luo T X,Pan Y D,Ouyang H,Shi P L,Luo J,Yu Z L,Lu Q.Leaf area index and net primary productivity along subtropical to alpine gradients in the Tibetan Plateau.Global Ecology and Biogeography,2004,13(4):345-358.
    [8]Leverenz J W,Hinckley T M.Shoot structure,leaf area index and productivity of evergreen conifer stands.Tree Physiology,1990,6(2):135-149.
    [9]Zhao M F,Xiang W H,Deng X W,Tian D L,Huang Z H,Zhou X L,Yu G R,He H L,Peng C H.Application of TRIPLEX model for predicting Cunninghamia lanceolata and Pinus massoniana forest stand production in Hunan Province,southern China.Ecological Modelling,2013,250:58-71.
    [10]Zhao M F,Xiang W H,Peng C H,Tian D L.Simulating age-related changes in carbon storage and allocation in a Chinese fir plantation growing in southern China using the 3-PG model.Forest Ecology and Management,2009,257(6):1520-1531.
    [11]Lucht W,Prentice I C,Myneni R B,Sitch S,Friedlingstein P,Cramer W,Bousquet P,Buermann W,Smith B.Climatic control of the highlatitude vegetation greening trend and Pinatubo effect.Science,2002,296(5573):1687-1689.
    [12]Krinner G,Viovy N,de Noblet-DucoudréN,Ogée J,Polcher J,Friedlingstein P,Ciais P,Sitch S,Prentice I C.A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system.Global Biogeochemical Cycles,2005,19(1):GB1015.
    [13]White M A,Thornton P E,Running S W,Nemani R R.Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model:net primary production controls.Earth Interactions,2000,4(3):1-85.
    [14]Krieger J D,Guralnick R P,Smith D M.Generating empirically determined,continuous measures of leaf shape for paleoclimate reconstruction.Palaios,2007,22(2):212-219.
    [15]Royer D L,Sack L,Wilf P,Lusk C H,Jordan G J,Niinemets,Wright I J,Westoby M,Cariglino B,Coley P D,Cutter A D,Johnson K R,Labandeira C C,Moles A T,Palmer M B,Valladares F.Fossil leaf economics quantified:calibration,Eocene case study,and implications.Paleobiology,2007,33(4):574-589.
    [16]Huff P M,Wilf P,Azumah E J.Digital future for paleoclimate estimation from fossil leaves?Preliminary results.Palaios,2003,18(3):266-274.
    [17]Rozendaal D M A,Hurtado V H,Poorter L.Plasticity in leaf traits of 38 tropical tree species in response to light;relationships with light demand and adult stature.Functional Ecology,2006,20(2):207-216.
    [18]White J W,Montes-R C.Variation in parameters related to leaf thickness in common bean(Phaseolus vulgaris L.).Field Crops Research,2005,91(1):7-21.
    [19]Reich P B,Walters M B,Ellsworth D S.From tropics to tundra:global convergence in plant functioning.Proceedings of the National Academy of Sciences of the United States of America,1997,94(25):13730-13734.
    [20]Kattge J,Díaz S,Lavorel S,Prentice I C,Leadley P,B9nisch G,Garnier E,Westoby M,Reich P B,Wright I J,Cornelissen J H C,Violle C,Harrison S P,van Bodegom P M,Reichstein M,Enquist B J,Soudzilovskaia N A,Ackerly D D,Anand M,Atkin O,Bahn M,Baker T R,Baldocchi D,Bekker R,Blanco C C,Blonder B,Bond W J,Bradstock R,Bunker D E,Casanoves F,Cavender-Bares J,Chambers J Q,Chapin Iii F S,Chave J,Coomes D,Cornwell W K,Craine J M,Dobrin B H,Duarte L,Durka W,Elser J,Esser G,Estiarte M,Fagan W F,Fang J,Fernández-Méndez F,Fidelis A,Finegan B,Flores O,Ford H,Frank D,Freschet G T,Fyllas N M,Gallagher R V,Green W A,Gutierrez A G,Hickler T,Higgins S I,Hodgson J G,Jalili A,Jansen S,Joly C A,Kerkhoff A J,Kirkup D,Kitajima K,Kleyer M,Klotz S,Knops J M H,Kramer K,Kühn I,Kurokawa H,Laughlin D,Lee T D,Leishman M,Lens F,Lenz T,Lewis S L,Lloyd J,LlusiàJ,Louault F,Ma S,Mahecha M D,Manning P,Massad T,Medlyn B E,Messier J,Moles A T,Müller S C,Nadrowski K,Naeem S,Niinemets,N9llert S,Nüske A,Ogaya R,Oleksyn J,Onipchenko V G,Onoda Y,Ordo1ez J,Overbeck G,Ozinga W A,Pati1o S,Paula S,Pausas J G,Pe1uelas J,Phillips O L,Pillar V,Poorter H,Poorter L,Poschlod P,Prinzing A,Proulx R,Rammig A,Reinsch S,Reu B,Sack L,Salgado-Negret B,Sardans J,Shiodera S,Shipley B,Siefert A,Sosinski E,Soussana J F,Swaine E,Swenson N,Thompson K,Thornton P,Waldram M,Weiher E,White M,White S,Wright S J,Yguel B,Zaehle S,Zanne A E,Wirth C.TRY-a global database of plant traits.Global Change Biology,2011,17(9):2905-2935.
    [21]Díaz S,Kattge J,Cornelissen J H C,Wright I J,Lavorel S,Dray S,Reu B,Kleyer M,Wirth C,Prentice I C,Garnier E,B9nisch G,Westoby M,Poorter H,Reich P B,Moles A T,Dickie J,Gillison A N,Zanne A E,Chave J,Wright S J,Sheremet'ev S N S,Jactel H,Baraloto C,Cerabolini B,Pierce S,Shipley B,Kirkup D,Casanoves F,Joswig J S,Günther A,Falczuk V,Rüger N,Mahecha M D,GornéL D.The global spectrum of plant form and function.Nature,2016,529(7585):167-171.
    [22]刁军,国红,卢军,雷相东,唐守正.油松针叶面积估计模型及比叶面积的研究.林业科学研究,2013,26(2):174-180.
    [23]李轩然,刘琪璟,蔡哲,马泽清.千烟洲针叶林的比叶面积及叶面积指数.植物生态学报,2007,31(1):93-101.
    [24]温远光.利用枝长与叶面积的关系估测杉木叶面积.林业科技通讯,1985,(9):15-17.
    [25]朱守谦,杨世逸.杉木叶面积测算方法.林业科技通讯,1980,(1):24-26.
    [26]Lu Y H,Coops N C,Wang T L,Wang G Y.A process-based approach to estimate Chinese Fir(Cunninghamia lanceolata)distribution and productivity in southern China under climate change.Forests,2015,6(2):360-379.
    [27]严恩萍,林辉,洪奕丰,张雨,陈利.杉木人工林叶面积指数估测及影响因子分析.水土保持研究,2013,20(4):75-81.
    [28]刘贯山.烟草叶面积不同测定方法的比较研究.安徽农业科学,1996,24(2):139-141.
    [29]王方永,王克如,李少昆,肖春华,王琼,陈江鲁,金秀良,吕银亮.利用数字图像估测棉花叶面积指数.生态学报,2011,31(11):3090-3100.
    [30]王宝琦,刘志理,戚玉娇,金光泽.利用不同方法测定红松人工林叶面积指数的季节动态.生态学报,2014,34(8):1956-1964.
    [31]Verwijst T,Wen D Z.Leaf allometry of Salix viminalis during the first growing season.Tree Physiology,1996,16(7):655-660.
    [32]Schwarz D,Klaring H P.Allometry to estimate leaf area of tomato.Journal of Plant Nutrition,2001,24(8):1291-1309.
    [33]Tsialtas J T,Koundouras S,Zioziou E.Leaf area estimation by simple measurements and evaluation of leaf area prediction models in CabernetSauvignon grapevine leaves.Photosynthetica,2008,46(3):452-456.
    [34]Kandiannan K,Parthasarathy U,Krishnamurthy K S,Thankamani C K,Srinivasan V.Modeling individual leaf area of ginger(Zingiber officinale Roscoe)using leaf length and width.Scientia Horticulturae,2009,120(4):532-537.
    [35]Mokhtarpour H,Teh C B S,Saleh G,Selamat A B,Asadi M E,Kamkar B.Non-destructive estimation of maize leaf area,fresh weight,and dry weight using leaf length and leaf width.Communications in Biometry and Crop Science,2010,5(1):19-26.
    [36]Abajingin D D,Ajayi N O.Non-destructive method for estimation of leaf area of clerodendrum volubile,a West African non-conventional vegetable.Research in Plant Sciences,2015,3(2):38-42.
    [37]Tartaglia F D L,Righi E Z,da Rocha L,Loose L H,Maldaner I C,Heldwein A B.Non-destructive models for leaf area determination in canola.Revista Brasileira de Engenharia Agrícola e Ambiental,2016,20(6):551-556.
    [38]Serdar U,Demirsoy H.Non-destructive leaf area estimation in chestnut.Scientia Horticulturae,2006,108(2):227-230.
    [39]Demirsoy H,Demirsoy L,Uzun S,Ersoy B.Non-destructive leaf area estimation in peach.European Journal of Horticultural Science,2004,69(4):144-146.
    [40]Gugliuzza G,Fascella G,Mammano M M,Militello M.Non-destructive leaf area estimation in Myrtus communis plants.Acta Horticulturae,2015,1104:89-94.
    [41]Rouphael Y,Colla G,Fanasca S,Karam F.Leaf area estimation of sunflower leaves from simple linear measurements.Photosynthetica,2007,45(2):306-308.
    [42]Fascella G,Darwich S,Rouphael Y.Validation of a leaf area prediction model proposed for rose.Chilean Journal of Agricultural Research,2013,73(1):73-76.
    [43]柯娴氡,周庆,苏志尧.我国南方四种植物的叶面积无损测定.广东林业科技,2009,25(6):39-44.
    [44]王慧,郑明朝,谢安德,王凌晖.基于偏最小二乘法的山白兰叶面积分析及测定方法的研究.安徽农业科学,2011,39(18):10862-10864,10876-10876.
    [45]de Swart E A M,Groenwold R,Kanne H J,Stam P,Marcelis L F M,Voorrips R E.Non-destructive estimation of leaf area for different plant ages and accessions of Capsicum annuum L.The Journal of Horticultural Science and Biotechnology,2004,79(5):764-770.
    [46]Nicotra A B,Leigh A,Boyce C K,Jones C S,Niklas K J,Royer D L,Tsukaya H.The evolution and functional significance of leaf shape in the angiosperms.Functional Plant Biology,2011,38(7):535-552.
    [47]James S A,Bell D T.Influence of light availability on leaf structure and growth of two Eucalyptus globulus ssp.globulus provenances.Tree Physiology,2000,20(15):1007-1018.
    [48]李轩然,刘琪璟,蔡哲,马泽清.湿地松林叶面积指数测算.生态学报,2006,26(12):4099-4105.
    [49]Gamiely S,Randle W M,Mills H A,Smittle D A.A rapid and nondestructive method for estimating leaf area of onions.Hortscience,1991,26(2):206-206.
    [50]谢安德,王凌晖,潘启龙.灰木莲叶面积回归方程的建立.广东农业科学,2011,38(14):28-29,32-32.
    [51]王勇,杜晓军,招礼军,焦志华,安明态.五种火棘属植物的叶面积回归分析.广西植物,2013,33(6):756-762.
    [52]李碧洳,翁殊斐,冯嘉仪,欧泳欣.龙船花两变种叶面积回归方程的建立.亚热带植物科学,2015,44(3):218-222.
    [53]Cirillo C,Pannico A,Basile B,Rivera C M,Giaccone M,Colla G,de Pascale S,Rouphael Y.A simple and accurate allometric model to predict single leaf area of twenty-one European apricot cultivars.European Journal of Horticultural Science,2017,82(2):65-71.
    [54]Montero F J,de Juan J A,Cuesta A,Brasa A.Nondestructive methods to estimate leaf area in Vitis vinifera L.Hort Science,2000,35(4):696-698.
    [55]Ghoreishi M,Hossini Y,Maftoon M.Simple models for predicting leaf area of mango(Mangifera Indica L.).Journal of Biology and Earth Sciences,2012,2(2):B45-B53.
    [56]Ames Z R,Olmstead M A.Estimation of leaf area for‘Blanc Du Bois’Vitis spp.,‘Carlos’Vitis rotundifolia,and‘Southern Home’Vitis rotundifolia×Vitis vinifera using simple linear measurement.Journal of Horticulture,2016,3(3):1000178.
    [57]杨劲峰,陈清,韩晓日,李晓林,Liebig H P.数字图像处理技术在蔬菜叶面积测量中的应用.农业工程学报,2002,18(4):155-158.
    [58]程鸿,吕军芬.CAD图形处理技术在植物叶面积测量中的应用.甘肃农业大学学报,2003,38(4):467-470.
    [59]Wilson P J,Thompson K E N,Hodgson J G.Specific leaf area and leaf dry matter content as alternative predictors of plant strategies.New Phytologist,1999,143(1):155-162.
    [60]Zhang L,Liu X S.Non-destructive leaf-area estimation for Bergenia purpurascens across timberline ecotone,Southeast Tibet.Annales Botanici Fennici,2010,47(5):346-352.
    [61]Meziane D,Shipley B.Direct and indirect relationships between specific leaf area,leaf nitrogen and leaf gas exchange.Effects of Irradiance and nutrient supply.Annals of Botany,2001,88(5):915-927.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700