用户名: 密码: 验证码:
高效液相色谱法测定雨水中溶解态氨基酸的含量
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A High Performance Liquid Chromatography Method for Measuring Dissolved Amino Acids in Rain
  • 作者:龙超君 ; 肖化云 ; 徐宇 ; 赵晶晶
  • 英文作者:LONG Chaojun;XIAO Huayun;XU Yu;ZHAO Jingjing;State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:高效液相色谱 ; 溶解态氨基酸 ; 雨水 ; 富集
  • 英文关键词:high performance liquid chromatography;;dissolved amino acids;;rainwater;;extraction
  • 中文刊名:DZDQ
  • 英文刊名:Earth and Environment
  • 机构:中国科学院地球化学研究所环境地球化学国家重点实验室;中国科学院大学;
  • 出版日期:2019-01-05 10:54
  • 出版单位:地球与环境
  • 年:2019
  • 期:v.47;No.327
  • 基金:国家杰出青年科学基金项目(41425014)
  • 语种:中文;
  • 页:DZDQ201901014
  • 页数:8
  • CN:01
  • ISSN:52-1139/P
  • 分类号:108-115
摘要
本研究采用邻苯二甲醛/9-芴甲基氯甲酸酯-高效液相色谱-荧光检测器(OPA/FMOC-HPLC-FLD)联用技术,测定雨水中主要游离态氨基酸(DFAA)和结合态氨基酸(DCAA)的含量。雨水中的DFAA经阳离子交换树脂柱富集纯化后,可直接上机测定;类似地,经浓缩、酸解、再浓缩后,直接上机测定雨水中的DCAA。不同氨基酸的保留时间和峰面积的平均相对标准偏差分别为0.053%(0.014%~0.254%)和1.219%(0.223%~3.846%)。除赖氨酸外,其余氨基酸的检出限和定量限都较低,分别为0.90μmol/L(0.19~1.42μmol/L)和2.95μmol/L(0.39~4.74μmol/L)。样品加标回收率为59.87%~125.72%,均值为89.58%,空白回收率为57.47%~118.74%,均值为90.60%,保证了样品测定的准确性。利用本方法测得贵阳地区雨水中结合态氨基酸的浓度为27.25~493.87 nmol/L(均值为182.44 nmol/L),其中含量最多的是蛋氨酸,占总DCAA的24.61%;游离氨基酸的浓度为3.94~126.45 nmol/L(均值24.59 nmol/L),其中丝氨酸含量最高,占总DFAA的30.25%。本研究确立了最优的雨水溶解态氨基酸的提取和测定条件,并保证了雨水氨基酸在低浓度范围内定量的准确可靠性。
        The dissolved free amino acids(DFAA) and the dissolved combined amino acids(DCAA) in rainwater were determined by the OPA/FMOC-HPLC-FLD method(phthalaldehyde/9-fluorene methyl chloroformate-high performance liquid chromatography-fluorescence detector). Rainwater samples were acidified and then experienced following processes of adding internal standard, enriching by cation exchange resin column, eluting, lyophilizing and redissolving, then DFAA could be measured on HPLC; similarly, after concentrated, digested, lyophilized, and redissolved, DCAA could be measured on HPLC. The average relative standard deviations of retention times and peak areas for different amino acids were 0.053%(0.014%-0.254%) and 1.219%(0.223%-3.846%), respectively. Except lysine,the limit of detection(LOD) and the limit of quantitation(LOQ) of other amino acids were 0.90 μmol/L(0.19-1.42 μmol/L) and 2.95 μmol/L(0.39-4.74 μmol/L), respectively. The recoveries of spiked samples were 59.87%-125.72% with an average of 89.58%. The blank recovery rates were 57.47%-118.74% with an average of 90.60%, which ensured the accuracy of sample determination. The concentration of DCAA in rainwater of Guiyang measured by this method was 182.44 nmol/L(27.25-493.87 nmol/L), of which methionine accounted for 24.61%. The average concentration of DFAA in rainwater was 24.59 nmol/L(3.94-126.45 nmol/L), the minimum content was tyrosine and the maximum content was serine. Our extraction and analysis methods can ensure the accurate and reliable quantification of amino acids in low concentration ranges and can be used for determining concentrations of amino acids in rainwater.
引文
[1] Zhao Y, Zhang L, Chen Y, et al. Atmospheric nitrogen deposition to China: A model analysis on nitrogen budget and critical load exceedance[C]. AGU Fall Meeting. AGU Fall Meeting Abstracts, 2016.
    [2] Zhang Y, Song L, Liu X J, et al. Atmospheric organic nitrogen deposition in China[J]. Atmospheric Environment, 2012, 46(3): 195-204.
    [3] Chan M N, Choi M Y, Ng N L, et al. Hygroscopicity of water-soluble organic compounds in atmospheric aerosols: Amino acids and biomass burning derived organic species[J]. Environmental Science & Technology, 2005, 39(6): 1555.
    [4] Mace K A, Artaxo P, Duce R A. Water-soluble organic nitrogen in amazon basin aerosols during the dry (biomass burning) and wet seasons[J]. Journal of Geophysical Research Atmospheres, 2003, 108.
    [5] Scalabrin E, Zangrando R, Barbaro E, et al. Amino acids in arctic aerosols[J]. Atmospheric Chemistry & Physics, 2012, 12(21): 10453-10463.
    [6] Wedyan M A, Preston M R. The coupling of surface seawater organic nitrogen and the marine aerosol as inferred from enantiomer-specific amino acid analysis[J]. Atmospheric Environment, 2008, 42(37): 8698-8705.
    [7] Kuznetsova M, Lee C, Aller J. Characterization of the proteinaceous matter in marine aerosols[J]. Marine Chemistry, 2005, 96(3-4): 359-377.
    [8] Bernsen R M D, Aardoom H A, Nagelkerke N J D, et al. Challenges in the identification and characterization of free amino acids and proteinaceous compounds in atmospheric aerosols: A critical review[J]. Trac Trends in Analytical Chemistry, 2016, 75: 97-107.
    [9] Bianco A, Voyard G, Deguillaume L, et al. Improving the characterization of dissolved organic carbon in cloud water: Amino acids and their impact on the oxidant capacity[J]. Scientific Reports, 2017, 6: 37420.
    [10] Rice M. Uptake of dissolved free amino acids by northern quahogs, mercenaria mercenaria and its relative importance to organic nitrogen deposition in Narragansett Bay, Rhode Island[J]. Journal of Shellfish Research, 1999, 18(2): 547-553.
    [11] Rosenstock B, Simon M. Use of dissolved combined and free amino acids by planktonic bacteria in lake constance[J]. Limnology & Oceanography, 1993, 38(7): 1521-1531.
    [12] Martell A E, Smith R M. Critical stability constants. Volume 1: Amino acids[M]. New York: Plenum Press, 1974.
    [13] Hayase K, Zepp R G. Photolysis of copper(II)-amino acid complexes in water[J]. Environmental Science and Technology; (United States), 1991, 25(7): 1273-1279.
    [14] Berger P, Leitner N K V, Doré M, et al. Ozone and hydroxyl radicals induced oxidation of glycine[J]. Water Research, 1999, 33(2): 433-441.
    [15] Mcgregor K G, Anastasio C. Chemistry of fog waters in California's Central Valley: 2. Photochemical transformations of amino acids and alkyl amines[J]. Atmospheric Environment, 2001, 35(6): 1091-1104.
    [16] Milne P J, Zika R G. Amino acid nitrogen in atmospheric aerosols: Occurrence, sources and photochemical modification[J]. Journal of Atmospheric Chemistry, 1993, 16(4): 361-398.
    [17] Barbaro E, Zangrando R, Vecchiato M, et al. Free amino acids in Antarctic aerosol: Potential markers for the evolution and fate of marine aerosol[J]. Atmospheric Chemistry & Physics Discussions, 2015, 15(10): 1269-1305.
    [18] Scalabrin E, Zangrando R, Barbaro E, et al. Amino acids in arctic aerosols[J]. Atmospheric Chemistry & Physics, 2012, 12(21): 10453-10463.
    [19] Fonselius S. Amino acids in rainwater[J]. Tellus, 1954, 6(1): 90-90.
    [20] Sidle A B. Amino acid content of atmospheric precipitation[J]. Tellus, 1967, 19(1): 128-135.
    [21] Yang H, Xu J, Wu W S, et al. Chemical characterization of water-soluble organic aerosols at Jeju island collected during ACE-Asia[J]. Environmental Chemistry, 2004, 1(1): 13-17.
    [22] Yang H, Yu J Z, Ho S S H, et al. The chemical composition of inorganic and carbonaceous materials in PM2.5 in Nanjing, China[J]. Atmospheric Environment, 2005, 39(20): 3735-3749.
    [23] Wedyan M A, Preston M R. The coupling of surface seawater organic nitrogen and the marine aerosol as inferred from enantiomer-specific amino acid analysis[J]. Atmospheric Environment, 2008, 42(37): 8698-8705.
    [24] Matsumoto K, Uematsu M. Free amino acids in marine aerosols over the western North Pacific Ocean[J]. Atmospheric Environment, 2005, 39(11): 2163-2170.
    [25] Barbaro E, Zangrando R, Moret I, et al. Free amino acids in atmospheric particulate matter of Venice, Italy[J]. Atmospheric Environment, 2011, 45(28): 5050-5057.
    [26] Gorzelska K, Galloway J N, Watterson K, et al. Water-soluble primary amine compounds in rural continental precipitation[J]. Atmospheric Environment.Part A.General Topics, 1992, 26(6): 1005-1018.
    [27] Mandalakis M, Apostolaki M, Tziaras T, et al. Free and combined amino acids in marine background atmospheric aerosols over the eastern mediterranean[J]. Atmospheric Environment, 2011, 45(4): 1003-1009.
    [28] Bianco A, Voyard G, Deguillaume L, et al. Improving the characterization of dissolved organic carbon in cloud water: Amino acids and their impact on the oxidant capacity[J]. Scientific Reports, 2016, 6: 37420.
    [29] Qi Z, Anastasio C. Free and combined amino compounds in atmospheric fine particles (PM2.5) and fog waters from Northern California[J]. Atmospheric Environment, 2003, 37(16): 2247-2258.
    [30] Mopper K, Zika R G. Free amino acids in marine rains: Evidence for oxidation and potential role in nitrogen cycling[J]. Nature, 1987, 325(6101): 246-249.
    [31] Hoischen C. Kurzes lehrbuch der biochemie für mediziner und naturwissenschaftler: Peter Karlson, Detlef Doenecke and Jan Koolman, Georg Thieme Verlag, Stuttgart, 1994, xv + 580pp + accompanying leaflet, DM69.00 ISBN: 3-13-357814-6[J]. Bioelectrochemistry & Bioenergetics, 1996, 40(1): 73.
    [32] Scheller E. Amino acids in dew-origin and seasonal variation[J]. Atmospheric Environment, 2001, 35(12): 2179-2192.
    [33] Mcgregor K G, Anastasio C. Chemistry of fog waters in California's central valley: 2. Photochemical transformations of amino acids and alkyl amines[J]. Atmospheric Environment, 2001, 35(6): 1091-1104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700