用户名: 密码: 验证码:
氨基酸改性尼龙66纤维的制备及其铀吸附性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of Amino Acid Modified Nylon 66 Fiber and Evaluation of Its Uranium Adsorption Properties
  • 作者:李玉娜 ; 张明星 ; 徐晓 ; 严六明 ; 胡江涛 ; 马红娟 ; 邢哲 ; 李荣 ; 吴国忠
  • 英文作者:LI Yu-na;ZHANG Ming-xing;XU Xiao;YAN Liu-ming;HU Jiang-tao;MA Hong-juan;XING Zhe;LI Rong;WU Guo-zhong;College of Sciences, Shanghai University;Shanghai Institute of Applied Physics, Chinese Academy of Sciences;
  • 关键词:尼龙66纤维 ; 氨基酸改性 ; 吸附 ; 铀酰离子
  • 英文关键词:PA66 fiber;;amino acid modification;;adsorption;;uranyl ions
  • 中文刊名:HXFS
  • 英文刊名:Journal of Nuclear and Radiochemistry
  • 机构:上海大学理学院;中国科学院上海应用物理研究所;
  • 出版日期:2019-04-15 15:59
  • 出版单位:核化学与放射化学
  • 年:2019
  • 期:v.41;No.176
  • 基金:国家自然科学基金资助项目(11675247;11605275;U1732151)
  • 语种:中文;
  • 页:HXFS201901013
  • 页数:10
  • CN:01
  • ISSN:11-2045/TL
  • 分类号:162-171
摘要
采用辐射接枝法将甲基丙烯酸缩水甘油酯(GMA)接枝于尼龙66(PA66)纤维表面以引入环氧基团,利用N-乙酰-L-半胱氨酸(NAC)与环氧基团进行开环反应,制备出氨基酸改性的PA66纤维吸附材料。利用红外光谱、热重分析、X射线光电子能谱、扫描电镜对改性前后PA66纤维化学结构、表面形貌进行表征。考察了含铀水溶液的初始pH值、初始铀浓度和吸附时间对PA66纤维吸附材料的铀吸附容量影响规律。研究表明,当溶液初始pH为8时,铀吸附效果最佳;吸附时间为100 min时达到饱和吸附;吸附材料对铀的吸附符合准二级动力学模型和Langmuir等温吸附模型,吸附容量可达75.53 mg/g(铀初始质量浓度为25 mg/L)。此外纤维吸附材料在含铀等多种金属离子水溶液中具有良好的铀吸附选择性。
        Glycidyl methacrylate was grafted onto the surface of PA66 fiber using radiation-grafting method. Then, the ring-opening reaction between epoxy groups and N-acetyl-L-cysteine was carried out to prepare the amino acid modified PA66 functional fiber adsorbent. The chemical structures and surface morphologies of the pristine and graft-modified PA66 fibers were characterized by Fourier transformed infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy and scanning electron microscopy, respectively. The effects of initial pH, initial uranium concentration and contact time on uranium adsorption performance of fiber adsorbent were investigated. The results show that the pH value of solution adjusted to 8 is conducive to the adsorption of uranium; the adsorption equilibrium reaches within 100 min; the uranyl ion adsorption process is in accordance with the pseudo-second-order kinetics model and the Langmuir isotherm adsorption model. The uranium adsorption capacity reaches 75.53 mg/g when the initial uranium mass concentration is 25 mg/L. Additionally, the fibers exhibits good adsorption selectivity for uranium in aqueous solution containing other metal ions.
引文
[1] Li J,Zhang Y.Remediation technology for the uranium contaminated environment:a review[J].Procedia Environmental Sciences,2012,13(3):1609-1615.
    [2] He J D,Wang Y D,Hu N,et al.An artificially constructed syngonium podophyllum-aspergillus niger combinate system for removal of uranium from wastewater[J].Environ Sci Pollut Res,2015,22(23):18918-18926.
    [3] Singh H,Mishra S L,Vijayalakshmi R.Uranium recovery from phosphoric acid by solvent extraction using a synergistic mixture of di-nonyl phenyl phosphoric acid and tri-n-butyl phosphate[J].Hydrometallurgy,2004,73(1):63-70.
    [4] Preetha C R,And J M G,Rao T P,et al.Removal of toxic uranium from synthetic nuclear power reactor effluents using uranyl ion imprinted polymer particles[J].Environ Sci Technol,2006,40(9):3070-3074.
    [5] Ganesh R,Robinson K G,Chu L,et al.Reductive precipitation of uranium by desulfovibrio desulfuricans:evaluation of cocontaminant effects and selective removal[J].Water Research,1999,33(16):3447-3458.
    [6] Kabay N,Demircioglu M,Yayh S,et al.Recovery of uranium from phosphoric acid solutions using chelating ion-exchange resins[J].Ind Eng Chem Res,1998,37(5):1983-1990.
    [7] Han X,Xu M,Yang S,et al.Acetylcysteine-functionalized microporous conjugated polymers for potential separation of uranium from radioactive effluents[J].J Mater Chem A,2017,5(10):5123-5128.
    [8] Wu L,Lin X,Zhou X,et al.Removal of uranium and fluorine from wastewater by double-functional microsphere adsorbent of SA/CMC loaded with calcium and aluminum[J].Appl Surf Sci,2016,384:466-479.
    [9] Xue G,Feng Y,Li M,et al.Phosphoryl functionalized mesoporous silica for uranium adsorption[J].Appl Surf Sci,2017,402:53-60.
    [10] Sun Z,Chen D,Chen B,et al.Enhanced uranium(Ⅵ) adsorption by chitosan modified phosphate rock[J].Colloids Surf,A,2018,547(2018):141-147.
    [11] Chen Z,Wang J,Pu Z,et al.Synthesis of magnetic Fe3O4/CFA composites for the efficient removal of U(Ⅵ) from wastewater[J].Chem Eng J,2017,320:448-457.
    [12] Ilaiyaraja P,Deb A K,Ponraju D,et al.Surface engineering of PAMAM-SDB chelating resin with diglycolamic acid (DGA) functional group for efficient sorption of U(Ⅵ) and Th(Ⅳ) from aqueous medium[J].J Hazard Mater,2017,328:1-11.
    [13] Li R,Li Y,Zhang M,et al.Phosphate-based ultrahigh molecular weight polyethylene fibers for efficient removal of uranium from carbonate solution containing fluoride ions[J].Molecules,2018,23(6):1245-1259.
    [14] Li R,Pang L,Ma H,et al.Optimization of molar content of amidoxime and acrylic acid in UHMWPE fibers for improvement of seawater uranium adsorption capacity[J].J Radioanal Nucl Chem,2017,311(3):1771-1779.
    [15] 何丽凯,王琳,张志宾,等.偕胺肟功能化水热碳微球对铀的吸附性能[J].核化学与放射化学,2016,38(2):116-122.
    [16] Xie C Y,Jing S P,Wang Y,et al.Adsorption of uranium(Ⅵ) onto amidoxime-functionalized ultra-high molecular weight polyethylene fibers from aqueous solution[J].Nucl Sci Tech,2017,28(7):94-71.
    [17] Zhang M,Gao Q,Yang C,et al.Preparation of amidoxime-based nylon 66 fibers for removing uranium from low concentration aqueous solutions and simulated nuclear industry effluents[J].Ind Eng Chem Res,2016,55(40):10523-10532.
    [18] Tian G,Geng J,Jin Y,et al.Sorption of uranium(Ⅵ) using oxime-grafted ordered mesoporous carbon CMK-5[J].J Hazard Mater,2011,190(1):442-450.
    [19] Neisiany R E,Khorasani S N,Naeimirad M,et al.Improving mechanical properties of carbon/epoxy composite by incorporating functionalized electrospun polyacrylonitrile nanofibers[J].Macromol Mater Eng,2017,302:1600551-1600561.
    [20] Yu X,Wang Y,Chen X,et al.White-light-exciting,layer-by-layer-assembled ZnCdHgSe quantum dots/polymerized ionic liquid hybrid film for highly sensitive photo electrochemical immunosensing of neuron specific enolase[J].Anal Chem,2015,87(8):4237-4244.
    [21] Botelho E C,Nogueira C L,Rezende M C.Monitoring of nylon 6,6/carbon fiber composites processing by X-ray diffraction and thermal analysis[J].J Appl Polym Sci,2010,86(12):3114-3119.
    [22] Arica T A,Ayas E,Arica M Y.Magnetic MCM-41 silica particles grafted with poly(glycidylmethacrylate) brush:modification and application for removal of direct dyes[J].Microporous Mesoporous Mater,2017,243:164-175.
    [23] Zuo Y,Lu H,Xue L,et al.Preparation and characterization of luminescent silicone elastomer by thiol-ene “click” chemistry[J].J Mater Chem,C,2014,2(15):2724-2734.
    [24] Lashley M A,Mehio N,Nugent J W,et al.Amidoximes as ligand functionalities for braided polymeric materials for the recovery of uranium from seawater[J].Polyhedron,2016,109:81-91.
    [25] 林锦,吴艳,韦悦周.CeO2/SiO2吸附剂的制备及其对碘酸根的吸附[J].核化学与放射化学,2017,39(6):459-466.
    [26] 廖锦嫦.巯基化磁性Fe3O4纳米材料对铀(Ⅵ)的吸附性能研究[D].衡阳:南华大学,2017.
    [27] 胡建邦,袁亚莉,唐琼,等.氨基化改性Fe3O4/SiO2复合磁性材料的制备以及对铀(Ⅵ)的吸附研究[J].应用化工,2012,41(12):2067-2074.
    [28] Anirudhan T S,Rijith S.Synthesis and characterization of carboxyl terminated poly(methacrylic acid) grafted chitosan/bentonite composite and its application for the recovery of uranium(Ⅵ) from aqueous media[J].J Environ Radioact,2012,106(2):8-19.
    [29] Wang Y Q,Zhang Z B,Liu Y H,et al.Adsorption of U(Ⅵ) from aqueous solution by the carboxyl-mesoporous carbon[J].Chem Eng J,2012,198-199:246-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700