用户名: 密码: 验证码:
Residue-Specialized Membrane Poration Kinetics of Melittin and Its Variants: Insight from Mechanistic Landscapes
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Residue-Specialized Membrane Poration Kinetics of Melittin and Its Variants: Insight from Mechanistic Landscapes
  • 作者:邓智雄 ; 李景亮 ; 元冰 ; 杨恺
  • 英文作者:Zhi-Xiong Deng;Jing-Liang Li;Bing Yuan;Kai Yang;Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology,Soochow University;Institute for Frontier Materials, Deakin University;
  • 英文关键词:pore-forming peptide;;lipid membrane;;melittin;;molecular dynamics simulations;;free energy landscape
  • 中文刊名:CITP
  • 英文刊名:理论物理(英文版)
  • 机构:Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology,Soochow University;Institute for Frontier Materials, Deakin University;
  • 出版日期:2019-07-01
  • 出版单位:Communications in Theoretical Physics
  • 年:2019
  • 期:v.71
  • 基金:Supported by the National Natural Science Foundation of China under Grant Nos.21422404,21774092,U1532108,and 21728502;; the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions;; the Natural Science Foundation of Jiangsu Province of China under Grant Nos.BK20171207 and BK20171210
  • 语种:英文;
  • 页:CITP201907015
  • 页数:16
  • CN:07
  • ISSN:11-2592/O3
  • 分类号:119-134
摘要
Pore-forming peptides have promising potentials for biomedical uses due to their ability to permeabilize cell membranes. However, to molecularly engineer them for practical applications is still blocked by the poor understanding of the specific roles of individual residues in peptides' activity. Herein, using an advanced computational approach that combines Coarse-Grained molecular dynamics and well-tempered metadynamics, the membrane activities of melittin,a representative pore-forming peptide, and its gain-of-function variants, are characterized from the kinetics and thermodynamics perspectives. Unbiased simulations elucidate the molecular details of peptide-induced membrane poration;during which, some vital intermediate states, including the aggregation and U-shape configuration formation of peptides in the membrane, are observed and further applied as collective variables to construct the multi-dimensional free energy landscapes of the peptide-membrane interactions. Such a combination of kinetic and thermodynamic descriptions of the interaction process provides crucial information of residue-specialized contribution in chain conformation and consequently membrane perforation ability of the peptide. It is found that residues at the kink part(e.g. Thr) determine the chain flexibility and U-shape bending of the peptide, while residues near the C-terminus(e.g. Arg and Lys) are responsible for recruiting neighboring peptides for inter-molecular cooperation; the probable reaction pathway and the poration efficiency are consequently regulated. These results are helpful for a comprehensive understanding of the complicated molecular mechanism of pore-forming peptides and pave the way to rationally design and/or engineer the peptides for practical applications.
        Pore-forming peptides have promising potentials for biomedical uses due to their ability to permeabilize cell membranes. However, to molecularly engineer them for practical applications is still blocked by the poor understanding of the specific roles of individual residues in peptides' activity. Herein, using an advanced computational approach that combines Coarse-Grained molecular dynamics and well-tempered metadynamics, the membrane activities of melittin,a representative pore-forming peptide, and its gain-of-function variants, are characterized from the kinetics and thermodynamics perspectives. Unbiased simulations elucidate the molecular details of peptide-induced membrane poration;during which, some vital intermediate states, including the aggregation and U-shape configuration formation of peptides in the membrane, are observed and further applied as collective variables to construct the multi-dimensional free energy landscapes of the peptide-membrane interactions. Such a combination of kinetic and thermodynamic descriptions of the interaction process provides crucial information of residue-specialized contribution in chain conformation and consequently membrane perforation ability of the peptide. It is found that residues at the kink part(e.g. Thr) determine the chain flexibility and U-shape bending of the peptide, while residues near the C-terminus(e.g. Arg and Lys) are responsible for recruiting neighboring peptides for inter-molecular cooperation; the probable reaction pathway and the poration efficiency are consequently regulated. These results are helpful for a comprehensive understanding of the complicated molecular mechanism of pore-forming peptides and pave the way to rationally design and/or engineer the peptides for practical applications.
引文
[1]H.Raghuraman and A.Chattopadhyay,Biosci.Rep.27(2007)189.
    [2]M.A.Sani and F.Separovic,Acc.Chem.Res.49(2016)1130.
    [3]V.L′az′ar,A.Martins,R.Spohn,et al.,Nat.Microbiol.3(2018)718.
    [4]F.Salomone,F.Cardarelli,M.Di Luca,et al.,J.Controlled Release 163(2012)293.
    [5]P.Yin,C.J.Burns,P.D.J.Osman,et al.,Biosens.Bioelectron.18(2003)389.
    [6]J.L.Fox,Nat.Biotech.31(2013)379.
    [7]E.Sancho Vaello and K.Zeth,Future Microbiol.10(2015)1103.
    [8]E.Y.Lee,B.M.Fulan,G.C.L.Wong,et al.,Proc.Natl Acad.Sci.USA 113(2016)13588.
    [9]S.Li,S.Y.Kim,A.E.Pittman,et al.,J.Am.Chem.Soc.140(2018)6441.
    [10]M.Pillong,J.A.Hiss,P.Schneider,et al.,Small.13(2017)1701316.
    [11]G.Wiedman,S.Y.Kim,E.Zapata Mercado,et al.,J.Am.Chem.Soc.139(2017)937.
    [12]C.H.Chen,G.Wiedman,A.Khan,et al.,Biochim.Biophys.Acta.1838(2014)2243.
    [13]M.Lee,T.Sun,W.Hung,et al.,Proc.Natl.Acad.Sci.USA.110(2013)14243.
    [14]T.C.Terwilliger,L.Weissman,and D.Eisenberg,Biophys.J.37(1982)353.
    [15]M.Andersson,Jakob P.Ulmschneider,Martin B.Ulmschneider,et al.,Biophys.J.104(2013)L12.
    [16]K.P.Santo and M.L.Berkowitz,J.Phys.Chem.B.116(2012)3021.
    [17]A.J.Krauson,J.He,and W.C.Wimley,J.Am.Chem.Soc.134(2012)12732.
    [18]G.Wiedman,T.Fuselier,J.He,et al.,J.Am.Chem.Soc.136(2014)4724.
    [19]A.J.Krauson,O.M.Hall,T.Fuselier,et al.,J.Am.Chem.Soc.137(2015)16144.
    [20]A.Fennouri,S.F.Mayer,T.B.H.Schroeder,et al.,Biochim.Biophys.Acta 1859(2017)2051.
    [21]S.Y.Woo and H.Lee,Phys.Chem.Chem.Phys.19(2017)7195.
    [22]Y.Lyu,N.Xiang,X.Zhu,et al.,J.Chem.Phys.146(2017)155101.
    [23]S.J.Irudayam and M.L.Berkowitz,Biochim.Biophys.Acta.1818(2012)2975.
    [24]S.J.Irudayam,T.Pobandt,and M.L.Berkowitz,J.Phys.Chem.B.117(2013)13457.
    [25]A.Goliaei,K.P.Santo,and M.L.Berkowitz,J.Phys.Chem.B.118(2014)12673.
    [26]N.Schmidt,A.Mishra,G.H.Lai,et al.,FEBS Lett.584(2010)1806.
    [27]J.Liu,S.Xiao,J.Li,et al.,Biochim.Biophys.Acta 1860(2018)2234.
    [28]M.Lelimousin,V.Limongelli,and M.S.P.Sansom,J.Am.Chem.Soc.138(2016)10611.
    [29]N.N.Hai,X.Zhou,and M.Li,Commun.Theor.Phys.64(2015)249.
    [30]D.Sun,J.Forsman,and C.E.Woodward,Langmuir 31(2015)9388.
    [31]W.C.Wimley,Biophys.J.114(2018)251.
    [32]A.Barducci,G.Bussi,and M.Parrinello,Phys.Rev.Lett.100(2008)020603.
    [33]H.W.Huang,F.Y.Chen,and M.T.Lee,Phys.Rev.Lett.92(2004)198304.
    [34]A.E.Pittman,B.P.Marsh,and G.M.King,Langmuir34(2018)8393.
    [35]A.Therrien and M.Lafleur,Biophys.J.110(2016)400.
    [36]S.Jo,T.Kim,G.Iyer Vidyashankara,et al.,J.Comput.Chem.29(2008)1859.
    [37]D.H.de Jong,G.Singh,W.F.D.Bennett,et al.,J.Chem.Theory Comp.9(2013)687.
    [38]D.Sun,J.Forsman,and C.E.Woodward,Langmuir 31(2015)752.
    [39]S.Pronk,S.P′all,R.Schulz,et al.,Bioinformatics 29(2013)845.
    [40]S.J.Marrink,H.J.Risselada,S.Yefimov,et al.,J.Phys.Chem.B 111(2007)7812.
    [41]L.Monticelli,S.K.Kandasamy,X.Periole,et al.,J.Chem.Theor.Comp.4(2008)819.
    [42]H.J.C.Berendsen,J.P.M.Postma,W.F.van Gunsteren,et al.,J.Chem.Phys.81(1984)3684.
    [43]M.Parrinello and A.Rahman,J.Appl.Phys.52(1981)7182.
    [44]M.Bonomi,D.Branduardi,G.Bussi,et al.,Comput.Phys.Commun.180(2009)1961.
    [45]V.Limongelli,M.Bonomi,and M.Parrinello,Proc.Natl Acad.Sci.USA.110(2013)6358.
    [46]Z.Yang,H.Choi,and J.C.Weisshaar,Biophys.J.114(2018)368.
    [47]G.Wiedman,K.Herman,P.Searson,et al.,Biochim.Biophys.Acta.1828(2013)1357.
    [48]F.Y.Chen,M.T.Lee,and H.W.Huang,Biophys.J.84(2003)3751.
    [49]K.P.Santo,S.J.Irudayam,and M.L.Berkowitz,J.Phys.Chem.B 117(2013)5031.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700