用户名: 密码: 验证码:
Variations in High-frequency Oscillations of Tropical Cyclones over the Western North Pacific
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Variations in High-frequency Oscillations of Tropical Cyclones over the Western North Pacific
  • 作者:Shumin ; CHEN ; Weibiao ; LI ; Zhiping ; WEN ; Mingsen ; ZHOU ; Youyu ; LU ; Yu-Kun ; QIAN ; Haoya ; LIU ; Rong ; FANG
  • 英文作者:Shumin CHEN;Weibiao LI;Zhiping WEN;Mingsen ZHOU;Youyu LU;Yu-Kun QIAN;Haoya LIU;Rong FANG;School of Atmospheric Sciences/Center for Monsoon and Environment Research/Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-Sen University;Guangzhou Institute of Tropical and Marine Meteorology, China Meteorological Administration;Bedford Institute of Oceanography, Fisheries and Oceans Canada;State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology,Chinese Academy of Sciences;
  • 英文关键词:tropical cyclone;;high-frequency oscillation;;western North Pacific;;South China Sea
  • 中文刊名:DQJZ
  • 英文刊名:大气科学进展(英文版)
  • 机构:School of Atmospheric Sciences/Center for Monsoon and Environment Research/Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-Sen University;Guangzhou Institute of Tropical and Marine Meteorology, China Meteorological Administration;Bedford Institute of Oceanography, Fisheries and Oceans Canada;State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology,Chinese Academy of Sciences;
  • 出版日期:2018-03-21
  • 出版单位:Advances in Atmospheric Sciences
  • 年:2018
  • 期:v.35
  • 基金:supported by the National Natural Science Foundation of China (Grant Nos. 41405048, 41675043, 41375050, 41205032 and 41775094);; Independent Research Project Program of State Key Laboratory of Tropical Oceanography (Grant No. LTOZZ1603)
  • 语种:英文;
  • 页:DQJZ201804006
  • 页数:12
  • CN:04
  • ISSN:11-1925/O4
  • 分类号:55-66
摘要
Variations in the high-frequency oscillations of tropical cyclones(TCs) over the western North Pacific(WNP) are studied in numerical model simulations. Power spectrum analysis of maximum wind speeds at 10 m(MWS_(10)) from an ensemble of15 simulated TCs shows that oscillations are significant for all TCs. The magnitudes of oscillations in MWS_(10) are similar in the WNP and South China Sea(SCS); however, the mean of the averaged significant periods in the SCS(1.93 h) is shorter than that in the open water of the WNP(2.83 h). The shorter period in the SCS is examined through an ensemble of simulations,and a case simulation as well as a sensitivity experiment in which the continent is replaced by ocean for Typhoon Hagupit(2008). The analysis of the convergence efficiency within the boundary layer suggests that the shorter periods in the SCS are possibly due to the stronger terrain effect, which intensifies convergence through greater friction. The enhanced convergence strengthens the disturbance of the gradient and thermal wind balances, and then contributes to the shorter oscillation periods in the SCS.
        Variations in the high-frequency oscillations of tropical cyclones(TCs) over the western North Pacific(WNP) are studied in numerical model simulations. Power spectrum analysis of maximum wind speeds at 10 m(MWS_(10)) from an ensemble of15 simulated TCs shows that oscillations are significant for all TCs. The magnitudes of oscillations in MWS_(10) are similar in the WNP and South China Sea(SCS); however, the mean of the averaged significant periods in the SCS(1.93 h) is shorter than that in the open water of the WNP(2.83 h). The shorter period in the SCS is examined through an ensemble of simulations,and a case simulation as well as a sensitivity experiment in which the continent is replaced by ocean for Typhoon Hagupit(2008). The analysis of the convergence efficiency within the boundary layer suggests that the shorter periods in the SCS are possibly due to the stronger terrain effect, which intensifies convergence through greater friction. The enhanced convergence strengthens the disturbance of the gradient and thermal wind balances, and then contributes to the shorter oscillation periods in the SCS.
引文
Chan,J.C.L.,and W.M.Gray,1982:Tropical cyclone movement and surrounding flow relationships.Mon.Wea.Rev.,110,1354-1374,https://doi.org/10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2.
    Charney,J.G.,and A.Eliassen,1964:On the growth of the hurricane depression.J.Atmos.Sci.,21,68-75,https://doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2.
    Chen,S.M.,1987:Preliminary analysis on the structure and intensity of concentric double-eye typhoons.Adv.Atmos.Sci.,4,113-118,https://doi.org/10.1007/BF02656667.
    Chen,S.M.,W.B.Li,Y.Y.Lu,and Z.P.Wen,2014:Variations of latent heat flux during tropical cyclones over the South China Sea.Meteorological Applications,21,717-723,https://doi.org/10.1002/met.1398.
    Chen,S.M.,Y.Y.Lu,W.B.Li,and Z.P.Wen,2015:Identification and analysis of high-frequency oscillations in the eyewalls of tropical cyclones.Adv.Atmos.Sci.,32,624-634,https://doi.org/10.1007/s00376-014-4063-x.
    Dudhia,J.,1989:Numerical study of convection observed during the winter monsoon experiment using a mesoscale twodimensional model.J.Atmos.Sci.,46,3077-3107,https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
    Emanuel,K.A.,1986:An air-sea interaction theory for tropical cyclones.Part I:Steady-state maintenance.J.Atmos.Sci.,43,585-604,https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.
    Emanuel,K.A.,2005:Increasing destructiveness of tropical cyclones over the past 30 years.Nature,436,686-688,https://doi.org/10.1038/nature03906.
    Gall,R.,J.Tuttle,and P.Hildebrand,1998:Small-scale spiral bands observed in Hurricanes Andrew,Hugo,and Erin.Mon.Wea.Rev.,126,1749-1766,https://doi.org/10.1175/1520-0493(1998)126<1749:SSSBOI>2.0.CO;2.
    Gilman,D.L.,F.J.Fuglister,and J.M.Mitchell Jr.,1963:On the power spectrum of“red noise”.J.Atmos.Sci.,20,182-184,https://doi.org/10.1175/1520-0469(1963)020<0182:OTPSON>2.0.CO;2.
    Hendricks,E.A.,M.T.Montgomery,and C.A.Davis,2004:The role of“vortical”hot towers in the formation of tropical cyclone Diana(1984).J.Atmos.Sci.,61,1209-1232,https://doi.org/10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.
    Hong,S.Y.,and J.O.J.Lim,2006:The WRF single-moment 6-class microphysics scheme(WSM6).Journal of Korean Meteorological Society,42,129-151.
    Hong,S.Y.,J.Dudhia,and S.H.Chen,2004:A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation.Mon.Wea.Rev.,132,103-120,https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.
    Kain,J.S.,2004:The Kain Fritsch convective parameterization:An update.J.Appl.Meteor.,43,170-181,https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
    Kain,J.S.,and J.M.Fritsch,1990:A one-dimensional entraining/detraining plume model and its application in convective parameterization.J.Atmos.Sci.,47,2784-2802,https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.
    Kain,J.S.,and J.M.Fritsch,1993:Convective parameterization for mesoscale models:The Kain-Fritsch scheme.The Representation of Cumulus Convection in Numerical Models,Emanuel,K.A.,and D.J.Raymond,Eds.American Meteorological Society,Boston,MA,24,165-170,https://doi.org/10.1007/978-1-935704-13-3 16.
    Ki,M.O.,and H.Y.Chun,2011:Inertia gravity waves associated with deep convection observed during the summers of 2005and 2007 in Korea.J.Geophys.Res.,116(D16),D16122,https://doi.org/doi:10.1029/2011JD015684.
    Kossin,J.P.,2002:Daily hurricane variability inferred from GOES infrared imagery.Mon.Wea.Rev.,130,2260-2270,https://doi.org/10.1175/1520-0493(2002)130<2260:DHVIFG>2.0.CO;2.
    Kurihara,Y.,1976:On the development of spiral bands in a tropical cyclone.J.Atmos.Sci.,33,940-958,https://doi.org/10.1175/1520-0469(1976)033<0940:OTDOSB>2.0.CO;2.
    Li,Q.Q.,Y.H.Duan,H.Yu,and G.Fu,2010:Finescale spiral rainbands modeled in a high-resolution simulation of Typhoon Rananim(2004).Adv.Atmos.Sci.,27,685-704,https://doi.org/10.1007/s00376-009-9127-y.
    Menelaou,K.,and M.K.Yau,2014:On the role of asymmetric convective bursts to the problem of hurricane intensification:Radiation of vortex Rossby waves and wave-mean flow interactions.J.Atmos.Sci.,71,2057-2077,https://doi.org/10.1175/JAS-D-13-0343.1.
    Mlawer,E.J.,S.J.Taubman,P.D.Brown,M.J.Iacono,and S.A.Clough,1997:Radiative transfer for inhomogeneous atmospheres:RRTM,a validated correlated-k model for the longwave.J.Geophys.Res.,102,16 663-16 682,https://doi.org/10.1029/97JD00237.
    Montgomery,M.T.,and R.J.Kallenbach,1997:A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes.Quart.J.Roy.Meteor.Soc.,123,435-465,https://doi.org/10.1002/qj.49712353810.
    Montgomery,M.T.,M.E.Nicholls,T.A.Cram,A.B.Saunders,2006:A vortical hot tower route to tropical cyclogenesis.J.Atmos.Sci.,63,355-386,https://doi.org/10.1175/JAS3604.1.
    Peng,S.Q.,and Coauthors,2014:On the mechanisms of the recurvature of super typhoon megi.Sci.Rep.,4,4451,https://doi.org/10.1038/srep04451.
    Peng,S.Q.,and Coauthors,2015:A real-time regional forecasting system established for the south china sea and its performance in the track forecasts of tropical cyclones during 2011-13.Wea.Forecasting,30,471-485,https://doi.org/10.1175/WAF-D-14-00070.1.
    Reasor,P.D.,M.D.Eastin,and J.F.Gamache,2009:Rapidly intensifying Hurricane Guillermo(1997).Part I:Low-wavenumber structure and evolution.Mon.Wea.Rev.,137,603-631,https://doi.org/10.1175/2008MWR2487.1.
    Reasor,P.D.,M.T.Montgomery,F.D.Marks Jr,and J.F.Gamache,2000:Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar.Mon.Wea.Rev.,128,1653-1680,https://doi.org/10.1175/1520-0493(2000)128<1653:LWSAEO>2.0.CO;2.
    Romine,G.S.,and R.B.Wilhelmson,2006:Finescale spiral band features within a numerical simulation of Hurricane Opal(1995).Mon.Wea.Rev.,134,1121-1139,https://doi.org/10.1175/MWR3108.1.
    Schecter,D.A.,2008:The spontaneous imbalance of an atmospheric vortex at high Rossby number.J.Atmos.Sci.,65,2498-2521,https://doi.org/10.1175/2007JAS2490.1.
    Shapiro,L.J.,and H.E.Willoughby,1982:The response of balanced hurricanes to local sources of heat and momentum.J.Atmos.Sci.,39,378-394,https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.
    Skamarock,W.C.,and Coauthors,2008:A description of the Advanced Research WRF Version 3,1-113.[Available at http://www2.mmm.ucar.edu/wrf/users/docs/arw v3.pdf].
    Stott,L.,C.Poulsen,S.Lund,and R.Thunell,2002:Super ENSO and global climate oscillations at millennial time scales.Science,297,222-226,https://doi.org/10.1126/science.1071627.
    Torrence,C.,and G.T.Compo,1998:A practical guide to wavelet analysis.Bull.Amer.Meteor.Soc.,79,61-78,https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.
    Wang,D.L.,X.D.Liang,Y.Zhao,and B.Wang,2008:A comparison of two tropical cyclone bogussing schemes.Wea.Forecasting,23,194-204,https://doi.org/10.1175/2007WAF2006094.1.
    Willoughby,H.E.,1976:Inertia-buoyancy waves in hurricanes.J.Atmos.Sci.,34,1028-1039,https://doi.org/10.1175/1520-0469(1977)034<1028:IBWIH>2.0.CO;2.
    Willoughby,H.E.,J.A.Clos,and M.G.Shoreibah,1982:Concentric eye walls,secondary wind maxima,and the evolution of the hurricane vortex.J.Atmos.Sci.,39,395-411,https://doi.org/10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.
    Ying,M.,W.Zhang,H.Yu,X.Q.Lu,J.X.Feng,Y.X.Fan,Y.T.Zhu,and D.Q.Chen,2014:An overview of the China Meteorological Administration tropical cyclone database.J.Atmos.Oceanic Technol.,31,287-301,https://doi.org/10.1175/JTECH-D-12-00119.1.
    Zhong,W.,D.L.Zhang,and H.C.Lu,2009:A theory for mixed vortex Rossby-gravity waves in tropical cyclones.J.Atmos.Sci.,66,3366-3381,https://doi.org/10.1175/2009JAS3060.1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700