用户名: 密码: 验证码:
Time-resolved, defect-hosted, trace element mobility in deformedWitwatersrand pyrite
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Time-resolved, defect-hosted, trace element mobility in deformedWitwatersrand pyrite
  • 作者:Denis ; Fougerouse ; Steven ; M.Reddy ; Christopher ; L.Kirkland ; David ; W.Saxey ; William ; D.Rickard ; Robert ; M.Hough
  • 英文作者:Denis Fougerouse;Steven M. Reddy;Christopher L. Kirkland;David W. Saxey;William D. Rickard;Robert M. Hough;School of Earth and Planetary Sciences, The Institute for Geoscience Research (TIGeR), Curtin University;Geoscience Atom Probe, Advanced Resource Characterisation Facility, John de Laeter Centre, Curtin University;CSIRO Minerals Resources;
  • 英文关键词:Atom probe microscopy;;Nanoscale;;Nanogeochronology;;Microstructure;;Isotope geochemistry;;Common Pb
  • 中文刊名:GSFT
  • 英文刊名:地学前缘(英文版)
  • 机构:School of Earth and Planetary Sciences, The Institute for Geoscience Research (TIGeR), Curtin University;Geoscience Atom Probe, Advanced Resource Characterisation Facility, John de Laeter Centre, Curtin University;CSIRO Minerals Resources;
  • 出版日期:2019-01-15
  • 出版单位:Geoscience Frontiers
  • 年:2019
  • 期:v.10
  • 基金:The Australian Resource Characterisation Facility (ARCF), under the auspices of the National Resource Sciences Precinct (NRSP) e the collaboration between CSIRO, Curtin University and The University of Western Australia e is supported by the Science and Industry Endowment Fund (SIEF RI13-01);; The authors gratefully acknowledge support of Curtin University’s Microscopy & Microanalysis Facility and the John de Laeter Centre, whose instrumentation has been supported by University, State and Commonwealth Government funding;; SMR acknowledges support from the ARC Core to Crust Fluid System COE (CE11E0070) and the SIEF Distal Footprints program (RP04-063)
  • 语种:英文;
  • 页:GSFT201901006
  • 页数:9
  • CN:01
  • ISSN:11-5920/P
  • 分类号:59-67
摘要
The Pb isotopic composition of rocks is widely used to constrain the sources and mobility of melts and hydrothermal fluids in the Earth's crust. In many cases, the Pb isotopic composition appears to represent mixing of multiple Pb reservoirs. However, the nature, scale and mechanisms responsible for isotopic mixing are not well known. Additionally, the trace element composition of sulphide minerals are routinely used in ore deposit research, mineral exploration and environmental studies, though little is known about element mobility in sulphides during metamorphism and deformation. To investigate the mechanisms of trace element mobility in a deformed Witwatersrand pyrite(FeS_2), we have combined electron backscatter diffraction(EBSD) and atom probe microscopy(APM). The results indicate that the pyrite microstructural features record widely different Pb isotopic compositions, covering the entire range of previously published sulphide Pb compositions from the Witwatersrand basin. We show that entangled dislocations record enhanced Pb, Sb, Ni, Tl and Cu composition likely due to entrapment and short-circuit diffusion in dislocation cores. These dislocations preserve the Pb isotopic composition of the pyrite at the time of growth(~3 Ga) and show that dislocation intersections, likely to be common in deforming minerals, limit trace element mobility. In contrast, Pb, As, Ni, Co, Sb and Bi decorate a highangle grain boundary which formed soon after crystallisation by sub-grain rotation recrystallization.Pb isotopic composition within this boundary indicates the addition of externally-derived Pb and trace elements during greenschist metamorphism at ~2 Ga. Our results show that discrete Pb reservoirs are nanometric in scale, and illustrate that grain boundaries may remain open systems for trace element mobility over 1 billion years after their formation.
        The Pb isotopic composition of rocks is widely used to constrain the sources and mobility of melts and hydrothermal fluids in the Earth's crust. In many cases, the Pb isotopic composition appears to represent mixing of multiple Pb reservoirs. However, the nature, scale and mechanisms responsible for isotopic mixing are not well known. Additionally, the trace element composition of sulphide minerals are routinely used in ore deposit research, mineral exploration and environmental studies, though little is known about element mobility in sulphides during metamorphism and deformation. To investigate the mechanisms of trace element mobility in a deformed Witwatersrand pyrite(FeS_2), we have combined electron backscatter diffraction(EBSD) and atom probe microscopy(APM). The results indicate that the pyrite microstructural features record widely different Pb isotopic compositions, covering the entire range of previously published sulphide Pb compositions from the Witwatersrand basin. We show that entangled dislocations record enhanced Pb, Sb, Ni, Tl and Cu composition likely due to entrapment and short-circuit diffusion in dislocation cores. These dislocations preserve the Pb isotopic composition of the pyrite at the time of growth(~3 Ga) and show that dislocation intersections, likely to be common in deforming minerals, limit trace element mobility. In contrast, Pb, As, Ni, Co, Sb and Bi decorate a highangle grain boundary which formed soon after crystallisation by sub-grain rotation recrystallization.Pb isotopic composition within this boundary indicates the addition of externally-derived Pb and trace elements during greenschist metamorphism at ~2 Ga. Our results show that discrete Pb reservoirs are nanometric in scale, and illustrate that grain boundaries may remain open systems for trace element mobility over 1 billion years after their formation.
引文
Alexandre, P., Andreoli, M A., Jamison, A., Gibson, R.L., 2006. 40 Ar/39 Ar age constraints on low-grade metamorphism and cleavage development in the Transvaal Supergroup(central Kaapvaal craton, South Africa):implications for the tectonic setting of the Bushveld Igneous Complex. South African Journal of Geology 109(3), 393-410.
    Ando, J.,Shibata, Y., Okajima, Y., Kanagawa, K.,Furusho, M., Tomioka, N.,2001.Striped iron zoning of olivine induced by dislocation creep in deformed peridotites. Nature 414(6866), 893-895.
    Armstrong, R.,Compston, W., Retief, E.,Williams, I.t., Welke, H.,1991. Zircon ion microprobe studies bearing on the age and evolution of the Witwatersrand triad. Precambrian Research 53(3-4), 243-266.
    Barton, E., Hallbauer, D., 1996. Trace-element and U-Pb isotope compositions of pyrite types in the proterozoic black reef, transvaal sequence, South Africa:implications on genesis and age. Chemical Geology 133(1), 173-199.
    Belousov, I., Large, R., Meffre, S., Danyushevsky, L., Steadman, J., Beardsmore, T.,2016. Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Western Australia:implications for gold and copper exploration. Ore Geology Reviews 79, 474-499.
    Blum, T.B., Darling, J.R., Kelly, T.F., Larson, D.J., Moser, D.E., Perez-Huerta, A.,Prosa, T.J., Reddy, S.M., Reinhard, D.A., Saxey, D.W., 2018. Best practices for reporting atom probe analysis of geological materials. Microstructural Geochronology:Planetary Records Down to Atom Scale 369-373.
    Borg, R.J., Dienes, G.J., 2012. An Introduction to Solid State Diffusion. Elsevier.
    Brostigen, G., Kjekshus, A., 1969. Redetermined crystal structure of FeS2(pyrite).Acta Chem Scand 23, 2186-2188.
    Burger, A., Nicolaysen, L., De Villiers, J., 1962. Lead isotopic compositions of galenas from the Witwatersrand and orange free state, and their relation to theWitwatersrand and dominion reef uraninites. Geochimica et Cosmochimica Acta 26(1), 25IN551-50IN659.
    Buttner, S.H., Kasemann, S.A., 2007. Deformation-controlled cation diffusion in tourmaline:a microanalytical study on trace elements and boron isotopes.American Mineralogist 92(11-12), 1862-1874.
    Cahn, J., Balluffi, R., 1979. Diffusional Mass Transport in Polycrystals Containing Stationary or Migrating Grain Boundaries. Massachusetts Inst. of Tech., Cambridge(USA).
    Cassidy, K.F., Groves, D.I., McNaughton, NJ., 1998. Late-Archean granitoid-hosted lodegold deposits, Yilgarn Craton, Western Australia:deposit characteristics, crustal architecture and implications for ore genesis. Ore Geology Reviews 13(1), 65-102.
    Chen, Y, Schuh, C.A., 2006. Diffusion on grain boundary networks:percolation theory and effective medium approximations. Acta Materialia 54(18), 4709-4720.
    Cottrell, A.H., Bilby, B., 1949. Dislocation theory of yielding and strain ageing of iron.Proceedings of the Physical Society Section A 62(1), 49.
    Daly, L., Bland, P.A., Tessalina, S., Saxey, D.W., Reddy, S.M., Fougerouse, D.,Rickard, W.D.A., Forman, L.V., Fontaine, A.L., Cairney, J.M., Ringer, S.P.,Schaefer, B.F., Schwander,D., 2018. Defining the potential of nanoscale Re-Os isotope systematics using atom probe microscopy. Geostandards and Geoanalytical Research 42(3), 279-299. https://doi.org/10.1111/ggr.12216.
    De Wit, M.J., de Ronde, C.E., Tredoux, M., Roering, C., Hart, R.J., Armstrong, R.A.,Green, R.W., Peberdy, E., Hart, R.A., 1992. formation of an archaean continent.Nature 357(6379), 553-562.
    Depine, M., Frimmel, H., Emsbo, P., Koenig, A., Kern, M., 2013. Trace element distribution in uraninite from Mesoarchaean Witwatersrand conglomerates(South Africa)supports placer model and magmatogenic source. Mineralium Deposita 48(4), 423-435.
    Fougerouse, D., Micklethwaite, S., Halfpenny, A., Reddy, S.M., Cliff, J.B., Martin, L.A.,Kilburn, M., Guagliardo, P., Ulrich, S., 2016a. The golden ark:arsenopyrite crystal plasticity and the retention of gold through high strain and metamorphism.Terra Nova 28(3), 181-187.
    Fougerouse, D., Reddy, S.M., Saxey, D.W., Erickson, T.M., Kirkland, C.L.,Rickard, W.D.A., Seydoux-Guillaume, A.M., Clark, C., Buick, I.S., 2018. Nanoscale distribution of Pb in monazite revealed by atom probe microscopy. Chemical Geology 479, 251-258.
    Fougerouse, D., Reddy, S.M., Saxey, D.W., Rickard, W.D., Van Riessen, A.,Micklethwaite, S., 2016b. Nanoscale gold clusters in arsenopyrite controlled by growth rate not concentration:evidence from atom probe microscopy. American Mineralogist 101(8), 1916-1919.
    Frimmel, H., Gartz, V., 1997. Witwatersrand gold particle chemistry matches model of metamorphosed, hydrothermally altered placer deposits. Mineralium Deposita 32(6), 523-530.
    Frimmel, H.,Le Roex, A.,Knight, J.,Minter,W.,1993. A case study of the postdepositional alteration of the Witwatersrand Basal Reef gold placer. Economic Geology 88(2), 249-265.
    Gibson, R.L., Stevens, G., 1998. Regional metamorphism due to anorogenic intracratonic magmatism. Geological Society London Special Publications 138(1),121-135.
    Glicksman, M.E., 2000. Diffusion in Solids:Field Theory, Solid-state Principles and Applications. Wiley.
    Groves, G.,Kelly, A., 1963. Independent slip systems in crystals. Philosophical Magazine 8(89), 877-887.
    Hellman, O.C., Vandenbroucke, J.A., Rusing, J., Isheim, D., Seidman, D.N., 2000.Analysis of three-dimensional atom-probe data by the proximity histogram.Microscopy and Microanalysis 6(05), 437-444.
    Huston, D.L., Sie, S.H., Suter, G.F., Cooke, D.R., Both, R.A., 1995. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; PartⅠ, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite,and PartⅡ, Selenium levels in pyrite; comparison with delta 34 S values and implications for the source of sulfur in volcanogenic hydrothermal systems.Economic Geology 90(5), 1167-1196.
    Joesten, R., 1991. Grain-boundary Diffusion Kinetics in Silicate and Oxide Minerals.Diffusion, Atomic Ordering, and Mass Transport. Springer, pp. 345-395.
    Johnston, W., Gilman, J.J., 1959. Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals. Journal of Applied Physics 30(2),129-144.
    Kirkland, C.L., Fougerouse, D., Reddy, S.M., Hollis, J., Saxey, D.,2018. Assessing the mechanisms of common Pb incorporation into titanite. Chemical Geology 483,558-566. https://doi.org/10.1016/j.chemgeo.2018.03.026.
    Klapper, H., 2010. Generation and Propagation of Defects during Crystal Growth.Springer Handbook of Crystal Growth. Springer, pp. 93-132.
    Klinger, L., Rabkin, E., 1998. Diffusion along the grain boundaries in crystals with dislocations. Interface Science 6(3), 197-203.
    Koppel, V.H., Saager, R., 1974. Lead isotope evidence on the detrital origin of Witwatersrand pyrites and its bearing on the provenance of the Witwatersrand gold. Economic Geology 69(3), 318-331.
    Kositcin, N., McNaughton, N.J., Griffin, B.J., Fletcher, I.R., Groves, D.I., Rasmussen, B.,2003. Textural and geochemical discrimination between xenotime of different origin in the Archaean Witwatersrand Basin, South Africa. Geochimica et Cosmochimica Acta 67(4), 709-731.
    Large, R.R., Danyushevsky, L., Hollit, C., Maslennikov, V., Meffre, S., Gilbert, S., Bull, S.,Scott, R., Emsbo, P., Thomas, H., 2009. Gold and trace element zonation in pyrite using a laser imaging technique:implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Economic Geology 104(5),635-668.
    Large, R.R., Halpin, J.A., Danyushevsky, L.V., Maslennikov, V.V., Bull, S.W., Long, J.A.,Gregory, D.D., Lounejeva, E., Lyons, T.W., Sack, P.J., McGoldrick, P.J., Calver, C.R.,2014. Trace element content of sedimentary pyrite as a new proxy for deeptime ocean-atmosphere evolution. Earth and Planetary Science Letters 389(Suppl. C), 209-220.
    Large, R.R., Meffre, S., Burnett, R., Guy, B., Bull, S., Gilbert, S.,Goemann, K.,Danyushevsky, L., 2013. Evidence for an intrabasinal source and multiple concentration processes in the formation of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa. Economic Geology 108(6), 1215-1241.
    Law, J., Phillips, G., 2005. Hydrothermal Replacement Model for Witwatersrand Gold. Economic Geology 100th Anniversary Volume, pp. 799-811.
    Lee, J.K., 1995. Multipath diffusion in geochronology. Contributions to Mineralogy and Petrology 120(1), 60-82.
    Love, G., 1964. Dislocation pipe diffusion. Acta Metallurgica 12(6), 731-737.
    Massey, M.A., Prior, D.J., Moecher, D.P.. 2011. Microstructure and crystallographic preferred orientation of polycrystalline microgarnet aggregates developed during progressive creep, recovery, and grain boundary sliding. Journal of Structural Geology 33(4), 713-730.
    McCaig, A., Covey-Crump, S.J., Ismail, W.B., Lloyd, G.E., 2007. Fast diffusion along mobile grain boundaries in calcite. Contributions to Mineralogy and Petrology153(2), 159-175.
    Meffre, S., Large, R.R., Scott, R., Woodhead, J., Chang, Z., Gilbert, S.E.,Danyushevsky, L.V., Maslennikov, V., Hergt, J.M., 2008. Age and pyrite Pbisotopic composition of the giant Sukhoi Log sediment-hosted gold deposit,Russia. Geochimica et Cosmochimica Acta 72(9), 2377-2391.
    Moser, D., Davis, W., Reddy, S., Flemming, R., Hart, R., 2009. Zircon U-Pb strain chronometry reveals deep impact-triggered flow. Earth and Planetary Science Letters 277(1),73-79.
    Nakagawa, T., Nakamura, A., Sakaguchi, I., Shibata, N., Mizoguchi, T., Yamamoto, T.,Haneda, H., Ohashi, N., Ikuhara, Y., 2011. Cation diffusion along basal dislocations in sapphire. Acta Materialia 59(3), 1105-1111.
    Nemchin, A., Timms, N.E., Pidgeon, R., Geisler, T., Reddy, S., Meyer, C., 2009. Timing of crystallization of the lunar magma ocean constrained by the oldest zircon.Nature Geoscience 2, 133-136.
    Peterman, E.M., Reddy, S.M., Saxey, D.W., Snoeyenbos, D.R., Rickard, W.D.,Fougerouse, D., Kylander-Clark, A.R., 2016. Nanogeochronology of discordant zircon measured by atom probe microscopy of Pb-enriched dislocation loops.Science Advances 2(9), e1601318.
    Phillips, N.G., Law, J.D., 1994. Metamorphism of the Witwatersrand gold fields:a review. Ore Geology Reviews 9(1), 1-31.
    Piazolo, S., La Fontaine, A., Trimby, P., Harley, S., Yang, L., Armstrong, R., Cairney, J.M.,2016. Deformation-induced trace element redistribution in zircon revealed using atom probe tomography. Nature Communications 7.
    Rasmussen, B., Fletcher, I.R., Muhling, J.R., Mueller, A.G., Hall, G.C., 2007. Bushveld-aged fluid flow, peak metamorphism, and gold mobilization in the Witwatersrand basin, South Africa:constraints from in situ SHRIMP U-Pb dating of monazite and xenotime. Geology 35(10), 931-934.
    Reddy, S.M., Hough, R.M., 2013. Microstructural evolution and trace element mobility in Witwatersrand pyrite. Contributions to Mineralogy and Petrology166(5), 1269-1284.
    Reddy, S.M., Timms, N.E., Trimby, P., Kinny, P.D., Buchan, C., Blake, K., 2006. Crystalplastic deformation of zircon:a defect in the assumption of chemical robustness. Geology 34(4), 257-260.
    Reddy, S.M., van Riessen, A., Saxey, D.W., Johnson, T.E., Rickard, W.D., Fougerouse, D.,Fischer, S., Prosa, T.J., Rice, K.P., Reinhard, D.A., 2016. Mechanisms of deformation-induced trace element migration in zircon resolved by atom probe and correlative microscopy. Geochimica et Cosmochimica Acta 195,158-170.
    Robb, LJ., Davis, D., Kamo, S., 1991. Chronological framework for the Witwatersrand Basin and environs:towards a time-constrained depositional model. South African Journal of Geology 94(1), 86-95.
    Robb, L.J., Meyer, F.M., 1995. The Witwatersrand Basin, South Africa:geological framework and mineralization processes. Ore Geology Reviews 10(2),67-94.
    Shannon, R.D., 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A Crystal Physics Diffraction Theoretical and General Crystallography 32(5),751-767.
    Stacey,J.t., Kramers, J., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26(2), 207-221.
    Thompson, K.,Lawrence, D.,Larson, D.,Olson, J.,Kelly, T., Gorman, B.,2007. In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107(2), 131-139.
    Valley, J.W., Cavosie, A.J., Ushikubo, T., Reinhard, D.A., Lawrence, D.F., Larson, D.J.,Clifton, P.H., Kelly, T.F., Wilde, S.A., Moser, D.E., 2014. Hadean age for a postmagma-ocean zircon confirmed by atom-probe tomography. Nature Geoscience 7(3), 219-223.
    White, L.F., Darling, J., Moser, D., Reinhard, D., Prosa, T., Bullen, D., Olsen, D.,Larson, D., Lawrence, D., Martin, I., 2017. Atomic-scale age resolution of planetary events. Nature Communications 8,1-6.
    Wickham, L., Schwarz, K., Stolken, J., 1999. Rules for forest interactions between dislocations. Physical Review Letters 83(22), 4574.
    Zhou, S.,Preston, D., Lomdahl, P., Beazley, D., 1998. Large-scale molecular dynamics simulations of dislocation intersection in copper. Science 279(5356), 1525-1527.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700