用户名: 密码: 验证码:
Recent developments in novel silica-based optical fibers
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent developments in novel silica-based optical fibers
  • 作者:Ting-yun ; WANG ; Fu-fei ; PANG ; Su-juan ; HUANG ; Jian-xiang ; WEN ; Huan-huan ; LIU ; Li-bo ; YUAN
  • 英文作者:Ting-yun WANG;Fu-fei PANG;Su-juan HUANG;Jian-xiang WEN;Huan-huan LIU;Li-bo YUAN;Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science,Shanghai University;Photonics Research Center, Guilin University of Electronic Technology;
  • 英文关键词:Optical fiber;;Fiber optic device;;Silica-based special fiber
  • 中文刊名:JZUS
  • 英文刊名:信息与电子工程前沿(英文)
  • 机构:Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science,Shanghai University;Photonics Research Center, Guilin University of Electronic Technology;
  • 出版日期:2019-04-03
  • 出版单位:Frontiers of Information Technology & Electronic Engineering
  • 年:2019
  • 期:v.20
  • 基金:Project supported by the National Natural Science Foundation of China(Nos.61735009,61535004,and 61827819)
  • 语种:英文;
  • 页:JZUS201904004
  • 页数:9
  • CN:04
  • ISSN:33-1389/TP
  • 分类号:47-55
摘要
We have summarized our recent work in the area of novel silica-based optical fibers, which can be classified into two types: silica optical fiber doped with special elements including Bi, Al, and Ce, and micro-structured multi-core fibers. For element-doped optical fiber, the Bi/Al co-doped silica fibers could exhibit a fluorescence spectrum covering the wavelength range between 1000 and 1400 nm with a full width at half maximum(FWHM) of about 150 nm, which enables its use in fiber amplifiers and laser systems. The Ce-doped fiber's center wavelengths of excitation and emission are about 340 and 430 nm, respectively. The sapphire-derived fiber(SDF) with high alumina dopant concentration in the core can form mullite through heating and cooling with arc-discharge treatment. This SDF can be further developed for an intrinsic Fabry-Perot interferometric that can withstand 1200 ℃, which allows it to be used in high-temperature sensing applications. Owing to the strong evanescent field, microstructured multi-core fiber can be used in a wide range of applications in biological fiber optic sensing, chemical measurement, and interference-related devices. Coaxial-core optical fiber is another novel kind of silica-based optical fiber that has two coaxial waveguide cores and can be used for optical trapping and micro-particle manipulation by generating a highly focused conical optical field. The recent developments of these novel fibers are discussed.
        We have summarized our recent work in the area of novel silica-based optical fibers, which can be classified into two types: silica optical fiber doped with special elements including Bi, Al, and Ce, and micro-structured multi-core fibers. For element-doped optical fiber, the Bi/Al co-doped silica fibers could exhibit a fluorescence spectrum covering the wavelength range between 1000 and 1400 nm with a full width at half maximum(FWHM) of about 150 nm, which enables its use in fiber amplifiers and laser systems. The Ce-doped fiber's center wavelengths of excitation and emission are about 340 and 430 nm, respectively. The sapphire-derived fiber(SDF) with high alumina dopant concentration in the core can form mullite through heating and cooling with arc-discharge treatment. This SDF can be further developed for an intrinsic Fabry-Perot interferometric that can withstand 1200 ℃, which allows it to be used in high-temperature sensing applications. Owing to the strong evanescent field, microstructured multi-core fiber can be used in a wide range of applications in biological fiber optic sensing, chemical measurement, and interference-related devices. Coaxial-core optical fiber is another novel kind of silica-based optical fiber that has two coaxial waveguide cores and can be used for optical trapping and micro-particle manipulation by generating a highly focused conical optical field. The recent developments of these novel fibers are discussed.
引文
Alshourbagy M,Bigotta S,Herbert D,et al.,2007.Optical and scintillation properties of Ce3+doped YALO3 crystal fibers grown byμ-pulling down technique.J Cryst Growth,303(2):500-505.https://doi.org/10.1016/j.jcrysgro.2007.01.024
    Benabid F,Knight JC,Russell PJSt,2002.Particle levitation and guidance in hollow-core photonic crystal fiber.Opt Expr,10(21):1195-1203.https://doi.org/10.1364/OE.10.001195
    Chen H,Buric M,Ohodnicki PR,et al.,2018.Review and perspective:sapphire optical fiber cladding development for harsh environment sensing.Appl Phys Rev,5(1):011102.https://doi.org/10.1063/1.5010184
    Cheng TL,Kanou Y,Deng DH,et al.,2014.Fabrication and characterization of a hybrid four-hole AsSe2-As2S5microstructured optical fiber with a large refractive index difference.Opt Expr,22(11):13322-13329.https://doi.org/10.1364/OE.22.013322
    Chu YS,Jing R,Zhang JZ,et al.,2016.Ce3+/Yb3+/Er3+triply doped bismuth borosilicate glass:a potential fiber material for broadband near-infrared fiber amplifiers.Sci Rep,6:33865.https://doi.org/10.1038/srep33865
    Deng HC,Qi CC,Zhang XT,et al.,2015.Highly focused conical optical field for pico-newton scale force sensing.J Lightw Technol,33(12):2486-2491.https://doi.org/10.1109/JLT.2014.2377118
    Deng HC,Zhang Y,Yuan TT,et al.,2017.Fiber-based optical gun for particle shooting.ACS Photon,4(3):642-648.https://doi.org/10.1021/acsphotonics.6b01010
    Dianov EM,2012.Bismuth-doped optical fibers:a challenging active medium for near-IR lasers and optical amplifiers.Light Sci Appl,1(5):e12.https://doi.org/10.1038/lsa.2012.12
    Dragic P,Ballato J,Ballato A,et al.,2012a.Mass density and the brillouin spectroscopy of aluminosilicate optical fibers.Opt Mater Expr,2(11):1641-1654.https://doi.org/10.1364/OME.2.001641
    Dragic P,Hawkins T,Foy P,et al.,2012b.Sapphire-derived all-glass optical fibres.Nat Photon,6(9):627-633.https://doi.org/10.1038/nphoton.2012.182
    Dvoyrin VV,Mashinsky VM,Bulatov LI,et al.,2006.Bismuth-doped-glass optical fibers-a new active medium for lasers and amplifiers.Opt Lett,31(20):2966-2968.https://doi.org/10.1364/OL.31.002966
    Eggleton BJ,Kerbage C,Westbrook PS,et al.,2001.Microstructured optical fiber devices.Opt Expr,9(13):698-713.https://doi.org/10.1364/OE.9.000698
    Elsmann T,Lorenz A,Yazd NS,et al.,2014.High temperature sensing with fiber Bragg gratings in sapphire-derived all-glass optical fibers.Opt Expr,22(22):26825-26833.https://doi.org/10.1364/OE.22.026825
    Fujimoto Y,Nakatsuka M,2003.Optical amplification in bismuth-doped silica glass.Appl Phys Lett,82(19):3325.https://doi.org/10.1063/1.1575492
    Galeener FL,1979.Band limits and the vibrational spectra of tetrahedral glasses.Phys Rev B,19(8):4292-4297.https://doi.org/10.1103/PhysRevB.19.4292
    Geernaert T,Luyckx G,Voet E,et al.,2008.Transversal load sensing with fiber Bragg gratings in microstructured optical fibers.IEEE Photon Technol Lett,21(1):6-8.https://doi.org/10.1109/LPT.2008.2007915
    George SM,2009.Atomic layer deposition:an overview.Chem Rev,110(1):111-131.https://doi.org/10.1021/cr900056b
    Gherardi L,Marelli P,Serra A,et al.,1993.Radiation effects on doped silica-core optical fibers.Nucl Phys B,32:436-440.https://doi.org/10.1016/0920-5632(93)90057-D
    Grobnic D,Mihailov SJ,Ballato J,et al.,2015.Type I and IIBragg gratings made with infrared femtosecond radiation in high and low alumina content aluminosilicate optical fibers.Optica,2(4):313-322.https://doi.org/10.1364/OPTICA.2.000313
    Guan CY,Tian FJ,Dai Q,et al.,2011.Characteristics of embedded-core hollow optical fiber.Opt Expr,19(21):20069-20078.https://doi.org/10.1364/OE.19.020069
    Han YG,Lee YJ,Kim GH,et al.,2006.Transmission characteristics of fiber Bragg gratings written in holey fibers corresponding to air-hole size and their application.IEEEPhoton Technol Lett,18(16):1783-1785.https://doi.org/10.1109/LPT.2006.880762
    Hautakorpi M,Mattinen M,Ludvigsen H,2008.Surfaceplasmon-resonance sensor based on three-hole microstructured optical fiber.Opt Expr,16(12):8427-8432.https://doi.org/10.1364/OE.16.008427
    Hong L,Pang FF,Liu HH,et al.,2017.Refractive index modulation by crystallization in sapphire-derived fiber.IEEE Photon Technol Lett,29(9):723-726.https://doi.org/10.1109/LPT.2017.2682194
    Huang J,Lan XW,Song Y,et al.,2015.Microwave interrogated sapphire fiber Michelson interferometer for high temperature sensing.IEEE Photon Technol Lett,27(13):1398-1401.https://doi.org/10.1109/LPT.2015.2422136
    Jewart C,Chen KP,McMillen B,et al.,2006.Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microstructural fibers.Opt Lett,31(15):2260-2262.https://doi.org/10.1364/OL.31.002260
    Jin XQ,Gomez A,Shi K,et al.,2016.Mode coupling effects in ring-core fibers for space-division multiplexing systems.J Lightw Technol,34(14):3365-3372.https://doi.org/10.1109/JLT.2016.2564991
    Koao LF,Swart HC,Obed RI,et al.,2011.Synthesis and characterization of Ce3+doped silica(SiO2)nanoparticles.J Lumin,131(6):1249-1254.https://doi.org/10.1016/j.jlumin.2010.10.038
    Liu B,Yu ZZ,Hill C,et al.,2016.Sapphire-fiber-based distributed high-temperature sensing system.Opt Lett,41(18):4405-4408.https://doi.org/10.1364/OL.41.004405
    Liu CN,Huang YC,Lin YS,et al.,2014.Fabrication and characteristics of Ce-doped fiber for high-resolution OCTsource.IEEE Photon Technol Lett,26(15):1499-1502.https://doi.org/10.1109/LPT.2014.2327127
    Pasquarello A,Car R,1998.Identification of Raman defect lines as signatures of ring structures in vitreous silica.Phys Rev Lett,80(23):5145-5147.https://doi.org/10.1103/PhysRevLett.80.5145
    Poletti F,2014.Nested antiresonant nodeless hollow core fiber.Opt Expr,22(20):23807-23828.https://doi.org/10.1364/OE.22.023807
    Puurunen RL,2005.Surface chemistry of atomic layer deposition:a case study for the trimethylaluminum/water process.J Appl Phys,97(12):121301.https://doi.org/10.1063/1.1940727
    Rizzolo S,Marin E,Morana A,et al.,2016.Investigation of coating impact on OFDR optical remote fiber-based sensors performances for their integration in high temperature and radiation environments.J Lightw Technol,34(19):4460-4465.https://doi.org/10.1109/JLT.2016.2552459
    Russell PSJ,2006.Photonic-crystal fibers.J Lightw Technol,24(12):4729-4749.https://doi.org/10.1109/JLT.2006.885258
    Seng F,Stan N,King R,et al.,2017.Optical sensing of electric fields in harsh environments.J Lightw Technol,35(4):669-676.https://doi.org/10.1109/JLT.2016.2631149
    Sun XX,Wen JX,Guo Q,et al.,2017.Fluorescence properties and energy level structure of Ce-doped silica fiber materials.Opt Mater Expr,7(3):751-759.https://doi.org/10.1364/OME.7.000751
    Tian FJ,Yuan LB,Dai Q,et al.,2011.Embedded multicore hollow fiber with high birefringence.Appl Opt,50(33):6162-6167.https://doi.org/10.1364/AO.50.006162
    Vedda A,Chiodini N,Di Martino D,et al.,2004.Ce3+-doped fibers for remote radiation dosimetry.Appl Phys Lett,85(26):6356.https://doi.org/10.1063/1.1840127
    Wang AB,Gollapudi S,Murphy KA,et al.,1992.Sapphirefiber-based intrinsic Fabry-Perot interferometer.Opt Lett,17(14):1021-1023.https://doi.org/10.1364/OL.17.001021
    Wang TY,Zeng XL,Wen JX,et al.,2009.Characteristics of photoluminescence and Raman spectra of INP doped silica fiber.Appl Surf Sci,255(17):7791-7793.https://doi.org/10.1016/j.apsusc.2009.04.179
    Wen JX,Wang J,Dong YH,et al.,2015.Photoluminescence properties of Bi/Al-codoped silica optical fiber based on atomic layer deposition method.Appl Surf Sci,349:287-291.https://doi.org/10.1016/j.apsusc.2015.04.138
    Xie HM,Dabkiewicz P,Ulrich R,et al.,1986.Side-hole fiber for fiber-optic pressure sensing.Opt Lett,11(5):333-335.https://doi.org/10.1364/OL.11.000333
    Xu J,Liu HH,Pang FF,et al.,2017.Cascaded Mach-Zehnder interferometers in crystallized sapphire-derived fiber for temperature-insensitive filters.Opt Mater Expr,7(4):1406.https://doi.org/10.1364/OME.7.001406
    Yan HW,Zhang ET,Zhao BY,et al.,2012.Free-space propagation of guided optical vortices excited in an annular core fiber.Opt Expr,20(16):17904-17915.https://doi.org/10.1364/OE.20.017904
    Yang XH,Zhao QK,Qi XX,et al.,2018.In-fiber integrated gas pressure sensor based on a hollow optical fiber with two cores.Sens Actuat A,272:23-27.https://doi.org/10.1016/j.sna.2018.01.055
    Yu Z,Liu ZH,Yang J,et al.,2012.A non-contact single optical fiber multi-optical tweezers probe:design and fabrication.Opt Commun,285(20):4068-4071.https://doi.org/10.1016/j.optcom.2012.06.025
    Yuan LB,Liu ZH,Yang J,et al.,2008.Twin-core fiber optical tweezers.Opt Expr,16(7):4559-4566.https://doi.org/10.1364/OE.16.004559
    Yuan TT,Zhong X,Guan CY,et al.,2015.Long period fiber grating in two-core hollow eccentric fiber.Opt Expr,23(26):33378-33385.https://doi.org/10.1364/OE.23.033378
    Zhang JZ,Sathi ZM,Luo YH,et al.,2013.Toward an ultrabroadband emission source based on the bismuth and erbium co-doped optical fiber and a single 830nm laser diode pump.Opt Expr,21(6):7786-7792.https://doi.org/10.1364/OE.21.007786
    Zhao HY,Farrell G,Wang PF,et al.,2016.Investigation of particle harmonic oscillation using four-core fiber integrated twin-tweezers.IEEE Photon Technol Lett,28(4):461-464.https://doi.org/10.1109/LPT.2015.2499309
    Zhao QC,Luo YH,Wang WY,et al.,2017.Enhanced broadband near-IR luminescence and gain spectra of bismuth/erbium co-doped fiber by 830 and 980 nm dual pumping.AIP Adv,7(4):045012.https://doi.org/10.1063/1.4981903
    Zhu L,Zhu GX,Wang AD,et al.,2018.18 km low-crosstalk OAM?+?WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation.Opt Lett,43(8):1890-1893.https://doi.org/10.1364/OL.43.001890

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700