用户名: 密码: 验证码:
Hollow and filled fiber bragg gratings in nano-bore optical fibers
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hollow and filled fiber bragg gratings in nano-bore optical fibers
  • 作者:张永欣 ; 梁生 ; 余倩卿 ; 廉正刚 ; 董梓年 ; 王旋 ; 林裕勤 ; 邹郁祁 ; 邢坤 ; 梁柳雁 ; 赵小艇 ; 涂立静
  • 英文作者:Yong-Xin Zhang;Sheng Liang;Qian-Qing Yu;Zheng-Gang Lian;Zi-Nian Dong;Xuan Wang;Yu-Qin Lin;Yu-Qi Zou;Kun Xing;Liu-Yan Liang;Xiao-Ting Zhao;Li-Jing Tu;Key Laboratory of Education Ministry on Luminescence and Optical Information Technology, National Physical Experiment Teaching Demonstration Center, Department of Physics, School of Science, Beijing Jiaotong University;Yangtze Optical Electronic Company Ltd.;Wuhan University of Technology;Anhui Agricultural University;
  • 英文关键词:nano-bore optical fiber;;fiber Bragg grating(FBG);;hollow-core optical fiber(HCF);;fiber optics
  • 中文刊名:ZGWL
  • 英文刊名:中国物理B
  • 机构:Key Laboratory of Education Ministry on Luminescence and Optical Information Technology, National Physical Experiment Teaching Demonstration Center, Department of Physics, School of Science, Beijing Jiaotong University;Yangtze Optical Electronic Company Ltd.;Wuhan University of Technology;Anhui Agricultural University;
  • 出版日期:2019-07-15
  • 出版单位:Chinese Physics B
  • 年:2019
  • 期:v.28
  • 基金:Project supported by the Beijing Natural Science Foundation,China(Grant No.4192047);; the Fundamental Research Funds for the Central Universities,China(Grant Nos.2018JBM070 and 2018JBM065);; the National Natural Science Foundation of China(Grant No.61675019)
  • 语种:英文;
  • 页:ZGWL201907036
  • 页数:7
  • CN:07
  • ISSN:11-5639/O4
  • 分类号:283-289
摘要
To combine the technical functions and advantages of solid-core fiber Bragg gratings(FBGs) and hollow-core optical fibers(HCFs), the hollow and filled FBGs in nano-bore optical fibers(NBFs) with nano-bore in the GeO_2-doped core are proposed.The fundamental mode field, effective mode index, and confinement loss of NBF with 50 nm–7 μm-diameter hollow and filled nano-bore are numerically investigated by the finite element method.The reflected spectra of FBGs in NBFs are obtained by the transmission matrix method.The hollow FBGs in NBFs can be acheived with ~5% power fraction in the bore and the ~0.9 reflectivity when bore diameter is less than 3 μm.The filled FBGs can be realized with~1% power fraction and 0.98 reflectivity with different fillings including o-xylene, trichloroethylene, and chloroform for 800-nm bore diameter.The feasibility of the index sensing by our proposed NBF FBG is also analyzed and discussed.The experimental fabrication of hollow and filled FBGs are discussed and can be achieved by current techniques.The aim of this work is to establish a principle prototype for investigating the HCFs and solid-core FBGs-based fiber-optic platforms,which are useful for applications such as the simultaneous chemical and physical sensing at the same position.
        To combine the technical functions and advantages of solid-core fiber Bragg gratings(FBGs) and hollow-core optical fibers(HCFs), the hollow and filled FBGs in nano-bore optical fibers(NBFs) with nano-bore in the GeO_2-doped core are proposed.The fundamental mode field, effective mode index, and confinement loss of NBF with 50 nm–7 μm-diameter hollow and filled nano-bore are numerically investigated by the finite element method.The reflected spectra of FBGs in NBFs are obtained by the transmission matrix method.The hollow FBGs in NBFs can be acheived with ~5% power fraction in the bore and the ~0.9 reflectivity when bore diameter is less than 3 μm.The filled FBGs can be realized with~1% power fraction and 0.98 reflectivity with different fillings including o-xylene, trichloroethylene, and chloroform for 800-nm bore diameter.The feasibility of the index sensing by our proposed NBF FBG is also analyzed and discussed.The experimental fabrication of hollow and filled FBGs are discussed and can be achieved by current techniques.The aim of this work is to establish a principle prototype for investigating the HCFs and solid-core FBGs-based fiber-optic platforms,which are useful for applications such as the simultaneous chemical and physical sensing at the same position.
引文
[1]Erdogan T 1997 J.Lightwave Technol.15 1277
    [2]Tosi D 2018 Sensors 18 2147
    [3]Caucheteur C, Guo T and Albert J 2017 J.Lightwave Technol.35 3311
    [4]Wen S Z, Xiong W C, Huang L P, Wang Z R, Zhang X B and He Z H2018 Chin.Phys.B 27 090701
    [5]Jiang B Q, Bi Z X, Wang S H, Xi T L, Zhou K M, Zhang L and Zhao J L 2018 Chin.Phys.B 27 114220
    [6]Mihailov S J, Smelser C W, Lu P, Walker R B, Grobnic D, Ding H M,Henderson G and Unruh J 2003 Opt.Lett.28 995
    [7]Baghdasaryan T, Geernart T, Morana A, Marin E, Girard S, Makara M,Mergo P, Thienpont H and Berghmans F 2018 Opt.Express 26 14741
    [8]Dochow S, Latka I, Becker M, Spittel R, Kobelke J, Schuster K, Graf A, Brückner S, Unger S, Rothhardt M, Dietzek B, Krafft C and Popp J2012 Opt.Express 20 20156
    [9]Birks T A, Mangan B J, Diez A, Cruz J L and Murphy D F 2012 Opt.Express 20 13996
    [10]Shivananju B N, Yamdagni S, Fazuldeen R, Kumar A K S, Hegde G M, Varma M M and Asokan S 2013 Rev.Sci.Instrum.84 065002
    [11]Zhang J H, Liu N L, Wang Y, Ji L L and Lu P X 2012 Chin.Phys.Lett.29 074205
    [12]Berghmans F, Geernaert T, Baghdasaryan T and Thienpont H 2014Laser&Photon.Rev.8 27
    [13]Wang J, Liu Z Y, Gao S R, Zhang A P, Shen Y H and Tam H Y 2016 J.Lightwave Technol.34 4884
    [14]Zhang A P, Yan G F, Gao S R, He S L, Kim B, Im J and Chung Y 2011Appl.Phys.Lett.98 221109
    [15]Xiang H L and Jiang Y J 2018 OPTIK 171 9
    [16]Silva R E, Becker M, Rothhardt M, Bartelt H and Pohl A A P 2017IEEE Photon.J.9 7801209
    [17]Da Silva R E, Becker M, Rothhardt M, Bartelt H and Pohl A A P 2018J.Lightwave Technol.36 4146
    [18]Wang C, He J, Zhang J C, Liao C R, Wang Y, Jin W, Wang Y P and Wang J H 2017 Opt.Express 25 28442
    [19]Wang C, Zhang J C, Zhang C Z, He J, Lin Y C, Jin W, Liao C R, Wang Y and Wang Y P 2018 J.Lightwave Technol.36 2920
    [20]Mihailov S J, Hnatovsky C, Grobnic D, Chen K and Li M J 2018 IEEE Photon.Technol.Lett.30 209
    [21]Li Y H, Chen W, Wang H Y, Liu N L and Lu P X 2011 J.Lightwave Technol.29 3367
    [22]Yu X, Yan M, Ren G B, Tong W J, Cheng X P, Zhou J Q, Shum P P and Ngo N Q 2009 J.Lightwave Technol.27 1548
    [23]Zhang X P and Peng W 2015 IEEE Photon.Technol.Lett.27 391
    [24]Mao G P, Yuan T T, Guan C Y, Yang J, Chen L, Zhu Z, Shi J H and Yuan L B 2017 Opt.Express 25 144
    [25]Warren-Smith S C and Monro T M 2014 Opt.Express 22 1480
    [26]Zhao P, Li Y H, Zhang J H, Shi L and Zhang X L 2012 Opt.Express20 28625
    [27]Schaarschmidt K, Weidlich S, Reul D and Schmidt M A 2018 Opt.Lett.43 4192
    [28]Jiang S, Schaarschmidt K, Weidlich S and Schmidt M A 2018 J.Lightwave Technol.36 3970
    [29]Faez S, Lahini Y, Weidlich S, Garmann R F, Wondraczek K, Zeisberger M, Schmidt M A, Orrit M and Manoharan V N 2015 ACS Nano 9 12349
    [30]Tuniz A, Jain C, Weidlich S and Schmidt M A 2016 Opt.Lett.41 448
    [31]Ruan Y L, Ebendorff-Heidepriem H, Afshar S and Monro T M 2010Opt.Express 18 26018
    [32]Singh S P, Mishra V, Datta P K and Varshney S K 2015 J.Lightwave Technol.33 55
    [33]Mishra V, Singh S P, Haldar R and Varshney S K 2016 IEEE J.Sel.Top.Quantum Electron.22 208
    [34]Cucinotta A, Selleri S, Vincetti L and Zoboli M 2002 J.Lightwave Technol.20 1433
    [35]Ruan Y, Afshar S and Monro T M 2011 IEEE Photon.J.3 130
    [36]Limberger H G, Fonjallaz P Y, Salathe R P and Cochet F 1996 Appl.Phys.Lett.68 3069
    [37]Riant I and Poumellec B 1998 Electron.Lett.34 1603
    [38]Liang S, Tjin S C, Ngo N Q, Zhang C X and Li L J 2009 Opt.Commun.282 1363
    [39]Saunders J E, Sanders C, Chen H and Loock H P 2016 Appl.Opt.55947
    [40]Malo B, Theriault S, Johnson D C, Bilodeau F, Albert J and Hill K O1995 Electron.Lett.31 223

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700