用户名: 密码: 验证码:
西藏则学地区热液脉型铅锌矿S、Pb同位素组成及其对成矿物质来源的启示
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Sulfur and lead isotope composition of hydrothermal vein type lead-zinc deposits in Zexue area,Tibet and its implications for the origin of ore-forming materials
  • 作者:柯贤忠 ; 王晶 ; 钟石玉 ; 高旭
  • 英文作者:KE Xianzhong;WANG Jing;ZHONG Shiyu;GAO Xu;Wuhan Center of China Geological Survey;Research Center of Granitic Diagenesis and Mineralization,China Geological Survey;Hubei Geological Survey;Geological Survey Co., Ltd.,of Shaanxi Nuclear Industry Group;
  • 关键词:硫同位素 ; 铅同位素 ; 铅锌矿 ; 则学地区 ; 西藏
  • 英文关键词:sulfur isotope;;lead isotope;;lead-zinc deposit;;Zexue area;;Tibet
  • 中文刊名:DIZI
  • 英文刊名:Geology in China
  • 机构:中国地质调查局武汉地质调查中心;中国地质调查局花岗岩成岩成矿地质研究中心;湖北省地质调查院;中陕核工业集团地质调查院有限公司;
  • 出版日期:2019-06-15
  • 出版单位:中国地质
  • 年:2019
  • 期:v.46;No.392
  • 基金:中国地质调查局地质矿产调查项目(DD20160031)资助~~
  • 语种:中文;
  • 页:DIZI201903014
  • 页数:13
  • CN:03
  • ISSN:11-1167/P
  • 分类号:189-201
摘要
德新和轧轧龙铅锌矿是冈底斯西段银铅锌多金属成矿带典型的热液脉型铅锌矿床,关于其成矿物质来源及与纳如松多铅锌矿成因联系的研究鲜有开展。本研究利用单矿物和全岩稳定同位素方法对德新和轧轧龙铅锌矿的主要金属硫化物和含矿花岗斑岩进行了S、Pb同位素组成分析和示踪,结果显示德新铅锌矿硫化物δ34SVCDT为3.5‰~7.4‰,平均值为6.1‰;含矿花岗斑岩δ334SVCDT为4.4‰~6.2‰,平均值为5.7‰;轧轧龙铅锌矿金属硫化物δ334SVCDT为2.7‰~8.3‰,平均值为5.1‰;德新和轧轧龙铅锌矿铅同位素比值比较稳定,变化范围基本一致;铅同位素μ值为9.48~9.82,平均值为9.64;△β、△γ变化范围基本一致,均值相差较小,表明则学地区热液脉型铅锌矿金属硫化物和斑岩具有一致的S、Pb同位素组成,铅同位素具正常铅特征;暗示硫源可能主要由花岗岩类提供,铅源则可能主要来自上地壳物质。综合前人研究认为,德新、轧轧龙热液脉型铅锌矿和纳如松多铅锌矿具有一致的硫、铅同位素组成,三者应存在成因上的联系,可能属于同一成矿系统产物;花岗斑岩为则学地区热液脉状铅锌矿化提供了成矿物质。
        The Dexin and Zhazhalong Pb-Zn deposits are the representative hydrothermal vein type lead-zinc deposits in the western part of the Gangdise Ag-Pb-Zn polymetallic metallogenic belt; nevertheless, the origin of ore-forming materials of the two deposits and their genetic relation with the Narusongduo Pb-Zn deposit remain unknown. A stable isotopic method for single mineral and whole rock was used to measure the S and Pb isotopic composition of the sulfide and ore-bearing granite porphyries from the two deposits and to trace their sources of ore-forming materials. It is shown that the δ34 SVCDTvalues of sulfide and ore-bearing granite porphyry from Dexin and sulfide from Zhazhalong range from 3.5‰ to 7.4‰, from 4.4‰ to 6.2‰, and from 2.7‰ to 8.3‰,with an average being 6.1‰, 5.7% and 5.1%, respectively; the ratios of different lead isotopes in Dexin and Zhazhalong are stable,varying in similar ranges, and the μ values of lead isotope in the two deposits vary from 9.48 to 9.82(9.64 on average) with similar△β, △γ variation ranges and average values, which suggests that the S and Pb isotopic compositions of the sulfide are consistent with those of the ore-bearing granite porphyries in the two deposits with normal lead characteristics, granitoid origin of sulfur isotope and upper crust origin of lead isotope predominately. With comprehensive analysis of geological background and previous researches, it is concluded that the Pb-Zn mineralization in Dexin, Zhazhalong and Narusongduo Pb-Zn deposits may be products of the same metallogenic system with consistent sulfur and lead isotopic characteristics, and the granite porphyries might have supplied ore-forming materials for the hydrothermal vein type lead-zinc deposits in Zexue area.
引文
Basuki N I,Taylor B E,Spooner E T C.2008.Sulfur isotope evidence for thermochemical reduction of dissolved sulfate in Mississippi Valley-type zinc-lead mineralization,Bongara Area,Northern Peru[J].Economic Geology,103(4):783-799.
    Chen Xiaofeng.2010.A Study on Chronology,Petrogenesis and Region Tectonic Significance of Early Cretaceous-Early Eocene intrusive Rocks in Nyainqentanglha Area[D].Beijing:Chinese Academy of Geological Sciences(in Chinese with English abstract).
    Doe B R,Stacey J S.1974.The application of lead isotope of the problem of ore genesis and ore prospect evolution[J].Economic Geology,69:724-789.
    Doe B R,Zartman R E.1979.Plumbotectonics:the Phanerozoic[C]//Barnes H(ed.).Geochemistry of Hydrothermal Ore Deposits.New York:John Wiley&Sons,509-567.
    Faure G,Mensing T M.2005.Isotopes:Principles and Applications[M].New York:John Wiley&Sons,256-283.
    Gao Wenliang,Zhan Guonian.2006.The research on fluid inclusion in Zhangshiba Lead Zinc Ore,North Jiangxi Province[J].Journal of East China Institute of Technology,(S1):132-138.
    Gao Xu.2013.Geological,Geochemical Characteristics and Genesis of the Zhazhalong Lead-zinc Deposit,Tibet[D].Wuhan:China University of Geosciences(Wuhan)(in Chinese with English abstract).
    Gerry B A.1980.Sulfur Isotope Geochemistry[M].Beijing:Science Press,146-220(in Chinese).
    Han Yinwen,Ma Zhendong,Zhang Hongfei,Zhang Benren,Li Fanglin,Gao Shan,Bao Zhengyu.2003.Geochemistry[M].Beijing:Geological Publishing House,254-255(in Chinese).
    Hoefs J.1997.Stable Isotope Geochemistry[M].Berlin:SpringerVerlag,119-120.
    Isotope Geology Laboratory of Yichang Institute of Geology and Mineral Resources,Ministry of Geology and Mineral Resources.1979.The Basic Problem of Lead Isotope Geology[M].Beijing:Geological Publishing House,35-137(in Chinese).
    Ji Xianhua,Meng Xiangjin,Yang Zhusen,Zhang Qian,Tian Shihong,Li Zhenqing,Liu Yingchao,Yu Yushuai.2014.The Ar-Ar geochronology of sericite from the cryptoexplosive breccia type Pb-Zn deposit in Narusongduo,Tibet and its geological significance[J].Geology and Exploration,50(2):281-290(in Chinese with English abstract).
    Ji Xianhua,Yang Zhusen,Yu Yushuai,Shen Junfeng,Tian Shihong,Meng Xiangjin,Li Zhenqing,Liu Yingchao.2012.Formation mechanism of magmatic rocks in Narusongduo lead-zinc deposit of Tibet:evidence from magmatic zircon[J].Mineral Deposits,31(4):758-774(in Chinese with English abstract).
    Ke Xianzhong,Long Wenguo,Zhou Dai,Wang Jing Zhong Shiyu.2017.Metallogenesis in the main collisional period in midwestern Gangdise:zircon U-Pb geochronology of the granite porphyry in Dexin deposit,Tibet[J].Geological Bulletin of China,36(5):772-779(in Chinese with English abstract).
    Li Yun,Zhao Yuanyi.2014.Lead isotopes in the sulfide ores from the Shesuo and Lawu copper deposits,northern Xizang[J].Sedimentary Geology and Tethyan Geology,34(3):96-105(in Chinese with English abstract).
    Liu Yingchao,Ji Xianhua,Hou Zengqian,Tian Shihong,Li Zhenqing,Zhao Xiaoyan,Zhou Jinsheng,Ma Wang,Yang Zhusen.2015.The establishment of an independent Pb-Zn mineralization system related to magmatism:A case study of the Narusongduo Pb-Zn deposit in Tibet[J].Acta Petrologica et Mineralogica,34(4):539-556(in Chinese with English abstract).
    Long Tao.2013.Geochronology and Geochemistry of Late Cretaceous Acid Intrusive Rocks in Zexue Area,Tibet[D].Wuhan:China University of Geosciences(Wuhan)(in Chinese with English abstract).
    Lu Yuanfa.2004.Geokit:A geochemical toolkit for microsoft excel[J].Geochimica,33(5):459-464(in Chinese with English abstract).
    Meng Xiangjin.2004.The Metallogeny of the Miocene Gangdese Porphyry Copper Belt in Tibetan Collisional Orogen[D].Beijing:Chinese Academy of Geological Sciences(in Chinese with English abstract).
    Ohmoto H,Rye R O.1979.Isotopes of sulfur and carbon[C]//Barnes H(ed.).Geochemistry of Hydrothermal Ore Deposits.New York:John Wiley&Sons,509-567.
    Ohmoto H.1972.Systematics of sulfur and carbon isotope in hydrothermal ore deposits[J].Economic Geology,67:551-579.
    Shen Weizhou,Huang Yaosheng.1987.Stable Isotope Geochemistry[M].Beijing:Atomic Energy Press,1-56(in Chinese).
    Wei Juying,Wang Guanyu.1988.Isotope Geochemistry[M].Beijing:Geological Publishing House,153-165(in Chinese).
    Wu Kaixing,Hu Ruizhong,Bi Xianwu,Peng Jiantang,Tang Qunli.2002.Ore lead isotopes as a tracer for ore-forming material sources:a review[J].Geology-Geochemistry,30(3):73-81(in Chinese with English abstract).
    Yang Bin,Chen Zhengle,Zhang Qing,Zhou Zhenju,Han Fengbin,Zhang Wengao,Ma Ji,Zhang Tao.2018.Geological characteristics and sulfur and lead isotopes of the Kanling lead-zinc deposit,Southern Tianshan Mountains[J].Geology in China,45(1):155-167(in Chinese with English abstract).
    Yang Yong,Luo Taiyi,Huang Zhilong,Yang Zhusen,Tian Shihong,Qian Zhikuan.2010a.Sulfur and lead isotope compositions of the Narusongduo silver zinc-lead deposit in Tibet:implications for the sources of plutons and metals in the deposit[J].Acta Mineralogical Sinica,30(3):311-318(in Chinese with English abstract).
    Yang Yong,Luo Taiyi,Yang Zhusen,Huang Zhilong,Tian Shihong,Qian Zhikuan.2010b.A comparison of porphyries between PbZn-Ag metallogenic system and Cu-Mo-Au metallogenic system in Gangdese orogen,Tibet[J].Mineral Deposits,29(2):195-206(in Chinese with English abstract).
    Zang Wenshuan,Meng Xiangjin,Yang Zhusen,Ye Peisheng.2007.Sulfur and lead isotopic compositions of lead-zinc-silver deposits in the Gangdise metallogenic belt,Tibet,China,and its geological significance[J].Geological Bulletin of China,26(10):1393-1397(in Chinese with English abstract).
    Zartman R E,Doe B R.1981.Plumbotectonics-the model[J].Tectonophysics,75:135-162.
    Zhang Ligang.1988.Lead isotopic compositions of feldspar and ore and their geologic significance[J].Mineral Deposits,7(2):55-64.
    Zhao Ping,Xie Ejun,Duoji,Jin Jian,Hu Xiancai,Du Shaoping,Yao Zhonghua.2002.Geochemical characteristics of geothermal gases and their geological implications in Tibet[J].Acta Petrologica Sinica,18(4):539-550(in Chinese with English abstract).
    Zheng Minghua,Zhang Shouting,Liu Jiajun,Long Xunrong,Song Xieyan.2001.Geochemical Background and Metallogenic Mechanism of MuRunTau Type Gold Ore Deposits in Southwest Tianshan[M].Beijing:Geological Publishing House,84-89(in Chinese).
    Zheng Yongfei.2000.Stable Isotope Geochemistry[M].Beijing:Science Press,218-247(in Chinese).
    Zhu Bingquan,Li Xianhua,Dai Tongmo,Chen Yuwei,Fan Sikun,Gui Xuntang,Wang Huifen.1998.Isotopes System Theory and its Application in Earth Science--On the Evolution of the Continental Crust and Mantle[M].Beijing:Science Press,216-235(in Chinese).
    陈晓锋.2010.念青唐古拉早白垩世-早始新世侵入岩年代学、岩石成因及其构造意义[D].北京:中国地质科学院.
    地质部宜昌地质矿产研究所同位素地质研究室.1979.铅同位素地质研究的基本问题[M].北京:地质出版社,35-137.
    高文亮,詹国年.2006.赣北张十八铅锌矿流体包裹体研究[J].东华理工大学学报,(S1):132-138.
    高旭.2013.西藏轧轧龙铅锌矿地质地球化学特征及成因研究[D].武汉:中国地质大学(武汉).
    格里年科B A.1980.硫同位素地球化学[M].北京:科学出版社,146-220.
    韩吟文,马振东,张宏飞,张本仁,李方林,高山,鲍征宇.2003.地球化学[M].北京:地质出版社,254-255.
    纪现华,孟祥金,杨竹森,张乾,田世洪,李振清,刘英超,于玉帅.2014.西藏纳如松多隐爆角砾岩型铅锌矿床绢云母Ar-Ar定年及其地质意义[J].地质与勘探,50(2):281-290.
    纪现华,杨竹森,于玉帅,申俊峰,田世洪,孟祥金,李振清,刘英超.2012.西藏纳如松多铅锌矿床成矿岩体形成机制:岩浆锆石证据[J].矿床地质,31(4):758-774.
    柯贤忠,龙文国,周岱,王晶,钟石玉.2017.西藏冈底斯中西段主碰撞期成矿事件--德新矿区花岗斑岩锆石U-Pb年龄证据[J].地质通报,36(5):772-779.
    李运,赵元艺.2014.西藏北部舍索与拉屋铜矿床硫化物铅同位素特征[J].沉积与特提斯地质,34(3):96-105.
    刘英超,纪现华,侯增谦,田世洪,李振清,赵晓燕,周金胜,马旺,杨竹森.2015.一个与岩浆作用有关的独立铅锌成矿系统的建立--以西藏纳如松多铅锌矿床为例[J].岩石矿物学杂志,34(4):539-556.
    龙涛.2013.西藏则学地区晚白垩世中酸性侵入岩年代学及岩石地球化学特征研究[D].武汉:中国地质大学(武汉).
    路远发.2004.GeoKit:一个用VBA构建的地球化学工具软件包[J].地球化学,33(5):459-464.
    孟祥金.2004.西藏碰撞造山带冈底斯中新世斑岩铜矿成矿作用研究[D].北京:中国地质科学院.
    沈渭洲,黄耀生.1987.稳定同位素地球化学[M].北京:原子能出版社,1-56.
    魏菊英,王关玉.1988.同位素地球化学[M].北京:地质出版社,153-165.
    吴开兴,胡瑞忠,毕献武,彭建堂,唐群力.2002.矿石铅同位素示踪成矿物质来源综述[J].地质地球化学,30(3):73-81.
    杨斌,陈正乐,张青,周振菊,韩凤彬,张文高,马骥,张涛.2018.南天山坎岭铅锌矿矿床地质特征及S、Pb同位素特征研究[J].中国地质,45(1):155-167.
    杨勇,罗泰义,黄智龙,杨竹森,田世洪,钱志宽.2010a.西藏纳如松多银铅矿S、Pb同位素组成:对成矿物质来源的指示[J].矿物学报,30(3):311-318.
    杨勇,罗泰义,杨竹森,黄智龙,田世洪,钱志宽.2010b.冈底斯造山带两套不同成矿体系的含矿斑岩对比研究[J].矿床地质,29(2):195-206.
    臧文栓,孟祥金,杨竹森,叶培胜.2007.西藏冈底斯成矿带铅锌银矿床的S、Pb同位素组成及其地质意义[J].地质通报,26(10):1393-1397.
    张理刚.1988.长石铅和矿石铅同位素组成及其地质意义[J].矿床地质,7(2):55-64.
    赵平,谢鄂军,多吉,金建,胡先才,杜少平,姚中华.2002.西藏地热气体的地球化学特征及其地质意义[J].岩石学报.18(4):539-550.
    郑明华,张寿庭,刘家军,龙训荣,宋谢炎.2001.西南天山穆龙套型金矿床产出地质背景与成矿机制[M].北京:地质出版社,84-89.
    郑永飞.2000.稳定同位素地球化学[M].北京:科学出版社,218-247.
    朱炳泉,李献华,戴橦谟,陈毓蔚,范嗣昆,桂训唐,王慧芬.1998.地球科学中同位素体系理论与应用--兼论中国大陆壳幔演化[M].北京:科学出版社,216-235.
    (1)刘海,王成松.2011.西藏自治区谢通门县轧轧龙矿区铅锌矿普查报告[R].西藏自治区地质矿产勘查开发局第二地质大队.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700