用户名: 密码: 验证码:
Fundamental aspects of phase change slurries:Thermo-fluidic characteristics
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fundamental aspects of phase change slurries:Thermo-fluidic characteristics
  • 作者:张鹏 ; 马非
  • 英文作者:ZHANG Peng;MA Fei;Institute of Refrigeration and Cryogenics,Shanghai Jiao Tong University;
  • 英文关键词:Phase change slurry;;Flow;;Heat transfer;;Thermal energy storage
  • 中文刊名:ZJJJ
  • 英文刊名:中国科学基金(英文版)
  • 机构:Institute of Refrigeration and Cryogenics,Shanghai Jiao Tong University;
  • 出版日期:2019-02-15
  • 出版单位:Science Foundation in China
  • 年:2019
  • 期:v.27
  • 基金:supported by the National Natural Science Foundation of China(Grant Nos.51676122,51311140169 and 51176109)
  • 语种:英文;
  • 页:ZJJJ201901043
  • 页数:29
  • CN:01
  • ISSN:11-2851/N
  • 分类号:45-73
摘要
Thermal energy storage(TES) is an attention-gaining technology which is useful to improve the energy efficiency as well as to balance the energy supply and demand. Until recently, the latent heat TES(LHTES) technology has been promoted quite fast mainly due to the large heat storage/release capacity that takes place at nearly constant temperature. The phase change slurry(PCS) prepared by dispersing phase change materials(PCMs) into carrying fluid can serve not only as the energy storage media, but also as the heat transfer fluid(HTF). Compared with the conventional PCM which needs additional HTF, the PCS provides superior performance and has the great potential to upgrade the current TES systems. This paper reviews the latest investigations of the micro-encapsulated PCM(MPCM) and shape-stabilized PCM(SSPCM) slurries. A brief introduction of the preparation methods of the two types of the PCSs is summarized. And a comprehensive review of the flow and heat transfer characteristics of the PCSs, particularly in various tube-based geometries and heat exchangers, is conducted for a better understanding of the mechanism and further utilization of the next-generation TES systems.
        Thermal energy storage(TES) is an attention-gaining technology which is useful to improve the energy efficiency as well as to balance the energy supply and demand. Until recently, the latent heat TES(LHTES) technology has been promoted quite fast mainly due to the large heat storage/release capacity that takes place at nearly constant temperature. The phase change slurry(PCS) prepared by dispersing phase change materials(PCMs) into carrying fluid can serve not only as the energy storage media, but also as the heat transfer fluid(HTF). Compared with the conventional PCM which needs additional HTF, the PCS provides superior performance and has the great potential to upgrade the current TES systems. This paper reviews the latest investigations of the micro-encapsulated PCM(MPCM) and shape-stabilized PCM(SSPCM) slurries. A brief introduction of the preparation methods of the two types of the PCSs is summarized. And a comprehensive review of the flow and heat transfer characteristics of the PCSs, particularly in various tube-based geometries and heat exchangers, is conducted for a better understanding of the mechanism and further utilization of the next-generation TES systems.
引文
[1] Alva G, Liu L, Huang X, et al. Thermal energy storage materials and systems for solar energy applications. Renew Sust Energ Rev, 2017, 68(Part 1): 693—706.
    [2] Ibrahim N I, Al-Sulaiman F A, Rahman S, et al. Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review. Renew Sust Energ Rev, 2017, 74(Supplement C): 26—50.
    [3] Delgado M, Lázaro A, Mazo J, et al. Review on phase change material emulsions and microencapsulated phase change material slurries: Materials, heat transfer studies and applications. Renew Sust Energ Rev, 2012, 16(1): 253—273.
    [4] Inaba H. New challenge in advanced thermal energy transportation using functionally thermal fluids. Int J Therm Sci, 2000, 39(9): 991—1003.
    [5] Carney R R. “Slush hydrogen” production and handling as a fuel for space projects. Advances in Cryogenic Engineering: Proceedings of the 1963 Cryogenic Engineering Conference University of Colorado College of Engineering and National Bureau of Standards Boulder Laboratories Boulder, Colorado August 19—21. 1963.
    [6] Momotari H, Uryu T, Sato S, et al. Over-current characteristics of HTS tapes in slush nitrogen. Meetings of Cryogenics and Superconductivity, 2009.
    [7] Talevi R, Barbato V, Fiorentino I, et al. Successful slush nitrogen vitrification of human ovarian tissue. Fertil Steril, 2016, 105(6): 1523—1531.e1.
    [8] Rodríguez ó, Barros-Velázquez J, Piňeiro C, et al. Effects of storage in slurry ice on the microbial, chemical and sensory quality and on the shelf life of farmed turbot (Psetta maxima). Food Chem, 2006, 95(2): 270—278.
    [9] Wang M J and Kusumoto N. Ice slurry based thermal storage in multifunctional buildings. Heat Mass Transfer, 2001, 37(6): 597—604.
    [10] Davies T W. Slurry ice as a heat transfer fluid with a large number of application domains. Int J Refrig, 2005, 28(1): 108—114.
    [11] Douzet J, Kwaterski M, Lallemand A, et al. Prototyping of a real size air-conditioning system using a tetra-n-butylammonium bromide semiclathrate hydrate slurry as secondary two-phase refrigerant-Experimental investigations and modelling. Int J Refrig, 2013, 36(6): 1616—1631.
    [12] Huang L, Petermann M, and Doetsch C. Evaluation of paraffin/water emulsion as a phase change slurry for cooling applications. Energy, 2009, 34(9): 1145—1155.
    [13] Cho K and Choi M. Experimental study on the application of paraffin slurry to high density electronic package cooling. Heat Mass Transfer, 2000, 36(1): 29—36.
    [14] Kasza K E and Chen M M. Improvement of the performance of solar energy or waste heat utilization systems by using phase-change slurry as an enhanced heat-transfer storage fluid. J Sol Energ Eng, 1985, 107(3): 229—236.
    [15] Wang X and Niu J. Performance of cooled-ceiling operating with MPCM slurry. Energ Convers Manage, 2009, 50(3): 583—591.
    [16] Wu W, Bostanci H, Chow L C, et al. Jet impingement and spray cooling using slurry of nanoencapsulated phase change materials. Int J Heat Mass Tran, 2011, 54(13): 2715—2723.
    [17] Chen S, Wang X, Li W, et al. Experimental study on cooling performance of microencapsulated phase change suspension in a PEMFC. Int J Hydrogen Energ, 2017, 42(50): 30004—30012.
    [18] Kong M, Alvarado J L, Thies C, et al. Field evaluation of microencapsulated phase change material slurry in ground source heat pump systems. Energy, 2017, 122(Supplement C): 691—700.
    [19] Zhang X, Kong X, Li G, et al. Thermodynamic assessment of active cooling/heating methods for lithium-ion batteries of electric vehicles in extreme conditions. Energy, 2014, 64(Supplement C): 1092—1101.
    [20] Serale G, Fabrizio E, and Perino M. Design of a low-temperature solar heating system based on a slurry Phase Change Material (PCS). Energ Buildings, 2015, 106(Supplement C): 44—58.
    [21] Tumirah K, Hussein M Z, Zulkarnain Z, et al. Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage. Energy, 2014, 66(Supplement C): 881—890.
    [22] Salaün F, Bedek G, Devaux E, et al. Microencapsulation of a cooling agent by interfacial polymerization: Influence of the parameters of encapsulation on poly(urethane—urea) microparticles characteristics. J Membr Sci, 2011, 370(1): 23—33.
    [23] Wang H, Luo J, Yang Y, et al. Fabrication and characterization of microcapsulated phase change materials with an additional function of thermochromic performance. Sol Energy, 2016, 139(Supplement C): 591—598.
    [24] Giro-Paloma J, Konuklu Y, and Fernández A I. Preparation and exhaustive characterization of paraffin or palmitic acid microcapsules as novel phase change material. Sol Energy, 2015, 112: 300—309.
    [25] Konuklu Y, Unal M, and Paksoy H O. Microencapsulation of caprylic acid with different wall materials as phase change material for thermal energy storage. Sol Energy Mater Sol Cells, 2014, 120: 536—542.
    [26] Tahan Latibari S, Mehrali M, Mehrali M, et al. Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol—gel method. Energy, 2013, 61(Supplement C): 664—672.
    [27] Lazko J, Popineau Y, and Legrand J. Soy glycinin microcapsules by simple coacervation method. Colloids Surf B Biointerfaces, 2004, 37(1): 1—8.
    [28] Fu Z, Su L, Li J, et al. Elastic silicone encapsulation of n-hexadecyl bromide by microfluidic approach as novel microencapsulated phase change materials. Thermochim Acta, 2014, 590: 24—29.
    [29] Hawlader M N A, Uddin M S, and Khin M M. Microencapsulated PCM thermal-energy storage system. Appl Energ, 2003, 74(1): 195—202.
    [30] Werner S R L, Jones J R, Paterson A H J, et al. Air-suspension particle coating in the food industry: Part I — state of the art. Powder Technol, 2007, 171(1): 25—33.
    [31] De W L, Dabo D, Lidel?w S, et al. MSWI bottom ash used as basement at two pilot-scale roads: comparison of leachate chemistry and reactive transport modeling. Waste Manage, 2011, 31(2): 267—280.
    [32] Memon S A, Cui H, Lo T Y, et al. Development of structural—functional integrated concrete with macro-encapsulated PCM for thermal energy storage. Appl Energ, 2015, 150: 245—257.
    [33] Goel M, Roy S K, and Sengupta S. Laminar forced convection heat transfer in microcapsulated phase change material suspensions. Int J Heat Mass Tran, 1994, 37(4): 593—604.
    [34] Yamagishi Y, Takeuchi H, Pyatenko A T, et al. Characteristics of microencapsulated PCM slurry as a heat‐transfer fluid. AICHE J, 1999, 45(4): 696—707.
    [35] Inaba H, Kim M-J, and Horibe A. Melting heat transfer characteristics of microencapsulated phase change material slurries with plural microcapsules having different diameters. J Heat Transfer, 2003, 126(4): 558—565.
    [36] Rao Y, Dammel F, Stephan P, et al. Flow frictional characteristics of microencapsulated phase change material suspensions flowing through rectangular minichannels. Sci China, Ser E, 2006, 49(4): 445—456.
    [37] Rao Y, Dammel F, Stephan P, et al. Convective heat transfer characteristics of microencapsulated phase change material suspensions in minichannels. Heat Mass Transfer, 2007, 44(2): 175—186.
    [38] Wang X, Niu J, Li Y, et al. Flow and heat transfer behaviors of phase change material slurries in a horizontal circular tube. Int J Heat Mass Tran, 2007, 50(13): 2480—2491.
    [39] Wang X, Niu J, Li Y, et al. Heat transfer of microencapsulated PCM slurry flow in a circular tube. AICHE J, 2008, 54(4): 1110—1120.
    [40] Chen B, Wang X, Zeng R, et al. An experimental study of convective heat transfer with microencapsulated phase change material suspension: Laminar flow in a circular tube under constant heat flux. Exp Therm Fluid Sci, 2008, 32(8): 1638—1646.
    [41] Ho C J, Huang J B, Tsai P S, et al. Water-based suspensions of Al2O3 nanoparticles and MEPCM particles on convection effectiveness in a circular tube. Int J Therm Sci, 2011, 50(5): 736—748.
    [42] Delgado M, Lázaro A, Mazo J, et al. Experimental analysis of a microencapsulated PCM slurry as thermal storage system and as heat transfer fluid in laminar flow. Appl Therm Eng, 2012, 36(Supplement C): 370—377.
    [43] Delgado M, Lázaro A, Peňalosa C, et al. Experimental analysis of the influence of microcapsule mass fraction on the thermal and rheological behavior of a PCM slurry. Appl Therm Eng, 2014, 63(1): 11—22.
    [44] Huang Y, Xuan Y, and Li Q. Experimental investigation on convective heat transfer of magnetic phase change microcapsule suspension. Appl Therm Eng, 2012, 47(Supplement C): 10—17.
    [45] Sabbah R, Seyedyagoobi J, and Alhallaj S. Heat transfer characteristics of liquid flow with micro-encapsulated phase change material: experimental study. J Heat Transfer, 2012, 134(4): 044501.
    [46] Wang L and Lin G. Experimental study on the convective heat transfer behavior of microencapsulated phase change material suspensions in rectangular tube of small aspect ratio. Heat Mass Transfer, 2012, 48(1): 83—91.
    [47] Song S, Shen W, Wang J, et al. Experimental study on laminar convective heat transfer of microencapsulated phase change material slurry using liquid metal with low melting point as carrying fluid. Int J Heat Mass Tran, 2014, 73(Supplement C): 21—28.
    [48] Liu C, Ma Z, Wang J, et al. Experimental research on flow and heat transfer characteristics of latent functional thermal fluid with microencapsulated phase change materials. Int J Heat Mass Tran, 2017, 115(Part A): 737—742.
    [49] Choi E, Cho Y I, and Lorsch H G. Forced convection heat transfer with phase-change-material slurries: Turbulent flow in a circular tube. Int J Heat Mass Tran, 1994, 37(2): 207—215.
    [50] Alvarado J L, Marsh C, Sohn C, et al. Thermal performance of microencapsulated phase change material slurry in turbulent flow under constant heat flux. Int J Heat Mass Tran, 2007, 50(9): 1938—1952.
    [51] Tumuluri K, Alvarado J L, Taherian H, et al. Thermal performance of a novel heat transfer fluid containing multiwalled carbon nanotubes and microencapsulated phase change materials. Int J Heat Mass Tran, 2011, 54(25): 5554—5567.
    [52] Taherian H, Alvarado J L, Tumuluri K, et al. Fluid flow and heat transfer characteristics of microencapsulated phase change material slurry in turbulent flow. J Heat Transfer, 2014, 136(6): 061704-061704-7.
    [53] Kong M, Alvarado J L, Terrell W, et al. Performance characteristics of microencapsulated phase change material slurry in a helically coiled tube. Int J Heat Mass Tran, 2016, 101(Supplement C): 901—914.
    [54] Li L, Zou D, Ma X, et al. Preparation and flow resistance characteristics of novel microcapsule slurries for engine cooling system. Energ Convers Manage, 2017, 135(Supplement C): 170—177.
    [55] Charunyakorn P, Sengupta S, and Roy S K. Forced convection heat transfer in microencapsulated phase change material slurries: flow in circular ducts. Int J Heat Mass Tran, 1991, 34(3): 819—833.
    [56] Zhang Y and Faghri A. Analysis of forced convection heat transfer in microencapsulated phase change material suspensions. J Thermophys Heat Transfer, 1995, 9(4): 727—732.
    [57] Alisetti E L and Roy S K. Forced convection heat transfer to phase change aaterial slurries in circular ducts. J Thermophys Heat Transfer, 1999, 14(1): 115—118.
    [58] Roy S K and Avanic B L. Laminar forced convection heat transfer with phase change material suspensions. Int Commun Heat Mass, 2001, 28(7): 895—904.
    [59] Hu X and Zhang Y. Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries: laminar flow in a circular tube with constant heat flux. Int J Heat Mass Tran, 2002, 45(15): 3163—3172.
    [60] Zhang Y, Hu X, and Wang X. Theoretical analysis of convective heat transfer enhancement of microencapsulated phase change material slurries. Heat Mass Transfer, 2003, 40(1): 59—66.
    [61] Bai F W and Lu W Q. Numerical analysis of laminar forced convection heat transfer in microencapsulated phase change material suspensions. J Enhance Heat Transf, 2003, 10(3): 311—322.
    [62] Lu W Q and Bai F W. A new model for analyzing laminar forced convective enhanced heat transfer in latent functionally thermal fluid. Chin Sci Bull, 2004, 49(14): 1457—1464.
    [63] Ho C J, Lin J F, and Chiu S Y. Heat transfer of solid-liquid phase-change material suspensions in circular pipes: effects of wall conduction. Numer Heat Transfer, 2004, 45(2): 171—190.
    [64] Ho C J. A continuum model for transport phenomena in convective flow of solid—liquid phase change material suspensions. Appl Math Model, 2005, 29(9): 805—817.
    [65] Wang S and Zhang Y. Forced-convection heat transfer of microencapsulated phase-change material suspensions flow in a circular tube subject to external convective heating. J Enhance Heat Transf, 2008, 15(2): 171—181.
    [66] Zhao Z N, Rui H, and Shi Y Q. Parametric analysis of enhanced heat transfer for laminar flow of microencapsulated phase change suspension in a circular tube with constant wall temperature. Heat Transfer Eng, 2008, 29(1): 97—106.
    [67] Ravi G, Alvarado J l, Marsh C, et al. Laminar flow forced convection heat transfer behavior of a phase change material fluid in finned tubes. Numer Heat Transfer, 2009, 55(8): 721—738.
    [68] Zeng R, Wang X, Chen B, et al. Heat transfer characteristics of microencapsulated phase change material slurry in laminar flow under constant heat flux. Appl Energ, 2009, 86(12): 2661—2670.
    [69] Kousksou T, Rhafiki T E, Omari K E, et al. Forced convective heat transfer in supercooled phase-change material suspensions with stochastic crystallization. Int J Refrig, 2010, 33(8): 1569—1582.
    [70] Sabbah R, Seyed-Yagoobi J, and Al-Hallaj S. Heat transfer characteristics of liquid flow with micro-encapsulated phase change material: numerical study. J Heat Transfer, 2011, 133(12): 121702-121702-10.
    [71] Chen Z, Shan F, and Fang G Y. Dynamic heat transfer characteristics modeling of microencapsulated phase change material slurries. Chem Eng Technol, 2012, 35(5): 834—840.
    [72] Scott D A, Lamoureux A, and Baliga B R. Modeling and simulations of laminar mixed convection in a vertical pipe conveying slurries of a microencapsulated phase-change material in distilled water. J Heat Transfer, 2012, 135(1): 011013-011013-13.
    [73] Kurnia J, Sasmito A, Jangam S, et al. Heat transfer in coiled square tubes for laminar flow of slurry of microencapsulated phase change material. Heat Transfer Eng, 2013, 34(11—12): 994—1007.
    [74] Lenert A, Nam Y, Yilbas B S, et al. Focusing of phase change microparticles for local heat transfer enhancement in laminar flows. Int J Heat Mass Tran, 2013, 56(1): 380—389.
    [75] Song S, Liao Q, Shen W, et al. Numerical study on laminar convective heat transfer enhancement of microencapsulated phase change material slurry using liquid metal with low melting point as carrying fluid. Int J Heat Mass Tran, 2013, 62(Supplement C): 286—294.
    [76] Song S, Liao Q, and Shen W. Laminar heat transfer and friction characteristics of microencapsulated phase change material slurry in a circular tube with twisted tape inserts. Appl Therm Eng, 2013, 50(1): 791—798.
    [77] Seyf H R, Wilson M R, Zhang Y, et al. Flow and heat transfer of nanoencapsulated phase change material slurry past a unconfined square cylinder. J Heat Transfer, 2014, 136(5): 051902-051902-10.
    [78] Lu H W, Seyf H R, Zhang Y W, et al. Heat transfer enhancement of backward-facing step flow by using nano-encapsulated phase change material slurry. Numer Heat Transfer, 2015, 67(4): 381—400.
    [79] Khakpour Y and Seyed-Yagoobi J. Evaporating liquid film flow in the presence of micro-encapsulated phase change materials: a numerical study. J Heat Transfer, 2015, 137(2): 021501-021501-9.
    [80] Rhafiki T E, Kousksou T, and Zeraouli Y. Thermal performance of microencapsulated phase-change-material slurry: laminar flow in circular tube. J Thermophys Heat Transfer, 2015, 24(3): 480—489.
    [81] Liu L, Alva G, Jia Y, et al. Dynamic thermal characteristics analysis of microencapsulated phase change suspensions flowing through rectangular mini-channels for thermal energy storage. Energ Buildings, 2017, 134(Supplement C): 37—51.
    [82] Roy S K and Avanic B L. Turbulent heat transfer with phase change material suspensions. Int J Heat Mass Tran, 2001, 44(12): 2277—2285.
    [83] Ma F, Zhang P, and Shi X J. Investigation of thermo-fluidic performance of phase change material slurry and energy transport characteristics. Appl Energ, 2017.
    [84] Languri E M, Rokni H B, Alvarado J, et al. Heat transfer analysis of microencapsulated phase change material slurry flow in heated helical coils: A numerical and analytical study. Int J Heat Mass Tran, 2018, 118(Supplement C): 872—878.
    [85] Hao Y L and Tao Y X. A numerical model for phase-change suspension flow in microchannels. Numer Heat Transfer, 2004, 46(1): 55—77.
    [86] Xing K Q, Tao Y X, and Hao Y L. Performance evaluation of liquid flow with PCM particles in microchannels. J Heat Transfer, 2005, 127(8): 931—940.
    [87] Tao Y X, Xing K Q, Maloji P, et al. Low-Reynolds number limit of heat transfer enhancement with phase-change material slurry flow in micro/minichannels. J Enhance Heat Transf, 2007, 14(2): 105—122.
    [88] Kuravi S, Kota K M, Du J, et al. Numerical investigation of flow and heat transfer performance of nano-encapsulated phase change material slurry in microchannels. J Heat Transfer, 2009, 131(6): 062901-062901-9.
    [89] Kuravi S, Du J, and Chow L C. Encapsulated phase change material slurry flow in manifold microchannels. J Thermophys Heat Transfer, 2010, 24(2): 364—373.
    [90] Alquaity A B S, Al-Dini S A, Wang E N, et al. Numerical investigation of liquid flow with phase change nanoparticles in microchannels. Int J Heat Fluid Flow, 2012, 38(Supplement C): 159—167.
    [91] Alquaity A B S, Al‐Dini S A, and Yilbas B S. Investigation into thermal performance of nanosized phase change material (PCM) in microchannel flow. Int J Numer Method H, 2013, 23(2): 233—247.
    [92] Kondle S, Alvarado J L, and Marsh C. Laminar flow forced convection heat transfer behavior of a phase change material fluid in microchannels. J Heat Transfer, 2013, 135(5): 052801-052801-11.
    [93] Kondle S, Alvarado J L, and Marsh C. Laminar heat transfer behavior of a phase change material fluid in microchannels with staggered pins. J Heat Transfer, 2017, 139(6): 062401-062401-8.
    [94] Petrovic A, Lelea D, and Laza I. The comparative analysis on using the NEPCM materials and nanofluids for microchannel cooling solutions. Int Commun Heat Mass, 2016, 79(Supplement C): 39—45.
    [95] Wang Y, Chen Z, and Ling X. An experimental study of the latent functionally thermal fluid with micro-encapsulated phase change material particles flowing in microchannels. Appl Therm Eng, 2016, 105(Supplement C): 209—216.
    [96] Roberts N S, Al-Shannaq R, Kurdi J, et al. Efficacy of using slurry of metal-coated microencapsulated PCM for cooling in a micro-channel heat exchanger. Appl Therm Eng, 2017, 122(Supplement C): 11—18.
    [97] Inaba H, Zhang Y, and Horibe A. Transient heat storage characteristics on horizontal rectangular enclosures filled with fluidity slurry of micro-encapsulated phase-change-material dispersed in water. J Therm Sci Tech—JPN, 2006, 1(1): 66—77.
    [98] Inaba H, Zhang Y, Horibe A, et al. Numerical simulation of natural convection of latent heat phase-change-material microcapsulate slurry packed in a horizontal rectangular enclosure heated from below and cooled from above. Heat Mass Transfer, 2007, 43(5): 459—470.
    [99] Diaconu B M, Varga S, and Oliveira A C. Experimental assessment of heat storage properties and heat transfer characteristics of a phase change material slurry for air conditioning applications. Appl Energ, 2010, 87(2): 620—628.
    [100] Diaconu B M, Varga S, and Oliveira A C. Experimental study of natural convection heat transfer in a microencapsulated phase change material slurry. Energy, 2010, 35(6): 2688—2693.
    [101] Zhang Y, Wang S, Rao Z, et al. Experiment on heat storage characteristic of microencapsulated phase change material slurry. Sol Energy Mater Sol Cells, 2011, 95(10): 2726—2733.
    [102] Zhang Y, Rao Z, Wang S, et al. Experimental evaluation on natural convection heat transfer of microencapsulated phase change materials slurry in a rectangular heat storage tank. Energ Convers Manage, 2012, 59(Supplement C): 33—39.
    [103] Sabbah R, Seyed-Yagoobi J, and Al-Hallaj S. Natural convection with micro-encapsulated phase change material. J Heat Transfer, 2012, 134(8): 082503-082503-8.
    [104] Wang L, Zhang J, Wang Y, et al. Experimental study on natural convective heat transfer of tube immersed in microencapsulated phase change material suspensions. Appl Therm Eng, 2016, 99(Supplement C): 583—590.
    [105] Hasan M I. Numerical investigation of counter flow microchannel heat exchanger with MEPCM suspension. Appl Therm Eng, 2011, 31(6): 1068—1075.
    [106] Wu W, Bostanci H, Chow L C, et al. Heat transfer enhancement of PAO in microchannel heat exchanger using nano-encapsulated phase change indium particles. Int J Heat Mass Tran, 2013, 58(1): 348—355.
    [107] Kong M-S, Yu K, Alvarado J L, et al. Thermal performance of microencapsulated phase change material slurry in a coil heat exchanger. J Heat Transfer, 2015, 137(7): 071801-071801-8.
    [108] Sabbah R, Farid M M, and Al-Hallaj S. Micro-channel heat sink with slurry of water with micro-encapsulated phase change material: 3D-numerical study. Appl Therm Eng, 2009, 29(2): 445—454.
    [109] Ho C J, Chen W C, and Yan W M. Experimental study on cooling performance of minichannel heat sink using water-based MEPCM particles. Int Commun Heat Mass, 2013, 48(Supplement C): 67—72.
    [110] Ho C J, Chen W C, and Yan W M. Correlations of heat transfer effectiveness in a minichannel heat sink with water-based suspensions of Al2O3 nanoparticles and/or MEPCM particles. Int J Heat Mass Tran, 2014, 69(Supplement C): 293—299.
    [111] Ho C J, Chen W C, and Yan W M. Experiment on thermal performance of water-based suspensions of Al2O3 nanoparticles and MEPCM particles in a minichannel heat sink. Int J Heat Mass Tran, 2014, 69(Supplement C): 276—284.
    [112] Seyf H R, Zhou Z, Ma H B, et al. Three dimensional numerical study of heat-transfer enhancement by nano-encapsulated phase change material slurry in microtube heat sinks with tangential impingement. Int J Heat Mass Tran, 2013, 56(1): 561—573.
    [113] Rajabifar B. Enhancement of the performance of a double layered microchannel heatsink using PCM slurry and nanofluid coolants. Int J Heat Mass Tran, 2015, 88(Supplement C): 627—635.
    [114] Rajabifar B, Mohammadian S K, Khanna S K, et al. Effects of pin tip-clearance on the performance of an enhanced microchannel heat sink with oblique fins and phase change material slurry. Int J Heat Mass Tran, 2015, 83(Supplement C): 136—145.
    [115] Rajabifar B, Seyf H R, Zhang Y, et al. Flow and heat transfer in micro pin fin heat sinks with nano-encapsulated phase change materials. J Heat Transfer, 2016, 138(6): 062401-062401-8.
    [116] Deng X, Wang S, Wang J, et al. Analytical modeling of microchannel heat sinks using microencapsulated phase change material slurry for chip cooling. Procedia Eng, 2017, 205(Supplement C): 2704—2711.
    [117] Alkan C and Sari A. Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage. Sol Energy, 2008, 82(2): 118—124.
    [118] ?entürk S B, Kahraman D, Alkan C, et al. Biodegradable PEG/cellulose, PEG/agarose and PEG/chitosan blends as shape stabilized phase change materials for latent heat energy storage. Carbohydr Polym, 2011, 84(1): 141—144.
    [119] Chen F and Wolcott M. Polyethylene/paraffin binary composites for phase change material energy storage in building: A morphology, thermal properties, and paraffin leakage study. Sol Energy Mater Sol Cells, 2015, 137: 79—85.
    [120] Sar? A, Alkan C, Karaipekli A, et al. Preparation, characterization and thermal properties of styrene maleic anhydride copolymer (SMA)/fatty acid composites as form stable phase change materials. Energ Convers Manage, 2008, 49(2): 373—380.
    [121] Zeng J L, Zheng S H, Yu S B, et al. Preparation and thermal properties of palmitic acid/polyaniline/exfoliated graphite nanoplatelets form-stable phase change materials. Appl Energ, 2014, 115: 603—609.
    [122] Khadiran T, Hussein M Z, Zainal Z, et al. Shape-stabilised n-octadecane/activated carbon nanocomposite phase change material for thermal energy storage. J Taiwan Inst Chem E, 2015, 55: 189—197.
    [123] Qian T, Li J, Min X, et al. Polyethylene glycol/mesoporous calcium silicate shape-stabilized composite phase change material: Preparation, characterization, and adjustable thermal property. Energy, 2015, 82: 333—340.
    [124] Kim D, Jung J, Kim Y, et al. Structure and thermal properties of octadecane/expanded graphite composites as shape-stabilized phase change materials. Int J Heat Mass Tran, 2016, 95: 735—741.
    [125] Zhang D, Tian S, and Xiao D. Experimental study on the phase change behavior of phase change material confined in pores. Sol Energy, 2007, 81(5): 653—660.
    [126] Tang F, Cao L, and Fang G. Preparation and thermal properties of stearic acid/titanium dioxide composites as shape-stabilized phase change materials for building thermal energy storage. Energ Buildings, 2014, 80: 352—357.
    [127] Royon L, Guiffant G, and Perrot P. Forced convection heat transfer in a slurry of phase change material in an agitated tank. Int Commun Heat Mass, 2000, 27(8): 1057—1065.
    [128] Royon L, Perrot P, and Guiffant G. Transport of cold thermal energy with a slurry as secondary biphasic refrigerant. Int J Energ Res, 2001, 25(1): 9—15.
    [129] Ionescu C, Haberschill P, Kiss I, et al. Local and global heat transfer coefficients of a stabilised ice slurry in laminar and transitional flows. Int J Refrig, 2007, 30(6): 970—977.
    [130] Royon L and Guiffant G. Forced convection heat transfer with slurry of phase change material in circular ducts: A phenomenological approach. Energ Convers Manage, 2008, 49(5): 928—932.
    [131] Royon L and Guiffant G. Investigation on heat transfer properties of slurry of stabilized paraffin during a melting process. Energ Convers Manage, 2011, 52(2): 1073—1076.
    [132] Royon L, Jacquier D, and Mercier P. Flow investigation of phase change material (PCM) slurry as a heat transfer fluid in a closed loop system. Int J Energ Res, 2009, 33(4): 333—341.
    [133] Boujaddaini M N E, Mimet A, and Haberschill P. Forced convective heat transfer study of paraffin slurry flowing in a vertical rectangular channel. Int J Fluid Mech Res, 2013, 40(5): 405—419.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700