用户名: 密码: 验证码:
Ultrathin 2D Conjugated Polymer Nanosheets for Solar Fuel Generation
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ultrathin 2D Conjugated Polymer Nanosheets for Solar Fuel Generation
  • 作者:Xin-Lei ; Zhang ; Lei ; Wang ; Liang ; Chen ; Xiao-Yu ; Ma ; Hang-Xun ; Xu
  • 英文作者:Xin-Lei Zhang;Lei Wang;Liang Chen;Xiao-Yu Ma;Hang-Xun Xu;Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China;
  • 英文关键词:2D polymers;;Conjugated polymers;;Nanosheets;;Photocatalysis;;Energy conversion
  • 中文刊名:GFZK
  • 英文刊名:高分子科学(英文版)
  • 机构:Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China;
  • 出版日期:2019-01-15
  • 出版单位:Chinese Journal of Polymer Science
  • 年:2019
  • 期:v.37
  • 基金:financially supported by National Key R&D Program of China(Nos.2017YFA0207301 and 2015CB351903);; the National Natural Science Foundation of China(Nos.21474095and 21875235);; the Fundamental Research Funds for the Central Universities
  • 语种:英文;
  • 页:GFZK201902001
  • 页数:14
  • CN:02
  • ISSN:11-2015/O6
  • 分类号:8-21
摘要
Two-dimensional(2 D) polymers are fascinating as they exhibit unique physical, chemical, mechanical, and electronic properties that are completely different from those of traditional linear or branched polymers. They are very promising for applications in catalysis, separation, optoelectronics, energy storage, and nanomedicine. Recently, ultrathin 2 D conjugated polymers have emerged as advanced materials for converting solar energy into chemical energy. The inherent 2 D planar structure with in-plane periodicity offers many features that are highly desirable for photon-involved catalytic energy conversion processes, including high absorption coefficients,large surface areas, abundant surface active sites, and efficient charge separation. Moreover, the possibility of finely tuning the optoelectronic and structural properties through precise molecular engineering has opened up new opportunities for design and synthesis of novel 2 D polymer nanosheets with unprecedented applications. Herein, we highlight recent advances in developing ultrathin 2 D conjugated polymer nanosheets for solar-to-chemical energy conversion. Specifically, we discuss emerging applications of ultrathin 2 D conjugated polymer nanosheets for solar-driven water splitting and CO2 reduction. Meanwhile, future challenges and prospects for design and synthesis of ultrathin 2 D conjugated polymer nanosheets for solar fuel generation are also included.
        Two-dimensional(2 D) polymers are fascinating as they exhibit unique physical, chemical, mechanical, and electronic properties that are completely different from those of traditional linear or branched polymers. They are very promising for applications in catalysis, separation, optoelectronics, energy storage, and nanomedicine. Recently, ultrathin 2 D conjugated polymers have emerged as advanced materials for converting solar energy into chemical energy. The inherent 2 D planar structure with in-plane periodicity offers many features that are highly desirable for photon-involved catalytic energy conversion processes, including high absorption coefficients,large surface areas, abundant surface active sites, and efficient charge separation. Moreover, the possibility of finely tuning the optoelectronic and structural properties through precise molecular engineering has opened up new opportunities for design and synthesis of novel 2 D polymer nanosheets with unprecedented applications. Herein, we highlight recent advances in developing ultrathin 2 D conjugated polymer nanosheets for solar-to-chemical energy conversion. Specifically, we discuss emerging applications of ultrathin 2 D conjugated polymer nanosheets for solar-driven water splitting and CO2 reduction. Meanwhile, future challenges and prospects for design and synthesis of ultrathin 2 D conjugated polymer nanosheets for solar fuel generation are also included.
引文
1 Lewis, N. S.; Nocera, D. G. Powering the planet:Chemical challenges in solar energy utilization. Proc. Natl Acad. Sci.2006,103, 15729-15735.
    2 Barber, J. Photosynthetic energy conversion:Natural and artificial. Chem. Soc. Rev. 2009, 38, 185-196.
    3 Lewis, N. S. Introduction:Solar energy conversion. Chem. Rev:2015,115, 12631-12632.
    4 Crabtree, G. W.; Lewis, N. S. Solar energy conversion. Phys.Today 2007, 60,37-42.
    5 Li, H.; Fan, C.; Fu, W.; Xin, H. L.; Chen, H. Solution-grown organic single-crystalline donor-acceptor heterojunctions for photovoltaics. Angew. Chem. Int. Ed. 2015, 54, 956-960.
    6 Zhang,S.; Qin,Y.; Zhu,J.; Hou,J. Over 14%efficiency in polymer solar cells enabled by a chlorinated polymer donor.Adv. Mater. 2018, 30, 1800868.
    7 Li, S.; Zhan, L.; Liu, F.; Ren, J.; Shi, M.; Li, C. Z.; Russell, T.P.; Chen, H. An unfused-core-based nonfullerene acceptor enables high-effciency organic solar cells with excellent morphological stability at high temperatures. Adv. Mater. 2018, 30,1705208.
    8 Lewis, N. S. Research opportunities to advance solar energy utilization. Science 2016, 351, aad1920.
    9 Zhang, M.; Guo, X.; Wang, X.; Wang, H.; Li, Y. Synthesis and photovoltaic properties of D-A copolymers based on alkyl-substituted indacenodithiophene donor unit. Chem. Mater. 2011,23, 4264-4270.
    10 Hou, J.; Inganas, O.; Friend, R. H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17,119-128.
    11 Wang, X.; Ma,Y.; Sheng,X.; Wang,Y.; Xu,H. Ultrathin polypyrrole nanosheets via space-confined synthesis for efficient photothermal therapy in the second near-infrared window.Nano Lett. 2018, 18, 2217-2225.
    12 Bin, H.; Zhang,Z. G.; Gao, L.; Chen,S.; Zhong,L.; Xue,L.;Yang, C.; Li, Y. Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach9.5%efficiency. J. Am. Chem. Soc. 2016, 138, 4657-4664.
    13 Zhang, M.; Wang, X. Two dimensional conjugated polymers with enhanced optical absorption and charge separation for photocatalytic hydrogen evolution. Energy Environ. Sci. 2014,7, 1902-1906.
    14 Pan, Z.; Zheng,Y.; Guo, F.; Niu,P.; Wang,X. Decorating CoP and Pt nanoparticles on graphitic carbon nitride nanosheets to promote overall water splitting by conjugated polymers. ChemSusChem 2017, 10, 87-90.
    15 Islam, A.; Liu, Z. Y.; Peng, R. X.; Jiang, W. G.; Lei, T.; Li, W.;Zhang, L.; Yang, R. J.; Guan,Q.; Ge, Z. Y. Furan-containing conjugated polymers for organic solar cells. Chinese J. Polym.Sci. 2017, 35, 171-183.
    16 Cao, J. M.; Qian, L.; He, D.; Xiao, Z.; Ding, L. M. D-A copolymers based on a pentacyclic acceptor unit and a 3,3'-difluoro-2,2'-bithiophene for solar cells. Chinese J. Polym. Sci. 2017, 35,1457-1462.
    17 Wang, Y.; Zhu, W.; Du, W.; Liu, X.; Zhang, X.; Dong, H.; Hu,W. Cocrystals strategy towards materials for near-infrared photothermal conversion and imaging. Angew. Chem. Int. Ed.2018, 57, 3963-3967.
    18 Xu, Y.; Jin, S.; Xu, H.; Nagai, A.; Jiang, D. Conjugated microporous polymers:Design, synthesis and application. Chem. Soc.Rev. 2013, 42, 8012-8031.
    19 Kuhn,P.; Antonietti, M.; Thomas,A. Porous, covalent triazinebased frameworks prepared by ionothermal synthesis. Angew.Chem. Int. Ed. 2008, 47, 3450-3453.
    20 Jiang,J. X.; Su,F.; Niu,H.; Wood,C. D.; Campbell,N. L.;Khimyak,Y. Z.; Cooper, A. I. Conjugated microporous poly(phenylene butadiynylene)s. Chem. Commun. 2008, 4,486-488.
    21 Kou,Y.; Xu,Y.; Guo,Z.; Jiang, D. Supercapacitive energy storage and electric power supply using an aza-fusedπ-conjugated microporous framework. Angew. Chem. Int. Ed. 2011, 50,8753-8757.
    22 Sprick, R. S.; Bonillo, B.; Clowes, R.; Guiglion, Pi.; Brownbill,N. J.; Slater, B. J.; Blanc, F.; Zwijnenburg, M. A.; Adams, D.J.; Cooper, A. I. Visible-light-driven hydrogen evolution using planarized conjugated polymer photocatalysts. Angew. Chem.Int. Ed. 2016, 55, 1792-1796.
    23 Sprick,R. S.; Jiang, J. X.; Bonillo, B.; Ren, S.; Ratvijitvech,T.;Guiglion,P.; Zwijnenburg,M. A.; Adams, D. J.; Cooper, A. I.Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J. Am. Chem. Soc. 2015, 137, 3265-3270.
    24 Xiao, P.; Xu, Y. Recent progress in two-dimensional polymers for energy storage and conversion:Design, synthesis, and applications. J. Mater. Chem. A 2018, DOI:10.1039/C8TA02820F.
    25 Wang, L.; Zhang, Y.; Chen, L.; Xu, H.; Xiong, Y. 2D polymers as emerging materials for photocatalytic overall water splitting. Adv. Mater. 2018,1801955.
    26 Chen, Y.; Jia,G.; Hu.Y.; Fan, G.; Tsang,Y. H.; Li, Z.; Zou,Z.Two-dimensional nanomaterials for photocatalytic CO_2 reduction to solar fuels. Sustainable Energy Fuels 2017, 1,1875-1898.
    27 Singh, A. K.; Mathew, K.; Zhuang, H. L.; Hennig, R. G. Computational screening of 2D materials for photocatalysis. J. Phys.Chem. Lett. 2015, 6, 1087-1098.
    28 Di, J.; Xiong,J.; Li, H.; Liu, Z. Ultrathin 2D photocatalysts:Electronic-structure tailoring, hybridization, and applications.Adv. Mater. 2018, 30, 1704548.
    29 Deng, D.; Novoselov, K. S.; Fu, Q.; Zheng, N.; Tian, Z.; Bao,X. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218-230.
    30 Li, Y.; Li, Y. L.; Sa, B.; Ahuja, R. Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective. Catal. Sci. TechnoL 2017, 7, 545-559.
    31 Low, J.; Cao, S.; Yu, J.; Wageh, S. Two-dimensional layered composite photocatalysts. Chem. Commun. 2014, 50, 10768-10777.
    32 Fiori,G.;Bonaccorso,F.;Iannaccone,G.;Palacios,T.;Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol.2014, 9, 768-779.
    33 Yang, M. Q.; Zhang, N.; Pagliaro, M.; Xu, Y. J. Artificial photosynthesis over graphene-semiconductor composites. Are we getting better? Chem. Soc. Rev. 2014, 43, 8240-8254.
    34 Zhang, G.; Lana, Z. A.; Wang, X. Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting. Chem. Sci. 2017, 8,5261-5274.
    35 Yang, J.; Wang, D.; Han, H.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46,1900-1909.
    36 Liu, H.; Kan, X. N.; Wu, C. Y.; Pan, Q. Y.; Li, Z. B.; Zhao, Y.J. Synthetic two-dimensional organic structures. Chinese J.Polym. Sci. 2018, 36, 425-444.
    37 Colson, J. W.; Dichtel, W. R. Rationally synthesized two-dimensional polymers. Nat. Chem. 2013, 5, 453-465.
    38 Yang, F.; Cheng, S.; Zhang, X.; Ren, X.; Li, R.; Dong, H.; Hu,W. 2D organic materials for optoelectronic applications. Adv.Mater. 2018, 30, 1702415.
    39 Kissel, P.; Erni, R.; Schweizer, W. B.; Rossell, M. D.; King, B.T.; Bauer, T.; Gotzinger, S.; Schluter, A. D.; Sakamoto, J. A two-dimensional polymer prepared by organic synthesis. Nat.Chem. 2012, 4, 287-29.
    40 Kory,M. J.; Worle, M.; Weber,T.; Payamyar,P.; Poll, S. W.;Dshemuchadse, J.; Trapp, N.; Schluter, A. D. Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nat. Chem. 2014, 6, 779-784.
    41 Kissel, P.; Murray, D. J.; Wulftange, W. J.; Catalano, V. J.;King, B. T. A nanoporous two-dimensional polymer by singlecrystal-to-single-crystal photopolymerization. Nat. Chem. 2014,6, 774-778.
    42 Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P.Graphitic carbon nitride(g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation:Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116,7159-7329.
    43 Ji, J.; Wen, J.; Shen, Y.; Lv, Y.; Chen, Y.; Liu, S.; Ma, H.;Zhang, Y. Simultaneous noncovalent modification and exfoliation of 2D carbon nitride for enhanced electrochemiluminescent biosensing. J. Am. Chem. Soc. 2017, 139, 11698-11701.
    44 Zhang, X.; Xie, X.; Wang, H.; Zhang, J.; Pan, B.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4nanosheets for bioimaging. J. Am. Chem. Soc. 2013, 135,18-21.
    45 Niu, P.; Zhang, L.; Liu, G.; Cheng, H. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv.Funct. Mater. 2012, 22, 4763-4770.
    46 Yang,S.;Gong,Y.;Zhang,J.;Zhan,L.;Ma,L.;Fang,Z.;Vajtai, R.; Wang, X.; Ajayan, P. M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light.Adv. 2013, 25, 2452-2456.
    47 Ding,Y.; Chen, Y. P.; Zhang,X.; Chen,L.; Dong,Z.; Jiang,H.L.; Xu, H.; Zhou, H. C. Controlled intercalation and chemical exfoliation of layered metal-organic frameworks using a chemically labile intercalating agent. J. Am. Chem. Soc. 2017, 139,9136-9139.
    48 Gao, X.; Zhu,Y.; Yi.D.; Zhou,J.; Zhang, S.; Yin,C.; Ding, F.;Zhang, S.; Yi, X.; Wang, J.; Tong, L.; Han, Y.; Liu, Z.; Zhang,J. Ultrathin graphdiyne film on graphene through solutionphase van der Waals epitaxy. Sci. Adv. 2018, 4, eaat6378.
    49 Liu, J.; Zan, W.; Li, K.; Yang, Y.; Bu, F.; Xu, Y. Solution synthesis of semiconducting two-dimensional polymer via trimerization of carbonitrile. J. Am. Chem. Soc. 2017, 139,11666-11669.
    50 Nuraje, N.; Su, K.; Yang, N. I.; Matsui, H. Liquid/liquid interfacial polymerization to grow single crystalline nanoneedles of various conducting polymers. ACS Nano 2008, 2, 502-506.
    51 Murray, D. J.; Patterson, D. D.; Payamyar, P.; Bhola, R.; Song,W.; Lackinger, M.; Schluter, A. D.; King, B. T. Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface. J. Am. Chem. Soc. 2015,137, 3450-3453.
    52 Bruno, F. F.; Akkara, J. A.; Samuelson, L. A.; Kaplan, D. L.;Mandal, B. K.; Marx, K. A.; Kumar, J.; Tripathy, S. K. Enzymatic mediated synthesis of conjugated polymers at the langmuir trough air-water interface. Langmuir 1995, 11, 889-892.
    53 Guan, C. Z.; Wang, D.; Wan, L. J. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation. Chem. Commun. 2012, 48, 2943-2945.
    54 Xu, L.; Zhou, X.; Yu, Y.; Tian, W. Q.; Ma, J.; Lei, S. Surfaceconfined crystalline two-dimensional covalent organic frameworks via on-surface schiff-base coupling. ACS Nano 2013, 7,8066-8073.
    55 Sahabudeen, H.; Qi,H.; Glatz,B. A.; Tranca,D.; Dong,R.;Hou, Y.; Zhang, T.; Kuttner, C.; Lehnert, T.; Seifert, G.; Kaiser, U.; Fery, A.; Zheng, Z.; Feng, X. Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness. Nat. Commun. 2016, 7. 13461.
    56 Matsuoka, R.; Sakamoto, R.; Hoshiko, K.; Sasaki.S.;Masunaga, H.; Nagashio, K.; Nishihara, H. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface. J. Am. Chem. Soc. 2017,139, 3145-3152.
    57 Liu,X. H.; Guan,C. Z.; Ding,S. Y.; Wang,W.; Yan,H. J.;Wang, D.; Wan, L. J. On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid-vapor interface reactions. J. Am. Chem. Soc. 2013, 135, 10470-10474.
    58 Yang, Y.; Bu, F.; Liu, J.; Shakir, I.; Xu, Y. Mechanochemical synthesis of two-dimensional aromatic polyamides. Chem.Commun. 2017, 53, 7481-7484.
    59 Bard, A. J.; Fox, M. A. Artificial photosynthesis:Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 1995,28, 141-145.
    60 Wang, L.; Wan, Y.; Ding, Y.; Wu, S.; Zhang, Y.; Zhang, X.;Zhang, G.; Xiong, Y.; Wu, X.; Yang, J.; Xu, H. Conjugated microporous polymer nanosheets for overall water splitting using visible light. Adv. Mater. 2017, 29, 1702428.
    61 Chu, S.; Wang, Y.; Guo, Y.; Feng, J.; Wang, C.; Luo, W.; Fan,X.; Zou, Z. Band structure engineering of carbon nitride:In search of a polymer photocatalyst with high photooxidation property. ACS Catal. 2013, 3, 912-919.
    62 Ge, L.; Han, C.; Xiao, X.; Guo, L. In situ synthesis of cobaltphosphate(Co-Pi)modified g-C3N4 photocatalysts with enhanced photocatalytic activities. Appl. Catal. B Environ. 2013,142,414-422.
    63 Wang,L.; Wan, Y.; Ding,Y.; Niu, Y.; Xiong,Y.; Wu.X.; Xu,H. Photocatalytic oxygen evolution from low-bandgap conjugated microporous polymer nanosheets:A combined first-principles calculation and experimental study. Nanoscale 2017, 9,4090-4096.
    64 Gao, C.; Wang, J.; Xu, H.; Xiong, Y. Coordination chemistry in the design of heterogeneous photocatalysts. Chem. Soc. Rev.2017, 46, 2799-2823.
    65 Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. 2015, 27,2150-2176.
    66 Luo, B.; Liu, G.; Wang, L. Recent advances in 2D materials for photocatalysis.. Nanoscale 2016, 8, 6904-6920.
    67 Wang, Y.; Suzuki, H.; Xie, J.; Tomita, O.; Martin, D. J.;Higashi, M.; Kong,D.; Abe,R.; Tang, J. Mimicking natural photosynthesis:Solar to renewable H2 fuel synthesis by Zscheme water splitting systems. Chem. Rev. 2018,118,5201-5241.
    68 Low, J.; Jiang, C.; Cheng, B.; Wageh, S.; Ghamdi, A. A. A.;Yu, J. A review of direct Z-scheme photocatalysts. Small Methods 2017,1, 1700080.
    69 Zeng, D.; Xu, W.; Ong, W. J.; Xu, J.; Ren, H.; Chen, Y.;Zheng, H.; Peng, D. L. Toward noble-metal-free visible-lightdriven photocatalytic hydrogen evolution:Monodisperse sub-15 nn Ni2P nanoparticles anchored on porous g-C3N4nanosheets to engineer 0D-2D heterojunction interfaces. Appl.Catal. B Environ. 2018, 221, 47-55.
    70 Li,X.; Bi,W.; Zhang, L.; Tao, S.; Chu,W.; Zhang, Q.; Luo,Y.; Wu, C.; Xie, Y. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 2016, 28, 2427-2431.
    71 Zhao, W.; Guo, Y.; Wang, S.; He, H.; Sun, C.; Yang, S. A novel ternary plasmonic photocatalyst:Ultrathin g-C3N4 nanosheet hybrided by Ag/AgVO3 nanoribbons with enhanced visiblelight photocatalytic performance. Appl. Catal. B Environ. 2015,165, 335-343.
    72 Zeng,D.; Ong,W. J.; Chen, Y.; Tee,S. Y.; Chua,C. S.; Peng,D. L.; Han, M. Y. CO2P nanorods as an efficient cocatalyst decorated porous g-C3N4 nanosheets for photocatalytic hydrogen production under visible light irradiation. Part. Part. Syst.Charact. 2018, 35, 1700251.
    73 Xu, Q.; Zhu, B.; Jiang, C.; Cheng, B.; Yu, J. Constructing2D/2D Fe2O3/g-C3N4 direct Z-scheme photocatalysts with enhanced H2 generation performance. Sol. RRL 2018, 2, 1800006.
    74 Wang,L.; Zheng, X.; Chen,L.; Xiong, Y.; Xu, H. Van der Waals heterostructures comprised of ultrathin polymer nanosheets for efficient Z-scheme overall water splitting. Angew. Chem. Int.Ed. 2018, 57, 3454-3458.
    75 Che,W.; Cheng,W.; Yao, T.; Tang,F.; Liu,W.; Su,H.;Huang,Y.;Liu,Q.;Liu,J.;Hi,F.;Pan,Z.;Sun,Z.;Wei,S.Fast photoelectron transfer in(C_(ring))-C_3N_4 plane heterostructural nanosheets for overall water splitting. J. Am. Chem. Soc.2017,139, 3021-3026.
    76 Li, J.; Gao, X.; Liu, B.; Feng, Q.; Li, X. B.; Huang, M. Y.; Liu,Z.; Zhang, J.; Tung, C. H.; Wu, L. Z. Graphdiyne:A metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production. J. Am. Chem. Soc.2016, 138, 3954-3957.
    77 Gao, X.; Li,J.; Du,R.; Zhou, J.; Huang,M. Y.; Liu,R.; Li,J.;Xie, Z.; Wu, L. Z.; Liu, Z.; Zhang, J. Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell. Adv. Mater. 2017, 29,1605308.
    78 Kuriki, R.; Sekizawa, K.; Ishitani, O.; Maeda, K. Visible-lightdriven CO2 reduction with carbon nitride:Enhancing the activity of ruthenium catalysts. Angew. Chem. Int. Ed. 2015, 127,2436-2439.
    79 Cometto,C.; Kuriki,R.; Chen,L.; Maeda,K.; Lau, T. C.;Ishitani,O.; Robert,M. A carbon nitride/Fe quaterpyridine catalytic system for photostimulated CO2-to-CO conversion with visible light. J. Am. Chem. Soc:2018, 140, 7437-7440.
    80 Dong, G.; Zhang, L. Porous structure dependent photoreactivity of graphitic carbon nitride under visible light. J. Mater.Chem. 2012, 22, 1160-1166.
    81 Qin, J.; Wang,S.; Ren,H.; Hou,Y.; Wang,X. Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derivedfrom urea and barbituric acid. Appl. Catal. B Environ. 2015,179, 1-8.
    82 Kuriki, R.; Matsunaga, H.; Nakashima, T.; Wada, K.; Yamakata, A.; Ishitani, O.; Maeda, K. Nature-inspired, highly durable CO2 reduction system consisting of a binuclear ruthenium(Ⅱ)complex and an organic semiconductor using visible light. J. Am. Chem. Soc. 2016, 138, 5159-5170.
    83 Kuriki,R.; Yamamoto, M.; Higuchi,K.; Yamamoto, Y.; Akatsuka,M.; Lu,D.; Yagi,S.; Yoshida,T.; Ishitani, O.; Maeda,K.Robust binding between carbon nitride nanosheets and a binuclear ruthenium(II)complex enabling durable, selective CO2 reduction under visible light in aqueous solution. Angew. Chem.Int. Ed. 2017, 56, 4867-4871.
    84 Pachfule, P.; Acharjya, A.; Roeser, J.; Langenhahn, T.; Schwarze, M.; Schomacker, R.; Thomas, A.; Schmidt, J. Diacetylene functionalized covalent organic framework(COF)for photocatalytic hydrogen generation. J. Am. Chem. Soc. 2018, 140,1423-1427.
    85 Wei,P. F.; Qi,M. Z.; Wang,Z. P.; Ding,S. Y.; Yu.W.; Liu,Q.; Wang, L. K.; Wang, H. Z.; An, W. K.; Wang, W. Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis. J. Am. Chem. Soc. 2018, 140, 4623-4631.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700