用户名: 密码: 验证码:
基于无人机的物联网无线通信的潜力与方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Potential and methods of wireless communications for Internet of things based on UAV
  • 作者:宋庆恒 ; 郑福春
  • 英文作者:SONG Qingheng;ZHENG Fuchun;National Mobile Communications Research Laboratory, Southeast University;The Key Laboratory of Intelligent Control of Ecological Agriculture in Wuling Mountain Area, Huaihua University;School of Electronic and Information Engineering, Harbin Institute of Technology Shenzhen;
  • 关键词:无人机 ; 空—地信道 ; 功率消耗模型 ; 物联网无线通信
  • 英文关键词:UAV;;air-to-ground channel;;power consumption model;;wireless communication of IoT
  • 中文刊名:WLWX
  • 英文刊名:Chinese Journal on Internet of Things
  • 机构:东南大学移动通信国家重点实验室;怀化学院武陵山片区生态农业智能控制技术湖南省重点实验室;哈尔滨工业大学(深圳)电子与信息工程学院;
  • 出版日期:2019-03-30
  • 出版单位:物联网学报
  • 年:2019
  • 期:v.3;No.8
  • 语种:中文;
  • 页:WLWX201901012
  • 页数:8
  • CN:01
  • ISSN:10-1491/TP
  • 分类号:86-93
摘要
在地面物联网基础设施缺失的环境下,基于无人机的无线通信平台为物联网传感器节点提供了有效的低成本无线连接。与地面物联网通信平台相比,低空无人机无线通信系统具有部署速度快、成本低、可按需部署、配置灵活以及短范围视距连接带来的通信信道质量更好等优点。另一方面,无人机的高移动性、能量受限等特点给无人机物联网无线通信带来新的挑战。研究了物联网场景下的无人机无线通信技术,描述了无人机空—地信道特性和功率消耗模型,重点介绍了无人机在物联网数据分发/收集、数据中继等方面的应用、机会和方法。
        In the absence of terrestrial infrastructure for Internet of things(IoT), an effective low-cost wireless connection can be provided by an unmanned aerial vehicle(UAV) based wireless communication platform. Compared with the terrestrial IoT communication platform, the low-altitude UAV wireless communication system enjoys the advantage of rapid deployment, low cost, on-demand deployment, flexible configuration and better communication channel quality due to short-range line-of-sight links. On the other hand, several new challenges must be overcome due to the high mobility and energy consumption limitations of UAV. An overview of UAV enabled IoT wireless communication was provided, including the air-to-ground channel model, the power consumption model, as well as the applications in UAV based data dissemination/collection and relay, with particular reference to the new opportunities and solutions in these application areas.
引文
[1]US Department of Transportation.Unmanned Aircraft System(UAS)service demand 2015-2035:literature review&projections of future usage[S].2013.
    [2]PwC.Global market for commercial applications of drone technology valued at over 127bn[R].Pricewaterhouse Coopers,2018.
    [3]FILIPPONE A.Flight performance of fixed and rotary wing aircraft[M].Amsterdam:Elsevier,2009.
    [4]ZENG Y,ZHANG R,LIM T J.Wireless communications with unmanned aerial vehicles:opportunities and challenges[J].IEEE Communications Magazine,2016,54(5):36-42.
    [5]HAYAT S,YANMAZ E,MUZAFFAR R.Survey on unmanned aerial vehicle networks for civil applications:a communications viewpoint[J].IEEE Communications Surveys&Tutorials,2016,18(4):2624-2661.
    [6]LIN X,YAJNANARAYANA V,MURUGANATHAN S D,et al.The sky is not the limit:LTE for unmanned aerial vehicles[J].IEEE Communications Magazine,2018,56(4):204-210.
    [7]JAWHAR I,MOHAMED N,AL-JAROODI J,et al.Communication and networking of UAV-based systems:classification and associated architectures[J].Journal of Network and Computer Applications,2017(84):93-108.
    [8]YALINIZ R I B,EL-KEYI A,YANIKOMEROGLU H,et al.Efficient3D placement of an aerial base station in next generation cellular networks[C]//2016 IEEE International Conference on Communications(ICC).IEEE,2016:1-5.
    [9]MOZAFFARI M,SAAD W,BENNIS M,et al.Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage[J].IEEE Communications Letters,2016,20(8):1647-1650.
    [10]ALZENAD M,EL-KEYI A,LAGUM F,et al.3D placement of an unmanned aerial vehicle base station(UAV-BS)for energy-efficient maximal coverage[J].IEEE Wireless Communications Letters,2017,6(4):434-437.
    [11]AL-HOURANI A,KANDEEPAN S,LARDNER S.Optimal LAPaltitude for maximum coverage[J].IEEE Wireless Communications Letters,2014,3(6):569-572.
    [12]YANMAZ E,KUSCHNIG R,BETTSTETTER C.Channel measurements over IEEE 802.11a-based UAV-to-ground links[C]//IEEE Global Communications Conference(GLOBECOM’11).IEEE,2011:1280-1284.
    [13]ZENG Y,XU X,ZHANG R.Trajectory design for completion time minimization in UAV-enabled multicasting[J].IEEE Transactions on Wireless Communications,2018,17(4):2233-2246.
    [14]HE H,ZHANG S,ZENG Y,et al.Joint altitude and beamwidth optimization for UAV-enabled multiuser communications[J].IEEE Communications Letters,2018,22(2):344-347.
    [15]ZENG Y,ZHANG R.Energy-efficient UAV communication with trajectory optimization[J].IEEE Transactions Wireless Communications,2017,16(6):3747-3760.
    [16]SIMUNEK M,PECHAC P,FONTAN F P.Excess loss model for low elevation links in urban areas for UAVs[J].Radio Engineering,2011,20(3):561-568.
    [17]CAI X S,GONZALEZ-PLAZA A,ALONSO D,et al.Low altitude UAV propagation channel modelling[C]//2017 11th European Conference on Antennas and Propagation(EUCAP).IEEE,2017:1443-1447.
    [18]GODDEMEIER N,DANIEL K,WIETFELD C.Coverage evaluation of wireless networks for unmanned aerial systems[C]//IEEE Global Communications Conference(GLOBECOM’10).IEEE,2010:1760-1765.
    [19]TAVARES T,SEBASTIAO P,SOUTO N,et al.Generalized LUIpropagation model for UAVs communications using terrestrial cellular networks[C]//IEEE Vehicular Technology Conference(VTC-Fall’15).IEEE,2015:1-6.
    [20]AL-HOURANI A,GOMEZ K.Modeling cellular-to-UAV path-loss for suburban environments[J].IEEE Wireless Communications Letters,2017(99):1.
    [21]AL-HOURANI A,KANDEEPAN S,JAMALIPOUR A.Modeling air-to-ground path loss for low altitude platforms in urban environments[C]//Global Communications Conference.IEEE,2014:2898-2904.
    [22]GODDEMEIER N,WIETFELD C.Investigation of air-to-air channel characteristics and a UAV specific extension to the rice model[C]//IEEE Global Communications(GLOBECOM’15).IEEE,2015:1-5.
    [23]ONO F,OCHIAI H,MIURA R.A wireless relay network based on unmanned aircraft system with rate optimization[J].IEEE Transactions on Wireless Communications,2016,15(11):7699-7708.
    [24]AZARI M M,ROSAS F,CHEN K C,et al.Joint sum-rate and power gain analysis of an aerial base station[C]//2016 IEEE Globecom Workshops(GC Wkshps).IEEE,2016:1-6.
    [25]AZARI M M,ROSAS F,CHEN K C,et al.Ultra reliable UAV communication using altitude and cooperation diversity[J].IEEE Transactions on Communications,2018,66(1):330-344.
    [26]ZENG Y,XU J,ZHANG R,et al.Energy minimization for wireless communication with rotary-wing UAV[J].Computer Science,2018:1-31.
    [27]ZHAN P,YU K,SWINDLEHURST A L.Wireless relay communications with unmanned aerial vehicles:performance and optimization[J].IEEE Transactions on Aerospace&Electronic Systems,2011,47(3):2068-2085.
    [28]CHEN Y,FENG W,ZHENG G.Optimum placement of UAV as relays[J].IEEE Communications Letters,2018,22(2):248-251.
    [29]ZENG Y,ZHANG R,LIM T J.Throughput maximization for UAV-enabled mobile relaying systems[J].IEEE Transactions on Communications,2016,64(12):4983-4996.
    [30]ZHANG S H,ZHANG H L,DI B Y,et al.Joint trajectory and power optimization for UAV relay networks[J].IEEE Communications Letters,2018,22(1):161-164.
    [31]ZHANG J W,ZENG Y,ZHANG R.Spectrum and energy efficiency maximization in UAV-enabled mobile relaying[C]//2017 IEEE International Conference on Communications(ICC).IEEE,2017:1-6.
    [32]SONG Q H,ZHENG F C.Energy efficient multi-antenna UAV-enabled mobile relay[J].China Communications,2018,15(8):41-50.
    [33]SONG Q H,JIN S,ZHENG F C.Joint power allocation and beamforming for UAV-enabled relaying systems with channel estimation errors[C]//2018 IEEE 87th Vehicular Technology Conference(VTCSpring).IEEE,2018:1-5.
    [34]ASADI A,WANG Q,MANCUSO V.A survey on device-to-device communication in cellular networks[J].IEEE Communications Surveys&Tutorials,2014,16(4):1801-1819.
    [35]MOTLAGH N H,BAGAA M,TALEB T.UAV-based IoT platform:a crowd surveillance use case[J].IEEE Communications Magazine,2017,55(2):128-134.
    [36]MOZAFFARI M,SAAD W,BENNIS M,et al.Mobile Internet of things:can UAVs provide an energy-efficient mobile architecture[C]//2016 IEEE Global Communications Conference(GLOBE-COM).IEEE,2016:1-6.
    [37]MOZAFFARI M,SAAD W,BENNIS M,et al.Mobile unmanned aerial vehicles(UAVs)for energy-efficient Internet of things communications[J].IEEE Transactions on Wireless Communications,2017,16(11):7574-7589.
    [38]ALEJO D,COBANO J A,HEREDIA G,et al.Efficient trajectory planning for WSN data collection with multiple UAVs[M].Berlin:Springer,2015.
    [39]WANG C,MA F,YAN J,et al.Efficient aerial data collection with UAV in large-scale wireless sensor networks[J].International Journal of Distributed Sensor Networks,2015,11(11):1-19.
    [40]ZHAN C,ZENG Y,ZHANG R.Energy-efficient data collection in UAV enabled wireless sensor network[J].IEEE Wireless Communications Letters,2017(99):1.
    [41]GONG J,CHANG T H,SHEN C,et al.Aviation time minimization of UAV for data collection over wireless sensor networks[J].Computer Science,2018.
    [42]ZENG Y,XU X,ZHANG R.Trajectory design for completion time minimization in UAV-enabled multicasting[J].IEEE Transactions Wireless Communications,2018,17(4):2233-2246.
    [43]HE H,ZHANG S,ZENG Y,et al.Joint altitude and beamwidth optimization for UAV-enabled multiuser communications[J].IEEE Communications Letters,2018,22(2):344-347.
    [44]SONG Q H,JIN S,ZHENG F C,et al.Completion time and energy consumption minimization for UAV-enabled multicasting[J].IEEEWireless Communications Letter,2019:1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700