用户名: 密码: 验证码:
Preparation and property of CL-20/BAMO-THF energetic nanocomposites
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and property of CL-20/BAMO-THF energetic nanocomposites
  • 作者:Teng ; Chen ; Yan ; Zhang ; Shuang-feng ; Guo ; Liu-ming ; Zhao ; Wei ; Chen ; Ga-zi ; Hao ; Lei ; Xiao ; Xiang ; Ke ; Wei ; Jiang
  • 英文作者:Teng Chen;Yan Zhang;Shuang-feng Guo;Liu-ming Zhao;Wei Chen;Ga-zi Hao;Lei Xiao;Xiang Ke;Wei Jiang;National Special Superfine Powder Engineering Research Center of China, School of Chemical Engineering, Nanjing University of Science and Technology;Xi'an Modern Chemistry Research Institute;
  • 英文关键词:CL-20/BAMO-THF nanocomposites;;Kinetic;;Thermodynamic;;Impact sensitivity
  • 中文刊名:BAXY
  • 英文刊名:防务技术(英文版)
  • 机构:National Special Superfine Powder Engineering Research Center of China, School of Chemical Engineering, Nanjing University of Science and Technology;Xi'an Modern Chemistry Research Institute;
  • 出版日期:2019-06-15
  • 出版单位:Defence Technology
  • 年:2019
  • 期:v.15
  • 语种:英文;
  • 页:BAXY201903009
  • 页数:7
  • CN:03
  • ISSN:10-1165/TJ
  • 分类号:68-74
摘要
A sol-gel freezing-drying method was utilized to prepare energetic nanocomposites based on 2, 4, 6, 8,10, 12-hexanitro-2, 4, 6, 8, 10, 12-hexaazaisowurtzitane(CL-20) with 3, 3-Bis(azidomethyl) oxetanetetrahydrofuran copolymer(BAMO-THF) as energetic gel matrix. Scanning electron microscopy(SEM),X-ray diffraction(XRD), Raman, Fourier-transform infrared spectroscopy(FT-IR) and differential thermal analyser(DTA) were utilized to characterize the structure and property of the resultant energetic nanocomposites. Compared with raw CL-20, the average particle sizes of CL-20 in CL-20/BAMO-THF energetic nanocomposites were decreased to nano scale and the morphologies of CL-20 were also changed from prismatic to spherical. FT-IR detection revealed that CL-20 particles were recrystallized in BAMO-THF gel matrix during the freezing-drying process. The thermal decomposition behaviors of the energetic nanocomposites were investigated as well. The thermolysis process of CL-20/BAMO-THF nanocomposites was enhanced and the activation energy was lower compared with that of raw CL-20,indicating that CL-20/BAMO-THF nanocomposites showed high thermolysis activity. The impact sensitivity tests indicated that CL-20/BAMO-THF energetic nanocomposites presented low sensitivity performance.
        A sol-gel freezing-drying method was utilized to prepare energetic nanocomposites based on 2, 4, 6, 8,10, 12-hexanitro-2, 4, 6, 8, 10, 12-hexaazaisowurtzitane(CL-20) with 3, 3-Bis(azidomethyl) oxetanetetrahydrofuran copolymer(BAMO-THF) as energetic gel matrix. Scanning electron microscopy(SEM),X-ray diffraction(XRD), Raman, Fourier-transform infrared spectroscopy(FT-IR) and differential thermal analyser(DTA) were utilized to characterize the structure and property of the resultant energetic nanocomposites. Compared with raw CL-20, the average particle sizes of CL-20 in CL-20/BAMO-THF energetic nanocomposites were decreased to nano scale and the morphologies of CL-20 were also changed from prismatic to spherical. FT-IR detection revealed that CL-20 particles were recrystallized in BAMO-THF gel matrix during the freezing-drying process. The thermal decomposition behaviors of the energetic nanocomposites were investigated as well. The thermolysis process of CL-20/BAMO-THF nanocomposites was enhanced and the activation energy was lower compared with that of raw CL-20,indicating that CL-20/BAMO-THF nanocomposites showed high thermolysis activity. The impact sensitivity tests indicated that CL-20/BAMO-THF energetic nanocomposites presented low sensitivity performance.
引文
[1]Gao HF,Zhang SH,Ren FD,Liu F,Gou RJ,Ding X.Theoretical insight into the co-crystal explosive of 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane(CL-20)/1,1-diamino-2,2-dinitroethylene(fox-7).Comput Mater Sci 2015;107:33e41.
    [2]Qiu H,Patel RB,Damavarapu RS,Stepanov V.Nanoscale 2CL-20$HMX high explosive cocrystal synthesized by bead milling.CrystEngComm 2015;17:4080e3.
    [3]Zhu YF,Lu YW,Gao B,Wang DJ,Yang GC,Guo CP.Ultrasonic-assisted emulsion synthesis of well-distributed spherical composite CL-20@PNA with enhanced high sensitivity.Mater Lett 2017;205:94e7.
    [4]Tillotson TM,Gash AE,Simpson RL.Nanostructured energetic materials using sol-gel methodologie.J Non-Cryst Solids 2000;285:338e45.
    [5]Lan YF,Jin MM,Luo YJ.Preparation and characterization of graphene aerogel/Fe2O3/ammonium perchlorate nanostructured energetic composite.J Sol Gel Sci Technol 2015;74:161e7.
    [6]Chen RJ,Luo YJ,Sun J,Li GP.Preparation and properties of an AP/RDX/SiO2nanocomposite energetic material by the sol-gel method.Propellants,Explos Pyrotech 2012;37:422e6.
    [7]Cudzilo S,Kicinski W.Preparation and characterization of energetic nanocomposites of organic gel-inorganic oxidizers.Propellants,Explos Pyrotech2009;34:155e60.
    [8]Lan YF,Wang X,Luo YJ.Preparation and characterization of GA/RDX nanostructured energetic composites.Bull Mater Sci 2016;39:1e7.
    [9]Wang XB,Li JQ,Luo YJ,Huang MH.A novel ammonium perchlorate/graphene aerogel nanostructured energetic composite:preparation and thermal decomposition.Sci Adv Mater 2014;6:530e7.
    [10]Wang Y,Song XL,Song D,Jiang W,Liu HY,Li FS.A versatile methodology using sol-gel,supercritical extraction,and etching to fabricate a nitroamine explosive:nanometer HNIW.J Energetic Mater 2013;31:49e59.
    [11]Song XL,Li FS,Zhang JL.Preparation,mechanical sensitivity and thermal decomposition characteristics of RDX nanoparticles.Chin J Explos Propellants2008;31:1e4.
    [12]Li GP,Shen LH,Zheng BM,Xia M,Luo YJ.The preparation and properties of AP-based nano-limit growth energetic materials.Adv Mater Res 2014;924:105e9.
    [13]Chen RJ,Luo YJ,Sun J.Preparation and properties of an AP/RDX/SiO2nanocomposite energetic material by the sol-gel method.Propellants,Explos Pyrotech 2012;37:422e6.
    [14]Jin MM,Luo YJ.Preparation and characterization of RF/AP nanocomposites.Chin J Explos Propellants 2012;35:65e9.
    [15]Nie FD,Zhang J,Guo QX,Qiao ZQ.Sol-gel synthesis of nanocomposite crystalline HMX/AP coated by resorcinol-formaldehyde.J Phys Chem Solid2010;71:109e13.
    [16]Wang Y,Song XL,Song D,Liang L,An CW,Wang JY.Synthesis,thermolysis,and sensitivities of HMX/NC energetic nanocomposites.J Hazard Mater2016;312:73e83.
    [17]Li GP,Liu MH,Zhang R,Shen LH,Liu YZ,Luo YJ.Synthesis and properties of RDX/GAP nano-composite energetic materials.Colloid Polym Sci 2015;293:2269e79.
    [18]Mohan YM,Raju KM,Sreedhar B.Synthesis and characterization of glycidyl azide polymer with enhanced azide content.Int J Polym Mater Polym Biomater 2006;55:441e55.
    [19]You JS,Kang SC,Kweon SK,Kim HL,Ahn YH,Noh ST.Thermal decomposition kinetics of GAP ETPE/RDX-based solid propellant.Thermochim Acta2012;537:51e6.
    [20]Liu K,Zhang G,Luan JY,Chen ZQ,Su PF,Shu YJ.Crystal structure,spectrum character and explosive property of a new cocrystal CL-20/DNT.J Mol Struct2016;1110:91e6.
    [21]Chen T,Li WH,Jiang W,Hao GZ,Xiao L,Xiang K,Liu J,Gao H.Preparation and characterization of RDX/BAMO-THF energetic nanocomposites.J Energetic Mater 2018.https://doi.org/10.1080/07370652.2018.1473900.
    [22]Chen T,Jiang W,Du P,Liu J,Hao GZ,Gao H,Xiao L,Xiang K.Facile preparation of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane/Glycidylazide polymer energetic nanocomposites with enhanced thermolysis activity and low impact sensitivity.RSC Adv 2017;7:5957e65.
    [23]Kissinger HE.Reaction kinetics in differential thermal analysis.Anal Chem1957;29:1702e6.
    [24]Sovizi MR,Hajimirsadeghi SS,Naderizadeh B.Effect of particle size on thermal decomposition of nitrocellulose.J Hazard Mater 2009;168:1134e9.
    [25]Zhang T,Hu R,Xie Y,Li F.The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC.Thermochim Acta 1994;244:171e6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700