用户名: 密码: 验证码:
常压双频驱动Ar/CCl_4等离子体射流制备碳薄膜的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation of the carbon films by Ar/CCl_4 plasma jet driven with dual-frequency power under atmospheric pressure
  • 作者:张亚东 ; 袁强华 ; 殷桂琴 ; 王勇 ; 李洋
  • 英文作者:ZHANG Ya-dong;YUAN Qiang-hua;YIN Gui-qin;WANG Yong;LI Yang;Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu province,College of Physics and Electronic Engineering, Northwest Normal University;
  • 关键词:大气压低温等离子体 ; 双频 ; 碳材料 ; 模拟
  • 英文关键词:Atmospheric pressure low temperature plasma jet;;Dual-frequency;;Carbon materials;;Simulation
  • 中文刊名:HJBY
  • 英文刊名:Nuclear Fusion and Plasma Physics
  • 机构:西北师范大学物理与电子工程学院原子与分子物理与功能材料重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:核聚变与等离子体物理
  • 年:2019
  • 期:v.39;No.158
  • 基金:国家自然科学基金(11665021)
  • 语种:中文;
  • 页:HJBY201901014
  • 页数:8
  • CN:01
  • ISSN:51-1151/TL
  • 分类号:91-98
摘要
在大气压下双频Ar/CCl_4等离子体射流的驱动下,固定低频功率,通过改变射频功率在硅基底上制备了非晶态碳薄膜,并且通过程序进行相应的数值模拟计算。结果给出了不同功率下电子与离子的密度、温度、电场、电势、角度分布等参数对碳材料样品形貌的影响;样品变化趋势的预测及其原因的分析,以及与实验结果的对比。结果表明,对于双频大气压等离子体,射频可以独立控制等离子体的能量和反应强度,可以相对地控制产物。这为制备薄膜材料的形貌提供重要的实验基础。
        Amorphous carbon films were prepared on silicon substrate by changing RF power under the driving of dual-frequency Ar/CCl_4 plasma jet at atmospheric pressure, and the corresponding numerical simulation was carried out by the program. The influence of the density, temperature, electric field, potential and angular distribution of electrons and ions on the morphology of carbon material samples at different powers was obtained.The prediction of the trend of the sample and the analysis of its causes, and the comparison with the experimental results were conducted. The results indicate that for the dual-frequency atmospheric pressure plasma, the radio frequency can control the energy and reaction intensity of the plasma independently, and can control the product relatively, which provides an important experimental basis for preparing the thin film morphology.
引文
[1]Kuok FeiHong,Liao ChenYu,Wan TingHao,et al.Atmospheric pressure plasma jet processed reduced graphene oxides for supercapacitor application[J].Journal of Alloys and Compounds,2017,692:558?562.
    [2]Zhou Yong-Jie,Yuan Qiang-Hua,Li Fei,et al.Nonequilibrium atmospheric pressure plasma jet using a combination of 50kHz/2MHz dual-frequency power sources[J].Phys.Plasmas,2013,20:113502.
    [3]Wang Yong,Yuan Qiang-hua,Yin Gui-qin,et al.Synthesis of mixed-phase Ti O2 nanopowders using atmospheric pressure plasma jet driven by dual-frequency power sources[J].Plasma Chem.Plasma Process,2016,36:1471?1484.
    [4]Kment S,Kluson P,Zabova H,Churpita,et al.Atmospheric pressure barrier torch discharge and its optimization for flexible deposition of TiO2 thin coatings on various surfaces[J].Surface and Coatings Technology,2009,204:667?675.
    [5]E Kawamura,A J Lichtenberg,M A Lieberman.Secondary electrons in rf and dc/rf capacitive discharges[J].Plasma Sources Science and Technology,2008,17:045002.
    [6]Jiang Wei,Xu Xiang,Dai Zhong-Ling,et al.Heating mechanisms and particle flow balancing of capacitively coupled plasmas driven by combined dc/rf sources[J].Phys.Plasmas,2008,15:033502.
    [7]Economou,Demetre J.Hybrid simulation of low temperature plasmas:A Brief Tutorial[J].Plasma Processes&Polymers,2017,14:1600152.
    [8]Cordes C,Bornath Th,Redmer R.Monte Carlo simulation of partially ionized hydrogen plasmas[J].Contributions to Plasma Physics,2016,56:475?481.
    [9]Huang Wei-xin,Sylwia Ptasinskaa.S.Functionalization of graphene by atmospheric pressure plasmajet in air or H2O2 environments[J].Applied Surface Science,2016,367:160?166.
    [10]Hideo Uchida,Hare Ram Aryal,Sudip Adhikari,et al.LOW temperature plasma CVD grown graphene by microwave surface-wave plasma CVD using camphor precursor[J].Journal of Physical Science and Application,2016,6:34?38.
    [11]Bian Xin-chao,Chen Qiang,Zhang Yue-fei,et al.Deposition of nano-diamond-like carbon films by an atmospheric pressure plasma gun and diagnostic by optical emission spectrum on the process[J].Surface and Coatings Technology,2008,202:5383?5385.
    [12]Habibia A,Khoiea S M M,Mahboubia F,et al.Fast synthesis of turbostratic carbon thin coating by cathodic plasma electrolysis[J].Thin Solid Films,2016,621:253?258.
    [13]Chandana L,Subrahmanyam Ch.Degradation and mineralization of aqueous phenol by an atmospheric pressure catalytic plasma reactor[J].Journal of Environmental Chemical Engineering,2016,6(3):3780?3786.
    [14]Cuxart M G,Sics I,Goni A R,E.Pach,et al.Inductively coupled remote plasma-enhanced chemical vapor deposition(rPE-CVD)as a versatile route for the deposition of graphene micro-and nanostructures[J].Carbon,2017,117,331?342.
    [15]Li Hong-ling,Wei Jiao,Qian Ya-nan,et al.Effects of the graphene content and the treatment temperature on the super-capacitive properties of VOx/graphene nano-composites[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014,449:148?156.
    [16]Park M H,Kim T H,Yang C W.Thickness contrast of few-layered graphene in SEM[J].Surface and Interface Analysis,2012,44:1538?1541.
    [17]Neyts EC,Brault P.Molecular dynamics simulations for plasma-surface interactions[J].Plasma Processes and Polymers,2017,14:1?2.
    [18]Wang Shuai,Xu Xiang,Wang You-nian.Aone-dimensional hybrid simulation of DC/RF combined driven capacitive plasma[J].Plasma Science and Technology,2012,14(1):32?36.
    [19]Marinov D,Teixeira C,Guerra V.Deterministic and Monte Carlo methods for simulation of plasma-surface interactions Plasma[J].Plasma Processes and Polymers,2017,14:1600175.
    [20]Stefano M,Pierre H,Giovanni L,et al.The fluid-kinetic particle-in-cell method for plasma simulations[J].Journal of Computational Physics,2014,271:415?429.
    [21]Driver K P,Soubiran F,Zhang S,et al.Comparison of pathintegral Monte Carlo simulations of helium,carbon,nitrogen,oxygen,water,neon,and silicon plasmas[J].High Energy Density Physics,2017,23:81?89.
    [22]Rabie M,Franck C M.METHES:A Monte Carlo collision code for the simulation of electron transport in low temperature plasmas[J].Computer Physics Communications,2016,203:268?277.
    [23]Turrell A E,Sherlock M,Rose S J.Self-consistent inclusion of classical large-angle Coulomb collisions in plasma Monte Carlo simulations[J].Journal of Computational Physics,2015,299:144?155.
    [24]Kim D,Economou D J,Woodworth J R,et al.Plasma molding over surface topography:simulation and measurement of ion fluxes,energies and angular distributions over trenches in RF high density plasmas[J].IEEE Transactions on Plasma Science,2003,31:691?702.
    [25]Barranco A,Borras A,Gonzalez-Elipe A R,et al.Perspectives on oblique angle deposition of thin films:From fundamentals to devices[J].Progress in Materials Science,2016,76:59?153.
    [26]Xu Xiang,Ge Hao,Wang Shuai,et al.Influence of the low-frequency source parameters on the plasma characteristics in a dual frequency capacitively coupled plasma reactor:two dimensional simulations[J].Progress in Natural Science,2009,19:677?684.
    [27]Yang Zhang-can,Michael A.L,Allain J P.Kinetic Monte Carlo simulation of self-organized pattern formation induced by ion beam sputtering using crater functions[J].Phys.Rev.B,2015,91:075427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700