用户名: 密码: 验证码:
Li/Ce/La共掺杂对CaBi_2Nb_2O_9陶瓷晶体结构及电学性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Li/Ce/La Multidoping on Crystal Structure and Electric Properties of CaBi_2Nb_2O_9 Piezoceramics
  • 作者:曾祥雄 ; 杨进超 ; 左联 ; 杨奔奔 ; 秦峻 ; 彭志航
  • 英文作者:ZENG Xiang-Xiong;YANG Jin-Chao;ZUO Lian;YANG Ben-Ben;QIN Jun;PENG Zhi-Hang;Northwest Institute of Nuclear Technology;Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology;
  • 关键词:稀土掺杂 ; 铋层状结构 ; Rietveld精修 ; 晶体结构 ; 压电
  • 英文关键词:rare earth element doping;;bismuth layered structure;;Rietveld refinement;;crystal structure;;piezoelectric property
  • 中文刊名:WGCL
  • 英文刊名:Journal of Inorganic Materials
  • 机构:西北核技术研究所;国防科技大学新型陶瓷纤维及其复合材料重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:无机材料学报
  • 年:2019
  • 期:v.34;No.234
  • 语种:中文;
  • 页:WGCL201904005
  • 页数:8
  • CN:04
  • ISSN:31-1363/TQ
  • 分类号:33-40
摘要
采用固相反应法制备(Li_(0.5)Ce_(0.25)La_(0.25))_xCa_(1-x)Bi_2Nb_2O_9铋层状结构压电陶瓷,分析多元稀土元素掺杂对CaBi_2Nb_2O_9(CBN)陶瓷晶体结构、微观形貌及电学性能的影响。Rietveld结构精修表明,多元稀土元素进入晶格内部形成固溶体,掺杂使晶体结构有由斜方晶系向四方晶系转变的趋势,反位缺陷中A位的Bi~(3+)具备6s2孤对电子,抑制这种变化趋势。SEM照片显示,掺杂主要抑制晶粒沿垂直c轴平面生长,这是由于稀土氧化物具备较高的熔点,在烧结过程中不易扩散。准同型相界附近,垂直b轴方向的a滑移面被打破,极化方向沿a轴和b轴,导致压电性能增强。其中,(Li_(0.5)Ce_(0.25)La_(0.25))_(0.17)Ca_(0.83)Bi_2Nb_2O_9陶瓷具备最优异的性能:居里温度为913℃,压电系数高达16.4 pC/N;经850℃退火2 h,其d33值为14.0 pC/N,约为原始值的85.4%。
        (Li_(0.5)Ce_(0.25)La_(0.25))_xCa_(1-x)Bi_2Nb_2O_9 Aurivillius phase ceramics were prepared via conventional solid-state sintering route. The effects of co-substitution with different types of rare-earth elements on crystal structure, microstructure and electric properties were investigated. Rietveld-refinement analysis showed that the multiple rare earth elements embedded into the lattice point and formed corresponding solid solutions. The crystal structure tended to transform to tetragonal system from pristine orthorhombic system, whereas Bi~(3+) in A-site with 6 s2 lone pair electrons suppressed this change. SEM images exhibited that the grain growth in the direction perpendicular to the c-axis was restrained, which could be attributed to the rare earth oxides' high melting point and low diffusion during the sintering process. Morphotropic phase boundary of a glide plane between orthorhombic system and pseudo-tetragonal system vanished, which generated spontaneous polarization along a and b axis and resulted in increase of piezoelectric properties. The obtained (Li_(0.5)Ce_(0.25)La_(0.25))_(0.17)Ca_(0.83)Bi_2Nb_2O_9 ceramics performed optimal piezoelectric properties(d33=16.4 pC/N,Tc=913 ℃) and exhibited excellent thermal stability, remaining 85.4% of their initial d33 values after annealing at850 ℃ for 2 h. All above results demonsrated that the multidoped materials are promising candidates for ultrahigh temperature applications.
引文
[1]ZHANGS,YUF.Piezoelectricmaterialsforhightemperature sensors. Journal of the American Ceramic Society, 2011, 94(10):3153–3170.
    [2]TURNER R C, FUIERER P A, NEWNHAM R E, et al. Materials for high temperature acoustic and vibration sensors:a review. Applied Acoustics, 1994, 41(4):299–324.
    [3]JI X,WANG S, SHAO C,et al. High-temperature corrosion behaviorofSiBCNfibersforaerospaceapplications.ACSApplied Materials&Interfaces, 2018, 10(23):19712–19720.
    [4]FRITB,MERCURIOJP.Thecrystalchemistryanddielectric propertiesoftheAurivilliusfamilyofcomplexbismuthoxides withperovskite-likelayeredstructures.JournalofAlloysand Compounds, 1992, 188(1/2):27–35.
    [5]PARKBH,KANGBS,BUSD,etal.Lanthanum-substituted bismuthtitanateforuseinnon-volatilememories.Nature,1999,401(6754):682–684.
    [6]SUBBARAO E C. A family of ferroelectric bismuth compounds.Journal of Physics and Chemistry of Solids, 1962, 23(6):665–676.
    [7]NEWNHAM R E, WOLFE R W, DORRIAN J F. Structural basis offerroelectricityinthebismuthtitanatefamily.MaterialsResearch Bulletin, 1971, 6(10):1029–1039.
    [8]YAN H, ZHANG H, REECE M J, et al. Thermal depoling of high Curie point Aurivillius phase ferroelectric ceramics. Applied Physics Letters, 2005, 87(8):082911–1–3.
    [9]YAN H, ZHANG H, UBIC R, et al. A lead-free high-Curie-point ferroelectricceramic,CaBi2Nb2O9.AdvancedMaterials,2005,17(10):1261–1265.
    [10]PENG Z, CHEN Q, LIU D, et al. Evolution of microstructure and dielectricpropertiesof(LiCe)-dopedNa0.5Bi2.5Nb2O9Aurivillius type ceramics. Current Applied Physics, 2013, 13(7):1183–1187.
    [11]LI F, LIN D, CHEN Z,et al. Ultrahigh piezoelectricity in ferroelectricceramicsbydesign.NatureMaterials,2018,17(4):349–354.
    [12]DU X, CHEN I W. Ferroelectric thin films of bismuth-containing layeredperovskites:PartI,Bi4Ti3O12.JournaloftheAmerican Ceramic Society, 1998, 81(12):3260–3264.
    [13]YAN H X, ZHANG Z, ZHU W M, et al. The effect of(Li,Ce)and(K,Ce)doping in Aurivillius phase material CaBi4Ti4O15. Materials Research Bulletin, 2004, 39(9):1237–1246.
    [14]WANGCM,ZHAOL,WANGJF,etal.Cerium-modified Aurivillius-typesodiumlanthanumbismuthtitanatewithenhanced piezoactivities. Materials Science and Engineering:B,2009, 163(3):179–183.
    [15]KUMARA,VARSHNEYD.Crystalstructurerefinementof Bi1-xNdxFeO3multiferroicbytheRietveldmethod.CeramicsInternational, 2012, 38(5):3935–3942.
    [16]BLAKESM,FALCONERMJ,MCCREEDYM,etal.Cation disorder in ferroelectric Aurivillius phases of the type Bi2ANb2O9(A=Ba,Sr,Ca).JournalofMaterialsChemistry,1997,7(8):1609–1613.
    [17]WU Y, CHEN J, YUAN J. Structure refinements and the influences ofA-sitevacanciesonpropertiesofNa0.5Bi2.5Nb2O9-basedhigh temperaturepiezoceramics.JournalofAppliedPhysics,2016,120(19):194103–1–6.
    [18]ZHANG F Q, LI Y X. Recent progress on bismuth layer-structured ferroelectrics. Journal of Inorganic Materials, 2014, 29(5):449–460.
    [19]SIM?ES A Z, AGUIAR E C, RICCARDI C S, et al. Effect of oxidizingatmosphereonferroelectricandpiezoelectricresponseof CaBi2Nb2O9thinfilms.MaterialsChemistryandPhysics,2010,124(23):894–899.
    [20]LONG C B, FAN H Q, LI M M. High temperature Aurivillius piezoelectrics:the effect of(Li, Ln)modification on the structure and properties of(Li, Ln)(0.06)(Na, Bi)(0.44)Bi2Nb2O9(Ln=Ce, Nd, La and Y). Dalton Transactions, 2013, 42(10):3561–3570.
    [21]DIAO C L, XU J B, ZHENG H W, et al. Dielectric and piezoelectric properties of cerium modified BaBi4Ti4O15 ceramics. Ceramics International, 2013, 39(6):6991–6995.
    [22]PENG Z, YAN D, CHEN Q, et al. Crystal structure, dielectric and piezoelectricpropertiesofTa/WcodopedBi3TiNbO9Aurivillius phaseceramics.CurrentAppliedPhysics,2014,14(12):1861–1866.
    [23]SHIMAKAWA Y, KUBO Y, NAKAGAWA Y, et al. Crystal structure and ferroelectric properties of ABi2Ta2O9(A=Ca, Sr, and Ba).Physical Review B, 2000, 61(10):6559–6564.
    [24]DAMJANOVIC D. Contributions to the piezoelectric effect in ferroelectricsinglecrystalsandceramics.JournaloftheAmerican Ceramic Society, 2005, 88(10):2663–2676.
    [25]TIAN X, QU S, MA H, et al. Effect of grain size on dielectric and piezoelectric properties of bismuth layer structure CaBi2Nb2O9 ceramics.JournalofMaterialsScience:MaterialsinElectronics,2016, 27(12):13309–13313.
    [26]CHEN H, SHEN B, XU J, et al. Correlation between grain sizes andelectricalpropertiesofCaBi2Nb2O9piezoelectricceramics.JournaloftheAmericanCeramicSociety,2012,95(11):3514–3518.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700