用户名: 密码: 验证码:
基于改进版加工图的Ni80A合金动态再结晶参数域的求解(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Determination of dynamic recrystallization parameter domains of Ni80A superalloy by enhanced processing maps
  • 作者:权国政 ; 刘乔 ; 赵江 ; 熊威 ; 施瑞菊
  • 英文作者:Guo-zheng QUAN;Qiao LIU;Jiang ZHAO;Wei XIONG;Rui-ju SHI;State Key Laboratory of Mechanical Transmission, School of Material Science and Engineering,Chongqing University;State Key Laboratory of Materials Processing and Die & Mould Technology,Huazhong University of Science and Technology;Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology,Tsinghua University;
  • 关键词:镍基超温合金 ; 变形激活能 ; 加工图 ; 动态再结晶
  • 英文关键词:nickel-based superalloy;;deformation activation energy;;processing map;;dynamic recrystallization
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:重庆大学材料科学与工程学院机械传动国家重点实验室;华中科技大学材料加工与模具技术国家重点实验室;清华大学核能与新能源技术研究院先进核能技术协同创新中心先进反应堆工程与安全教育部重点实验室;
  • 出版日期:2019-07-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 基金:Project(cstc2018jcyj AX0459)supported by Chongqing Basic Research and Frontier Exploration,China;; Project(P2017-020)supported by Open Fund Project of State Key Laboratory of Materials Processing and Die&Mould Technology,China;; Project(SKLMTZZKT-2017M15)supported by Research Project of State Key Laboratory of Mechanical Transmission,China
  • 语种:英文;
  • 页:ZYSY201907011
  • 页数:16
  • CN:07
  • ISSN:43-1239/TG
  • 分类号:100-115
摘要
能够诱导晶粒细化的动态再结晶变形机制内在变形参数的求解对成形工艺的设计具有重要意义。对于Ni80A超温合金,在温度范围1273~1473 K、应变速率范围0.01~10 s~(-1)内进行等温压缩试验,并据此建立加工图。结合加工图和显微组织验证,可以在变形机制图内识别出动态再结晶对应的参数域。此外,引入代表能量势垒的激活能指标进一步优化这一参数域。最终,构造出改进后的加工图,并求得对应动态再结晶变形机制和较低激活能的最优参数域如下:应变为0.3时,参数域为1296~1350 K,0.056~0.32 s~(-1)和1350~1375 K,0.035~0.11 s~(-1);应变为0.5时,参数域为1290~1348K,0.2~0.5s~(-1)和1305~1370K,0.035~0.2s~(-1);应变为0.7时,参数域为1290~1355 K,0.042~0.26 s~(-1);应变为0.9时,参数域为1298~1348 K,0.037~0.224 s~(-1)。
        The determination of intrinsic deformation parameters inducing grain refinement mechanism of dynamic recrystallization(DRX) contributes to the relative forming process design. For Ni80 A superalloy, the processing maps were constructed by the derivation of the stress-strain data coming from a series of isothermal compression tests at temperatures of 1273-1473 K and strain rates of 0.01-10 s~(-1). According to the processing maps and microstructural validation, the deformation parameter windows with DRX mechanism were separated in an innovative deformation mechanism map. In addition, the deformation activation energy representing deformation energy barrier was introduced to further optimize such windows. Finally, the enhanced processing maps were constructed and the parameter domains corresponding to DRX mechanism and lower deformation barrier were determined as follows: at ε=0.3, domains: 1296-1350 K, 0.056-0.32 s~(-1) and 1350-1375 K, 0.035-0.11 s~(-1); at ε=0.5, domains: 1290-1348 K, 0.2-0.5 s~(-1) and 1305-1370 K, 0.035-0.2 s~(-1); at ε=0.7, domains: 1290-1355 K, 0.042-0.26 s~(-1); at ε=0.9, domains: 1298-1348 K, 0.037-0.224 s~(-1).
引文
[1] POLLOCK T M, TIN S. Nickel-based superalloys for advanced turbine engines:Chemistry, microstructure and properties[J]. Journal of Propulsion&Power, 2006, 22(2):361-374.
    [2] DONG K K, DONG Y K, RYU S H, DONG J K. Application of Nimonic 80A to the hot forging of an exhaust valve head[J]. Journal of Materials Processing Tech, 2001, 113(1):148-152.
    [3] XU Yu-lai, YANG Cai-xiong, XIAO Xue-shan, CAO Xiu-li, JIA Guo-qing, SHEN Zhi. Evolution of microstructure and mechanical properties of Ti modified superalloy Nimonic 80A[J]. Materials Science&Engineering A, 2011, 530(1):315-326.
    [4] ZHU Yuan-zhi, YIN Zhi-min, XU Jiang-pin. Microstructural mapping in closed die forging process of superalloy Nimonic 80a valve head[J]. Journal of Alloys&Compounds, 2011, 509(20):6106-6112.
    [5] TIAN Bao-hui, ZICKLER G A, LIND C, PARIS O. Local microstructure and its influence on precipitation behavior in hot deformed Nimonic 80a[J]. Acta Materialia, 2003, 51(14):4149-4160.
    [6] PEREZ M. Microstructural evolution of Nimonic 80a during hot forging under non-isothermal conditions of screw press[J]. Journal of Materials Processing Technology, 2018, 252:45-57.
    [7] PRASAD Y V R K, GEGAL H L, DORAIVELU S M, MALAS J C,MORGAN J T, LARK K A, BARKER D R. Modeling of dynamic material behavior in hot deformation:Forging of Ti-6242[J].Metallurgical Transactions A, 1984, 15(10):1883-1892.
    [8] CHANG Li-li, ZHENG Li-wei. Isothermal compression behavior and constitutive modeling of Ti-5Al-5Mo-5V-1Cr-1Fe alloy[J].Transactions of Nonferrous Metals Society of China, 2018, 28:1114-1122.
    [9] ZHU Yan-chun, ZENG Wei-dong, FENG Fei, SUN Yu, HAN Yuan-fei, ZHOU Yi-gang. Characterization of hot deformation behavior of as-cast TC21 titanium alloy using processing map[J].Materials Science&Engineering A, 2011, 528(3):1757-1763.
    [10] ZHU Rui-hua, LIU Qing, LI Jin-feng, CHEN Yong-lai, ZHANG Xu-hu, ZHENG Zi-qiao. Flow curve correction and processing map of 2050 Al-Li alloy[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(3):404-414.
    [11] LIN Y C, LUO Shun-cun, JIANG Xing-you, TANG Yi, CHEN Ming-song. Hot deformation behavior of a Sr-modified Al-Si-Mg alloy:Constitutive model and processing maps[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(4):592-603.
    [12] CHAMAN-ARA M, EBRAHIMI G R, EZATPOUR H R.Deformation behavior and processing maps of Mg-Zn-Y alloy containing I phase at elevated temperatures[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(4):629-641.
    [13] SUN Cui-cui, LIU Ke, WANG Zhao-hui, LI Shu-bo, DU Xian, DU Wen-bo. Hot deformation behaviors and processing maps of Mg-Zn-Er alloys based on Gleeble–1500 hot compression simulation[J]. Transactions of Nonferrous Metals Society of China,2016, 26(12):3123-3134.
    [14] EZATPOUR H R, SAJJADI S A, SABZEVAR M H, CHAICHI A,EBRAHIMI G R. Processing map and microstructure evaluation of AA6061/Al2O3 nanocomposite at different temperatures[J].Transactions of Nonferrous Metals Society of China, 2017, 27(6):1248-1256.
    [15] ZHANG Yan-qiu, JIANG Shu-yong, ZHAO Ya-nan, LIU Si-wei.Constitutive equation and processing map of equiatomic Ni Ti shape memory alloy under hot plastic deformation[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(8):2152-2161.
    [16] WANG L, LIU F, CHENG J J, ZUO Q, CHEN C F. Hot deformation characteristics and processing map analysis for nickel-based corrosion resistant alloy[J]. Journal of Alloys&Compounds, 2015,623:69-78.
    [17] MOHAMADIZADEH A, ZAREI-HANZAKI A, ABEDI H R.Modified constitutive analysis and activation energy evolution of a low-density steel considering the effects of deformation parameters[J]. Mechanics of Materials, 2016, 95:60-70.
    [18] MOKDAD F, CHEN D L, LIU Z Y, NI D R, XIAO B L, MA Z Y.Three-dimensional processing maps and microstructural evolution of a CNT-reinforced Al-Cu-Mg nanocomposite[J]. Materials Science&Engineering A, 2017, 702:425-437.
    [19] ZHANG Chi-zhang, ZHANG Li-wen, SHEN Wen-fei, XU Qian-hong, CUI Yan. The processing map and microstructure evolution of Ni-Cr-Mo-based C276 superalloy during hot compression[J]. Journal of Alloys&Compounds, 2017, 728:1269-1278.
    [20] MOHAMADIZADEH A, ZAREI-HANZAKI A, ABEDI H R,MEHTONEN S, PORTER D. Hot deformation characterization of duplex low-density steel through 3D processing map development[J].Materials Characterization, 2015, 107:293-301.
    [21] LAI Lin, ZHANG Kui, MA Ming-long, LI Xing-gang, LI Yong-jun,SHI Guo-liang, YUAN Jia-wei. Hot deformation behavior of AZ40magnesium alloy at elevated temperatures[J]. Journal of Wuhan University of Technology—Mater Sci Ed, 2017, 32(6):1470-1475.
    [22] SUN Yu, WAN Zhi-peng, HU Lian-xi, REN Jun-shuai.Characterization of hot processing parameters of powder metallurgy Ti Al-based alloy based on the activation energy map and processing map[J]. Materials&Design, 2015, 86:922-932.
    [23] ZHANG Rui, WANG Dong-jun, LIU Shi-qiu, DING Hong-sheng,YUAN Shi-jian. Hot deformation characterization of lamellar Ti-43Al-2Si alloy fabricated by cold crucible continuous casting[J].Journal of Alloys&Compounds, 2016, 688:542-552.
    [24] GHASEMI E, ZAREI-HANZAKI A, FARABI E, TESAR K, JAGER A, REZAEE M. Flow softening and dynamic recrystallization behavior of BT9 titanium alloy:A study using process map development[J]. Journal of Alloys&Compounds, 2017, 695:1706-1718.
    [25] LI Peng-wei, LI Hui-zhong, LAN Huang, LIANG Xiao-peng, ZHU Ze-xiao. Characterization of hot deformation behavior of AA2014forging aluminum alloy using processing map[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(8):1677-1688.
    [26] QUAN Guo-zheng, ZHANG Le, WANG Xuan, LI Yong-le.Correspondence between microstructural evolution mechanisms and hot processing parameters for Ti-13Nb-13Zr biomedical alloy in comprehensive processing maps[J]. Journal of Alloys&Compounds,2016, 698:178-193.
    [27] QUAN Guo-zheng, ZHAO Lei, CHEN Tao, WANG Yang, MAO Yuan-ping, LV Wen-quan, ZHOU Jie. Identification for the optimal working parameters of as-extruded 42Cr Mo high-strength steel from a large range of strain, strain rate and temperature[J]. Materials Science&Engineering A, 2012, 538(3):364-373.
    [28] PU En-xiang, ZHENG Wen-jie, SONG Zhi-gang, FENG Han,DONG Han. Hot deformation characterization of nickel-based superalloy UNS10276 through processing map and microstructural studies[J]. Journal of Alloys&Compounds, 2017, 694:617-631.
    [29] HE Dao-guang, LIN Y C, HUANG Jian, TANG Yi. EBSD study of microstructural evolution in a nickel-base superalloy during two-pass hot compressive deformation[J]. Advanced Engineering Materials,2018, 20:1800129.
    [30] HE Dao-guang, LIN Y C, CHEN Jian, CHEN Dong-dong, HUANG Jian, TANG Yi, CHEN Ming-song. Microstructural evolution and support vector regression model for an aged Ni-based superalloy during two-stage hot forming with stepped strain rates[J]. Materials&Design, 2018, 154:51-62.
    [31] DU Zhi-hao, JIANG Shao-song, ZHANG Kai-feng. The hot deformation behavior and processing map of Ti-47.5Al-Cr-V alloy[J]. Materials&Design, 2015, 86(7):464-473.
    [32] WU Yun-sheng, ZHANG Mai-cang, XIE Xi-shan, DONG Jian-xin,LIN Fu-sheng, ZHAO Shuang-qun. Hot deformation characteristics and processing map analysis of a new designed nickel-based alloy for700°C A-USC power plant[J]. Journal of Alloys&Compounds,2016, 656:119-131.
    [33] WANG S, HOU L G, LUO J R, ZHANG J S, ZHUANG L Z.Characterization of hot workability in AA 7050 aluminum alloy using activation energy and 3-D processing map[J]. Journal of Materials Processing Technology, 2015, 225:110-121.
    [34] EDALADI K, HORITA Z. Correlations between hardness and atomic bond parameters of pure metals and semi-metals after processing by high-pressure torsion[J]. Scripta Materialia, 2011, 64(2):161-164.
    [35] ZHANG Jing-qi, DI Hong-shuang, WANG Hong-tao, MAO Kun,MA Tian-jun, CAO Yu. Hot deformation behavior of Ti-15-3titanium alloy:A study using processing maps, activation energy map,and Zener–Hollomon parameter map[J]. Journal of Materials Science, 2012, 47(9):4000-4011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700