锂离子电池SEI膜形成机理及化成工艺影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Formation mechanism of solid electrolyte interphase(SEI) and effect of formation process on it in lithium ion batteries
  • 作者:杜强 ; 张一鸣 ; 田爽 ; 刘兆平 ; 张治民
  • 英文作者:DU Qiang;ZHANG Yi-ming;TIAN Shuang;LIU Zhao-ping;ZHANG Zhi-min;Material Engineering Academy,North University of China;Ningbo Institute ofMaterial Technology & Engineering(NIMTE),Chinese Academy of Science;
  • 关键词:锂离子电池 ; SEI膜 ; 化成工艺 ; 硅基负极材料 ; 电池性能
  • 英文关键词:lithium ion battery;;solid electrolyte interface(SEI) film;;formation process;;Si-based anode material;;battery performance
  • 中文刊名:DYJS
  • 英文刊名:Chinese Journal of Power Sources
  • 机构:中北大学材料工程学院;中科院宁波材料与工程技术研究所动力锂电池工程实验室;
  • 出版日期:2018-12-20
  • 出版单位:电源技术
  • 年:2018
  • 期:v.42;No.339
  • 语种:中文;
  • 页:DYJS201812053
  • 页数:5
  • CN:12
  • ISSN:12-1126/TM
  • 分类号:164-168
摘要
固体电解质相界面(SEI)膜是锂离子电池在化成工艺过程中形成的重要物质,它的形成以及性能优劣对锂离子电池的最终性能有着重要影响,同时,锂离子电池生产中的化成工艺直接影响SEI膜的性质优劣。综述了电池负极上SEI膜的形成概况、化成工艺的参数控制对SEI膜形成过程和性质的作用,以及其对锂离子电池性能的影响。Si基负极材料是未来负极材料的重点发展方向,分析了针对Si基负极材料的SEI膜形成所面临的困难与挑战,以及Si基负极的化成工艺参数控制是改进电池生产的必要手段与基础。
        Solid electrolyte interface(SEI) film forms during the formation process, which formation and performance have an important effect on the battery performance, while the formation process parameters influence the film performance directly. In this paper, we summarize the formation of SEI film on anode, the effect of formation process parameters control on the process and properties of SEI film and its further effect on the performance of lithium ion batteries. Since the Si-based anode materials are the main development direction of future anode materials and the Si-based anode materials with stable performance are the base for future study as battery electrode materials, this paper focuses on the difficulties and challenges of SEI formation for Si-based anode materials and analyses that the control of formation process parameters on Si-based anode is the necessary means and basis to improve battery production.
引文
[1]鲁桂梅,谢秋,石永伉,等.锂离子电池化成工艺研究[J].化学工程与装备, 2011(9):46-47.
    [2] AN S J, LI J, DANIEL C, et al. Cheminform abstract:the state of understanding of the lithium-ion battery graphite solid electrolyte interphase(SEI)and its relationship to formation cycling[J]. Carbon, 2016, 105(28):52-76.
    [3] PATIL A, PATIL V, DONG W S, et al. Issue and challenges facing rechargeable thin film lithium batteries[J]. Materials Research Bulletin, 2008, 43(8/9):1913-1942.
    [4] LOEBL A J, OLDHAM C J, DEVINE C K, et al. Solid electrolyte interphase on lithium-ion carbon nanofiber electrodes by atomic and molecular layer deposition[J]. Journal of the Electrochemical Society, 2013, 160(11):A1971-A1978.
    [5] ENDO E. Electron spin resonance study of the electrochemical reduction of electrolyte solutions for lithium secondary batteries[J].Journal of the Electrochemical Society, 1998, 145(11):3757-3764.
    [6] AURBACH D, MARKOVSKY B, WEISSMAN I, et al. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries[J]. Electrochimica Acta, 1999,45(1/2):67-86.
    [7] DEY A N, SULLIVAN B P. The electrochemical decomposition of propylene carbonate on graphite[J]. Journal of the Electrochemical Society, 1970, 117(2):563-571.
    [8] BESENHARD J O, WINTER M, YANG J, et al. Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes[J]. Journal of Power Sources, 1995, 54(2):228-231.
    [9] CHUNG G, KIM H,YU S, et al. Origin of graphite exfoliation an investigation of the important role of solvent cointercalation[J]. Industrial&Engineering Chemistry Research, 2000, 147(12):4391-4398.
    [10] KIN S P, DUIN A C T V, SHENOY V B. Effect of electrolytes on the structure and evolution of the solid electrolyte interphase(SEI)in Li-ion batteries:a molecular dynamics study[J]. Journal of Power Sources, 2011, 196(20):8590-8597.
    [11] CHUSID O, ELY E E, AURBACH D, et al. Electrochemical and spectroscopic studies of carbon electrodes in lithium battery electrolyte systems[J]. Journal of Power Sources, 1993, 43:47-64.
    [12] AURBACH D, GOFER Y, LANGZAM J.Cheminform abstract:the correlation between surface chemistry, surface morphology, and cycling efficiency of lithium electrodes in a few polar aprotic systems[J]. Cheminform, 1989, 136(11):3198-3205.
    [13]周丹,梁风,姚耀春.锂离子电池电解液负极成膜添加剂的研究进展[J].化工进展, 2016, 35(5):1477-1483.
    [14] EINELI Y, MARKOVSKY B, AURBACH D, et al. Cheminform abstract:dependence of the performance of Li-C intercalation anodes for Li-ion secondary batteries on the electrolyte solution composition[J]. Electrochimica Acta, 1995, 26(12):2559-2569.
    [15] DORON A,KIRA G,BORIS M,et al. On the use of vinylene carbonate(VC)as an additive to electrolyte solutions for Li-ion batteries[J]. Electrchim Acta,2002,47(9):1423-1439.
    [16] KIM J S,BYUN D,LEE J K. Electrochemical characteristics of amorphous silicon thin film electrode with fluoroethylene carbonate additive[J]. Current Applied Physics,2014,14(4):596-602.
    [17]郑洪河,张丽娜.无机添加剂Na2SO3对石墨负极性能的改善[J].电源技术,2011,35(1):36-38.
    [18] SHIM J, KOSTECKI R, RICHARDSON T, et al. Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature[J]. Journal of Power Sources, 2002, 112(1):222-230.
    [19] AVERY N R, BLACK K J. Kinetic analysis of capacity fade in lithium/coke half cells[J]. J Power Sources, 1997, 68(2):191-194.
    [20] NING G, HARAN B, POPOV B N, et al. Capacity fade study of lithium-ion batteries cycled at high discharge rates[J]. J Power Sources, 2003, 117(1/2):160-169.
    [21] GOODENOUGH J B, KIM Y.Challenges for rechargeable batteries[J].Journal of Power Sources,2011,196:6688-6694.
    [22]刘根峰.锂离子电池化成控制系统设计与研究[D].河南:河南理工大学,2015:7-9.
    [23] OTA H, KOMINATO A, CHUN W J, et al. Effect of cyclic phosphate additive in non-flammable electrolyte[J]. Journal of Power Sources, 2003(6):393-398.
    [24] DOLLE M, GRUGEON S, BEAUDION B, et al. In situ TEM study of the interface carbon/electrolyte[J]. Journal of Power Sources,2001(3/4):104-106.
    [25] LEE S B, PYUN S I. The effect of electrolyte temperature on the passivity of solid electrolyte interphase formed on a graphite electrode[J]. Carbon, 2002, 40(13):2333-2339.
    [26] HARUTA M, OKUBO T, MASUO Y, et al. Temperature effects on SEI formation and cyclability of Si nanoflake powder anode in the presence of SEI-forming additives[J]. Electrochimica Acta, 2016,224:186-193.
    [27]闻人红雁,毛松科,闻人红权,等.不同荷电态对锂离子电池循环寿命的影响[J].材料科学与工程学报, 2011, 29(5):797-799.
    [28] KIM S P, DUIN A C T V, SHENOY V B. Effect of electrolytes on the structure and evolution of the solid electrolyte interphase(SEI)in Li-ion batteries:a molecular dynamics study[J]. Journal of Power Sources, 2011, 196(20):8590-8597.
    [29]李真真.锂离子电池硅碳负极材料制备与性能表征.[D].宁波:宁波大学,2015.
    [30]梁初,周罗挺,夏阳,等.硅负极材料的储锂机理与电化学改性进展[J].功能材料,2016,47(8):8043-8049.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700