用户名: 密码: 验证码:
Nanomaterials for modulating innate immune cells in cancer immunotherapy
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Nanomaterials for modulating innate immune cells in cancer immunotherapy
  • 作者:Quoc-Viet ; Le ; Geon ; Yang ; Yina ; Wu ; Ho ; Won ; Jang ; Mohammadreza ; Shokouhimehr ; Yu-Kyoung ; Oh
  • 英文作者:Quoc-Viet Le;Geon Yang;Yina Wu;Ho Won Jang;Mohammadreza Shokouhimehr;Yu-Kyoung Oh;College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University;Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University;
  • 英文关键词:Cancer immunotherapy;;Nanomaterials;;Innate immune cells;;Tumor-associated macrophages
  • 中文刊名:AJPC
  • 英文刊名:亚洲药物制剂科学(英文版)
  • 机构:College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University;Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University;
  • 出版日期:2019-01-15
  • 出版单位:Asian Journal of Pharmaceutical Sciences
  • 年:2019
  • 期:v.14
  • 基金:funded by research grants from the Ministry of Science and Future Planning,Republic of Korea (NRF2018R1A2A1A05019203;NRF-2018R1A5A2024425);; the Korean Health Technology R&D Project (No.HI15C2842 ),Ministry of Health & Welfare,Republic of Korea
  • 语种:英文;
  • 页:AJPC201901002
  • 页数:14
  • CN:01
  • ISSN:21-1608/R
  • 分类号:18-31
摘要
Cancer immunotherapy has been intensively investigated in both preclinical and clinical studies. Whereas chemotherapies use cytotoxic drugs to kill tumor cells, cancer immunotherapy is based on the ability of the immune system to fight cancer. Tumors are intimately associated with the immune system: they can suppress the immune response and/or control immune cells to support tumor growth. Immunotherapy has yielded promising results in clinical practice, but some patients show limited responses. This may reflect the complexities of the relationship between a tumor and the immune system. In an effort to improve the current immunotherapies, researchers have exploited nanomaterials in creating new strategies to cure tumors via modulation of the immune system in tumor tissues. Although extensive studies have examined the use of immune checkpoint-based immunotherapy, rather less work has focused on manipulating the innate immune cells.This review examines the recent approaches and challenges in the use of nanomaterials to modulate innate immune cells.
        Cancer immunotherapy has been intensively investigated in both preclinical and clinical studies. Whereas chemotherapies use cytotoxic drugs to kill tumor cells, cancer immunotherapy is based on the ability of the immune system to fight cancer. Tumors are intimately associated with the immune system: they can suppress the immune response and/or control immune cells to support tumor growth. Immunotherapy has yielded promising results in clinical practice, but some patients show limited responses. This may reflect the complexities of the relationship between a tumor and the immune system. In an effort to improve the current immunotherapies, researchers have exploited nanomaterials in creating new strategies to cure tumors via modulation of the immune system in tumor tissues. Although extensive studies have examined the use of immune checkpoint-based immunotherapy, rather less work has focused on manipulating the innate immune cells.This review examines the recent approaches and challenges in the use of nanomaterials to modulate innate immune cells.
引文
[1]De Palma M,Biziato D,Petrova TV.Microenvironmental regulation of tumour angiogenesis.Nat Rev Cancer2017;17(8):457-74.
    [2]Chen DS,Mellman I.Oncology meets immunology:The cancer-immunity cycle.Immunity 2013;39(1):1-10.
    [3]Janssen LME,Ramsay EE,Logsdon CD,Overwijk WW.The immune system in cancer metastasis:friend or foe?JImmunother Cancer 2017;5:79.
    [4]Palucka AK,Coussens LM.The basis of oncoimmunology.Cell 2016;164(6):1233-47.
    [5]Bernardes-Silva M,Anthony DC,Issekutz AC,Perry VH.Recruitment of neutrophils across the blood-brain barrier:the role of E-and P-selectins.J Cereb Blood Flow Metab2001;21(9):1115-24.
    [6]Joice SL,Mydeen F,Couraud PO,et al.Modulation of blood-brain barrier permeability by neutrophils:in vitro and in vivo studies.Brain Res 2009;1298:13-23.
    [7]Kottke T,Evgin L,Shim KG,et al.Subversion of NK cell and TNF-alpha immune surveillance drives tumor recurrence.Cancer Immunol Res 2017;5(11):1029-45.
    [8]Curiel TJ.Immunotherapy:A useful strategy to help combat multidrug resistance.Drug Resist Updat 2012;15(1-2):106-13.
    [9]Jiang W,Von Roemeling CA,Chen Y,et al.Designing nanomedicine for immuno-oncology.Nat Biomed Eng2017;1:1-11.
    [10]Choi YH,Han HK.Nanomedicines:current status and future perspectives in aspect of drug delivery and pharmacokinetics.J Pharm Investig 2018;48(1):43-60.
    [11]Webb SD,Owen MR,Byrne HM,Murdoch C,Lewis CE.Macrophage-based anti-cancer therapy:modelling different modes of tumour targeting.Bull Math Biol 2007;69(5):1747-76.
    [12]Mantovani A,Marchesi F,Malesci A,Laghi L,Allavena P.Tumour-associated macrophages as treatment targets in oncology.Nat Rev Clin Oncol 2017;14(7):399-416.
    [13]Noy R,Pollard JW.Tumor-associated macrophages:From mechanisms to therapy.Immunity 2014;41(1):49-61.
    [14]Zanganeh S,Hutter G,Spitler R,et al.Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues.Nat Nanotechnol 2016;11(11):986-94.
    [15]Song M,Liu T,Shi C,et al.Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-Associated macrophages toward M1-like phenotype and attenuating tumor hypoxia.ACS Nano 2016;10(3):633-47.
    [16]Wang Y,Xu Z,Guo S,et al.Intravenous delivery of siRNAtargeting CD47 effectively inhibits melanoma tumor growth and lung metastasis.Mol Ther 2013;21(10):1919-29.
    [17]Zhan X,Jia L,Niu Y,et al.Targeted depletion of tumour-associated macrophages by an alendronate-glucomannan conjugate for cancer immunotherapy.Biomaterials 2014;35(38):10046-57.
    [18]Griesmann H,Drexel C,Milosevic N,et al.Pharmacological macrophage inhibition decreases metastasis formation in a genetic model of pancreatic cancer.Gut 2017;66(7):1278-85.
    [19]Lu M,Cohen MH,Rieves D,Pazdur R.FDA report:Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease.Am J Hematol 2010;85(5):315-319.
    [20]Sindrilaru A,Peters T,Wieschalka S,et al.An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice.J Clin Invest 2011;121(3):985-97.
    [21]da Silva MC,Breckwoldt MO,Vinchi F,et al.Iron induces anti-tumor activity in tumor-associated macrophages.Front Immunol 2017;8(3):1479.
    [22]Rayahin JE,Buhrman JS,Zhang Y,et al.High and low molecular weight hyaluronic acid differentially influence macrophage activation.ACS Biomater Sci Eng2015;1(7):481-93.
    [23]Liu L,Yi H,He H,Pan H,Cai L,Ma Y.Tumor associated macrophage-targeted microRNA delivery with dual-responsive polypeptide nanovectors for anti-cancer therapy.Biomaterials 2017;134:166-79.
    [24]Watkins SK,Egilmez NK,Suttles J,Stout RD.IL-12 rapidly alters the functional profile of tumor-associated and tumor-infiltrating macrophages in vitro and in vivo.JImmunol 2007;178(3):1357-62.
    [25]Wang Y,Lin YX,Qiao SL,et al.Polymeric nanoparticles enable reversing macrophage in tumor microenvironment for immunotherapy.Biomaterials 2017;112:153-63.
    [26]Williams CB,Yeh ES,Soloff AC.Tumor-associated macrophages:unwitting accomplices in breast cancer malignancy.NPJ Breast Cancer 2016;2:15025.
    [27]Liu YY,Qiao LN,Zhang SP,et al.Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy.Acta Biomater 2017;66:310-24.
    [28]Oishi Y,Manabe I.Macrophages in age-related chronic inflammatory diseases.Npj Aging Mech Dis 2016;2:16018.
    [29]Yuan H,Jiang W,Von Roemeling CA,Qie Y,Liu X,Chen Y,et al.Multivalent bi-specific nanobioconjugate engager for targeted cancer immunotherapy.Nat Nanotechnol2017;12(8):763-9.
    [30]Weiskopf K.Cancer immunotherapy targeting the CD47/SIRPαaxis.Eur J Cancer 2017;76:100-9.
    [31]Owens MA,Horten BC,Da Silva MM.HER2 amplification ratios by fluorescence in situ hybridization and correlation with immunohistochemistry in a cohort of 6556 breast cancer tissues.Clin Breast Cancer 2004;5(1):63-9.
    [32]Nath D,Hartnell A,Happerfield L,et al.Macrophage-tumour cell interactions:Identification of MUC1 on breast cancer cells as a potential counter-receptor for the macrophage-restricted receptor,sialoadhesin.Immunology1999;98(2):213-19.
    [33]She Z,Zhang T,Wang X,et al.The anticancer efficacy of pixantrone-loaded liposomes decorated with sialic acid-octadecylamine conjugate.Biomaterials2014;35(19):5216-25.
    [34]Zhou S,Zhang T,Peng B,et al.Targeted delivery of epirubicin to tumor-associated macrophages by sialic acid-cholesterol conjugate modified liposomes with improved antitumor activity.Int J Pharm 2017;523(1):203-16.
    [35]Sun J,Song Y,Lu M,et al.Evaluation of the antitumor effect of dexamethasone palmitate and doxorubicin co-loaded liposomes modified with a sialic acid-octadecylamine conjugate.Eur J Pharm Sci 2016;93:177-83.
    [36]Kim HM,Kang YM,Ku KB,et al.The severe pathogenicity of alveolar macrophage-depleted ferrets infected with 2009pandemic H1N1 influenza virus.Virology2013;444(1-2):394-403.
    [37]Schneider C,Nobs SP,Heer AK,et al.Alveolar macrophages are essential for protection from respiratory failure and associated morbidity following influenza virus infection.PLoS Pathog 2014;10:e1004053.
    [38]Cheng M,Zhang J,Jiang W,Chen Y,Tian Z.Natural killer cell lines in tumor immunotherapy.Front Med 2012;6(1):56-66.
    [39]Guillerey C,Huntington ND,Smyth MJ.Targeting natural killer cells in cancer immunotherapy.Nat Immunol2016;17(9):1025-36.
    [40]Law AMK,Lim E,Ormandy CJ,Gallego-Ortega D.The innate and adaptive infiltrating immune systems as targets for breast cancer immunotherapy.Endocr Relat Cancer2017;24(4):R123-44.
    [41]Fang F,Xiao W,Tian Z.NK cell-based immunotherapy for cancer.Semin Immunol 2017;31:37-54.
    [42]Iannello A,Debbeche O,Samarani S,Ahmad A.Antiviral NKcell responses in HIV infection:I.NK cell receptor genes as determinants of HIV resistance and progression to AIDS.JLeukoc Biol 2008;84(1):1-26.
    [43]Meraz IM,Majidi M,Cao X,et al.TUSC2 immunogene therapy synergizes with anti-PD-1 through enhanced proliferation and infiltration of natural killer cells in syngeneic Kras-mutant mouse lung cancer models.Cancer Immunol Res 2018;6:163-77.
    [44]Jang ES,Shin JH,Ren G,et al.The manipulation of natural killer cells to target tumor sites using magnetic nanoparticles.Biomaterials 2012;33(22):5584-92.
    [45]Prudkin L,Behrens C,Liu DD,et al.Loss and reduction of Fus1 protein expression is a frequent phenomenon in the pathogenesis of lung cancer.Clin Cancer Res 2008;14(1):41-7.
    [46]Wesolowski R,Markowitz J,Carson WE.Myeloid derived suppressor cells-a new therapeutic target in the treatment of cancer.J Immunother Cancer 2013;1(1):10.
    [47]Sasso MS,Lollo G,Pitorre M,et al.Low dose gemcitabine-loaded lipid nanocapsules target monocytic myeloid-derived suppressor cells and potentiate cancer immunotherapy.Biomaterials 2016;96:47-62.
    [48]Liu H,Mai J,Shen J,et al.A novel DNA aptamer for dual targeting of polymorphonuclear myeloid-derived suppressor cells and tumor cells.Theranostics 2018;8(1):31-44.
    [49]Kong M,Tang J,Qiao Q,et al.Biodegradable hollow mesoporous silica nanoparticles for regulating tumor microenvironment and enhancing antitumor efficiency.Theranostics 2017;7(13):3276-92.
    [50]Suzuki E,Kapoor V,Jassar AS,Kaiser LR,Albelda SM.Gemcitabine selectively eliminates splenic Gr-1+/CD11b+myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity.Clin Cancer Res 2005;11:6713-21.
    [51]Le HK,Graham L,Cha E,Morales JK,Manjili MH,Bear HD.Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice.Int Immunopharmacol 2009;9(7):900-9.
    [52]Mirza N,Fishman M,Fricke I,et al.All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients.Cancer Res 2006;66(18):9299-307.
    [53]Borregaard N.Neutrophils,from marrow to microbes.Immunity 2010;33(5):657-70.
    [54]Chu D,Zhao Q,Yu J,Zhang F,Zhang H,Wang Z.Nanoparticle targeting of neutrophils for improved cancer immunotherapy.Adv Healthc Mater 2016;5(9):1088-93.
    [55]Wang Z,Li J,Cho J,Malik AB.Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils.Nat Nanotechnol 2014;9(3):204-10.
    [56]Chu D,Dong X,Zhao Q,Gu J,Wang Z.Photosensitization priming of tumor microenvironments improves delivery of nanotherapeutics via neutrophil infiltration.Adv Mater2017;29(27):1-7.
    [57]Xue J,Zhao Z,Zhang L,et al.Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence.Nat Nanotechnol 2017;12(3):692-700.
    [58]Luo X,Hu L,Zheng H,et al.Neutrophil-mediated delivery of pixantrone-loaded liposomes decorated with poly(sialic acid)-octadecylamine conjugate for lung cancer treatment.Drug Deliv 2018;25(1):1200-12.
    [59]Coussens LM,Werb Z.Inflammation and cancer.Nature2002;420(6917):860-7.
    [60]Berraondo P,Minute L,Ajona D,Corrales L,Melero I,Pio R.Innate immune mediators in cancer:between defense and resistance.Immunol Rev 2016;274(1):290-306.
    [61]Gajewski TF,Schreiber H,Fu YX.Innate and adaptive immune cells in the tumor microenvironment.Nat Immunol2013;14:1014.
    [62]Pearce EJ,Everts B.Dendritic cell metabolism.Nat Rev Immunol 2015;15(1):18-29.
    [63]Persson CM,Chambers BJ.Plasmacytoid dendritic cell-induced migration and activation of NK cells in vivo.Eur J Immunol 2010;40(8):2155-64.
    [64]Li R,Fang F,Jiang M,et al.STAT3 and NF-κB are simultaneously suppressed in dendritic cells in lung cancer.Sci Rep 2017;7:45395.
    [65]Kuai R,Ochyl LJ,Bahjat KS,Schwendeman A,Moon JJ.Designer vaccine nanodiscs for personalized cancer immunotherapy.Nat Mater 2017;16(4):489-96.
    [66]Wilson DR,Sen R,Sunshine JC,Pardoll DM,Green JJ,Kim YJ.Biodegradable STING agonist nanoparticles for enhanced cancer immunotherapy.Nanomedicine:NBM2018;14(2):237-46.
    [67]Chen Q,Xu L,Liang C,Wang C,Peng R,Liu Z.Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy.Nat Commun 2016;7:13193.
    [68]Corrales L,McWhirter SM,Dubensky TW,Gajewski TF.The host STING pathway at the interface of cancer and immunity.J Clin Invest 2016;126(7):2404-11.
    [69]Luo M,Wang H,Wang Z,et al.A STING-activating nanovaccine for cancer immunotherapy.Nat Nanotechnol2017;12(7):648-54.
    [70]Shim G,Ko S,Kim D,et al.Light-switchable systems for remotely controlled drug delivery.J Control Release2017;267:67-79.
    [71]Guo X,You J.Near infrared light-controlled therapeutic molecules release of nanocarriers in cancer therapy.J Pharm Investig 2017;47(4):297-316.
    [72]Zhou F,Nordquist RE,Chen WR.Photonics immunotherapy-A novel strategy for cancer treatment.JInnov Opt Health Sci 2016;9(1):1-11.
    [73]Ogawa M,Tomita Y,Nakamura Y,et al.Immunogenic cancer cell death selectively induced by near infrared photoimmunotherapy initiates host tumor immunity.Oncotarget 2017;8(6):10425-36.
    [74]Li L,Yang S,Song L,Zeng Y,Gong C.An endogenous vaccine based on fluorophores and multivalent immunoadjuvants regulates tumor micro-environment for synergistic photothermal and immunotherapy.Theranostics2018;8(3):860-73.
    [75]Smits ELJM,Ponsaerts P,Berneman ZN,Van Tendeloo VFI.The use of TLR7 and TLR8 ligands for the enhancement of cancer immunotherapy.Oncologist 2008;13(8):859-75.
    [76]Choi JY,Thapa RK,Yong CS,Kim JO.Nanoparticle-based combination drug delivery systems for synergistic cancer treatment.J Pharm Investig 2016;46(4):325-39.
    [77]Gupta B,Yong CS,Kim JO.Solid matrix-based lipid nanoplatforms as carriers for combinational therapeutics in cancer.J Pharm Investig 2017;47(6):461-73.
    [78]Ma X,Williams RO.Polymeric nanomedicines for poorly soluble drugs in oral delivery systems:an update.J Pharm Investig 2018;48(1):61-75.
    [79]Fogli S,Montis C,Paccosi S,et al.Inorganic nanoparticles as potential regulators of immune response in dendritic cells.Nanomedicine 2017;12(14):1647-60.
    [80]Hoos A,Britten CM.The immuno-oncology framework enabling a new era of cancer therapy a new era of cancer therapy.Oncoimmunology 2012;1(3):334-9.
    [81]Mestas J,Hughes CCW.Of mice and not men:Differences between mouse and human immunology.J Immunol2004;172(5):2731-8.
    [82]Mak IWY,Evaniew N,Ghert M.Lost in translation:Animal models and clinical trials in cancer treatment.Am J Transl Res 2014;6(2):114-18.
    [83]Zschaler J,Schlorke D,Arnhold J.Differences in innate immune response between man and mouse.Crit Rev Immunol 2014;34(5):433-54.
    [84]Tao L,Reese TA.Making mouse models that reflect human immune responses.Trends Immunol 2017;38(3):181-93.
    [85]Ngiow SF,Loi S,Thomas D,Smyth MJ.Mouse models of tumor immunotherapy.Adv Immunol 2016;130:1-24.
    [86]Rongvaux A,Willinger T,Martinek J,et al.Development and function of human innate immune cells in a humanized mouse model.Nat Biotechnol 2014;32(4):364-72.
    [87]Wolchok JD,Chiarion-Sileni V,Gonzalez R,et al.Overall survival with combined nivolumab and ipilimumab in advanced melanoma.N Engl J Med 2017;377(14):1345-56.
    [88]He C,Duan X,Guo N,et al.Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy.Nat Commun 2016;7:12499.
    [89]Wang C,Sun W,Wright G,Wang AZ,Gu Z.Inflammation-triggered cancer immunotherapy by programmed delivery of CpG and anti-PD1.Adv Mater2016;28(40):8912-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700