用户名: 密码: 验证码:
Ti/Cu/Nb作中间层脉冲加压瞬间液相连接TiC金属陶瓷与不锈钢(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Partial transient-liquid-phase bonding of TiC cermet to stainless steel using impulse pressuring with Ti/Cu/Nb interlayer
  • 作者:黄利 ; 盛光敏 ; 李佳 ; 黄光杰 ; 袁新建
  • 英文作者:HUANG Li;SHENG Guang-min;LI Jia;HUANG Guang-jie;YUAN Xin-jian;College of Materials Science and Engineering, Chongqing University;Changan Commercial Vehicle Business Department,China Changan Automobile Group;
  • 关键词:TiC金属陶瓷 ; 不锈钢 ; 瞬间液相连接 ; 脉冲加压 ; 断口 ; 力学性能
  • 英文关键词:TiC cermet;;transient liquid phase;;impulse pressuring;;mechanical property;;fracture
  • 中文刊名:ZNGY
  • 英文刊名:中南大学学报(英文版)
  • 机构:College of Materials Science and Engineering, Chongqing University;Changan Commercial Vehicle Business Department,China Changan Automobile Group;
  • 出版日期:2018-05-15
  • 出版单位:Journal of Central South University
  • 年:2018
  • 期:v.25
  • 基金:Project(51421001)supported by the National Natural Science Foundation of China;; Projects(106112015CDJXZ138803,106112015CDJXY130003)supported by the Fundamental Research Funds for the Central Universities,China
  • 语种:英文;
  • 页:ZNGY201805007
  • 页数:8
  • CN:05
  • ISSN:43-1516/TB
  • 分类号:69-76
摘要
部分瞬间液相焊接(PTLP)综合了钎焊和固相扩散连接的优点,且对连接母材表面粗糙度比传统固相连接相对较低,因此在陶瓷和金属异种材料连接方向上具有较大的优势。采用Ti–Cu–Nb金属中间层,对TiC金属陶瓷与06Cr19Ni10不锈钢进行PTLP连接试验。通过SEM、EDS、XRD和拉伸试验等方法,研究了活性元素中间层、工艺参数对TiC/Ti CuNb/06Cr19Ni10瞬间液相焊接头性能与界面微观结构的影响规律。结果表明,在连接温度885°C、脉冲压力2~10 MPa的工艺条件下保温5 min时接头剪切强度达到最大值(~106.7 MPa)。微观组织表征发现,在TiC金属陶瓷一侧,Ti–Cu层在高于共晶点的连接温度时发生熔化,与TiC金属陶瓷、核心金属层Nb产生界面反应;而在304SS侧,Nb与304SS进行固相扩散,形成具有固相扩散特征的连接结构,连接后界面形成06Cr19Ni10/σ/Nb/CuTi/CuTi2/α+βTi/Ti C过渡结构。连接接头的裂纹沿着Ti–Cu金属化合物层向TiC陶瓷母材扩展,呈脆性解理断裂特征。
        Partial transient liquid phase(PTLP) bonding of Ti C cermet to 06Cr19Ni10 stainless steel was carried out. Impulse pressuring was used to reduce the bonding time, and a Ti/Cu/Nb interlayer was employed to alleviate the detrimental effect of interfacial reaction products on the bonding strength. Successful bonding was achieved at 885 °C under a pulsed pressure of 2–10 MPa within durations in the range of 2–8 min, which was notably shortened in comparison with conventional PTLP bonding. Microstructure characterization revealed the σ phase with a limit solubility of Nb, a sequence of Ti–Cu intermetallic phases and solid solutions of Ni and Cu in α+β Ti in the reaction zone. The maximum shear strength of 106.7 MPa was obtained when the joint was bonded for 5 min, indicating that a robust metallurgical bonding was achieved. Upon shear loading, the joints fractured along the Ti–Cu intermetallics interface and spread to the interior of Ti C cermet in a brittle cleavage manner.
引文
[1]LIU N,XU Y D,LI H.Effect of nano-micro Ti N addition on the microstructure and mechanical properties of Ti C based cermets[J].J Eur Ceram Soc,2002,22(13):2409–2414.
    [2]SUN K N,YIN Y S,LI A M.Intermetallics/ceramic matrix composite[M].Beijing:China Machine Press,2002.(in Chinese)
    [3]TRAVESSA D,FERRANTE M,DEN O G.Diffusion bonding of aluminium oxide to stainless steel using stress relief interlayers[J].Mater Sci Eng A,2002,337(1):287–296.
    [4]SHEN X Q,LI Y J,PUTCHKOV U A.Finite-element analysis of residual stresses in Al2O3–Ti C/W18Cr4V diffusion bonded joints[J].Comp Mater Sci,2009,45(2):407–410.
    [5]YE D M,XIONG W H.Vacuum brazing of Ti(C,N)based cermets to 45 Steel[J].Rare Metal Mat Eng,2008,37(7):1281–1284.
    [6]PIERSON H O.Handbook of refractory carbides&nitrides:Properties,characteristics,processing and apps[M].William Andrew,1996.
    [7]GOMEZ-DE-SALAZAR J M,BARRENA M I.Dissimilar fusion welding of AA7020/MMC reinforced with Al2O3particles,microstructure and mechanical properties[J].Mater Sci Eng A,2003,352(1):162–168.
    [8]BARRENA M I,GOMEZ-DE-SALAZAR J M,MATESANZ L.Ni–Cu alloy for diffusion bonding cermet/steel in air[J].Mater Lett,2009,63(24):2142–2145.
    [9]LI Z R,FENG J C,CAO J.Vacuum diffusion bonding of Ti B2 cermet to Ti Al based alloys[J].Mater Sci Tech-Lond,2004,20(12):1666–1668.
    [10]HUANG W Q,LI Y,WANG J.Microstructure and fracture of Ti C-Al2O3/W18Cr4V diffusion bonded joint[J].Kovove Mater,2010,48:227–231.
    [11]CHEN Z,CAO M S,ZHAO Q Z.Interfacial microstructure and strength of partial transient liquid-phase bonding of silicon nitride with Ti/Ni multi-interlayer[J].Mater Sci Eng A,2004,380(1):394–401.
    [12]ZHENG C,LOU H,FEI Z.Partial transient liquid-phase bonding of Si3N4 with Ti/Cu/Ni multi-interlayers[J].J Mater Sci Lett,1997,16(24):2026–2028.
    [13]WANG G,LANNUTTI J J.Chemical thermodynamics as a predictive tool in the reactive metal brazing of ceramics[J].Metall Mater Trans A,1995,26(6):1499–1505.
    [14]MASSALSKI T B,OKAMOTO H,SUBRAMANIAN P R.Binary alloy phase diagrams[M].Materials Park,OH:ASM International,1990.
    [15]YANG M,ZOU Z D,SONG S L.Effect of interlayer thickness on strength and fracture of Si3N4 and Inconel600joint[J].Key Eng Mater,2005,297:2435–2440.
    [16]MARKS R A,SUGAR J D,GLAESER A M.Ceramic joining IV.Effects of processing conditions on the properties of alumina joined via Cu/Nb/Cu interlayers[J].J Mater Sci,2001,36(23):5609–5624.
    [17]SHACKELFORD J F,ALEXANDER W.CRC materials science and engineering handbook[M].CRC Press,2010.
    [18]HAN J,SHENG G M,ZHOU X L.Pulse pressuring diffusion bonding of Ti alloy/austenite stainless steel processed by surface self-nanocrystallization[J].ISIJ Int,2009,49(1):86–91.
    [19]SUN X J,GU J L,BAI B Z,CHEN N P.Fabrication of submicron grained titanium alloy by compressive deformation[J].Acta Metall Sin-Engl,2009,13(2):638–644.
    [20]LIU G M,ZOU G S,WU A P.Improvements of the Si3N4brazed joints with intermetallics[J].Mater Sci Eng A,2006,415(1):213–218.
    [21]XU H,DU Y,HUANG B.Phase equilibria of the Cu–Nb–Ti system at 850°C[J].J Alloy Compd,2005,399(1):92–95.
    [22]KUNDU S,CHATTERJEE S.Characterization of diffusion bonded joint between titanium and 304 stainless steel using a Ni interlayer[J].Mater Charact,2008,59(5):631–637.
    [23]ZDANIEWSKI W A,CONWAY J C,KIRCHNER H P.Effect of joint thickness and residual stresses on the properties of ceramic adhesive joints:II,Experimental results[J].J Am Ceram Soc,1987,70(2):110–118.
    [24]BLUGAN G,KUEBLER J,BISSIG V.Brazing of silicon nitride ceramic composite to steel using Si C-particlereinforced active brazing alloy[J].Ceram Int,2007,33(6):1033–1039.
    [25]SINGH M,MARTINEZ F J,ASTHANA R.Interfacial characterization of silicon nitride/silicon nitride joints brazed using Cu-base active metal interlayers[J].Ceram Int,2012,38(4):2793–2802.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700