用户名: 密码: 验证码:
高超声速滑翔再入定向定速打击末制导算法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Terminal Guidance with Impact Angle Constraint and Deceleration Control for a Hypersonic Glide-Reentry Vehicle
  • 作者:王荣刚 ; 许志 ; 唐硕 ; 贾生伟
  • 英文作者:WANG Rong-gang;XU Zhi;TANG Shuo;JIA Sheng-wei;Northwestern Polytechnical University,School of Astronautics;Key Laboratory of Fundamental Science for National Defense-Advanced Design Technology of Flight Vehicle,Nanjing University of Aeronautics and Astronautics;China Academy of Launch Vehicle Technology;
  • 关键词:高超声速滑翔飞行器 ; 末制导 ; 减速控制 ; 落角约束
  • 英文关键词:Hypersonic glide-reentry vehicle;;Terminal guidance;;Impact angle control;;Deceleration control
  • 中文刊名:YHXB
  • 英文刊名:Journal of Astronautics
  • 机构:西北工业大学航天学院;南京航空航天大学飞行器先进设计技术国防重点学科实验室;中国运载火箭技术研究院;
  • 出版日期:2019-06-30
  • 出版单位:宇航学报
  • 年:2019
  • 期:v.40
  • 基金:国防基础科研项目(A042013102);; 国家自然科学基金项目(11672235)
  • 语种:中文;
  • 页:YHXB201906006
  • 页数:11
  • CN:06
  • ISSN:11-2053/V
  • 分类号:49-59
摘要
以具有终端落角和落速约束的小升阻比短距滑翔高超声速再入打击飞行器为研究对象,通过引入弹道调整段来实现对飞行器的初步大幅度减速,并使其满足中末制导交班条件,以解决飞行器捕获目标后难以直接对其进行定向定速打击的问题。首先设计了一种变角偏差反馈系数的偏置比例制导律,解决了末端攻击段弹道下压困难以及导引头视场稳定跟踪等问题。在此基础上,建立了一种基于攻角和弹道倾角估计的末端减速指令生成方法,有效解决了基于理想速度曲线减速控制方法精度不足的问题。因此,数值仿真结果表明该制导方案能够有效控制飞行器终端落角和落速,并具有较高的制导精度。
        A short-range low-lift-to-drag ratio hypersonic glide-reentry vehicle with impact angle constraint and deceleration control is selected as the object of study. By introducing a trajectory adjustment phase to make the vehicle satisfy the capturability condition of the terminal guidance phase,the problem of the hypersonic glide-reentry vehicle which is difficult to attack the target directly with impact angle constraint and deceleration control is solved. In order to push down the trajectory and maintain the field of view,a biased proportional guidance law is proposed by adjusting the coefficient of the error feedback. On this foundation,a velocity control order generation method is established based on the estimation of the angle of attack and flight-path angle,to solve the problem of the ideal velocity control order generation method which has a low accuracy. Extensive simulations are conducted to verify the design features of the algorithm.
引文
[1] Mondal S,Padhi R. Angle-constrained terminal guidance using quasi-spectral model predictive static programming[J]. Journal of Guidance,Control,and Dynamics,2018,41(3):779-787.
    [2]黄诘,张友安,刘永新.一种有撞击角和视场角约束的运动目标的偏置比例导引算法[J].宇航学报,2016,37(2):195-202.[Huang Jie, Zhang You-an, Liu Yong-xin. A biased proportional guidance algorithm for moving target with impact angle and field-of-view constraints[J]. Journal of Astronautics,2016,37(2):195-202.]
    [3]顾家立,陈万春.一种带导引头视角和落角约束的导引方法[J].宇航学报,2013,34(6):782-787.[Gu Jia-li,Chen Wan-chun. Homing guidance with look angle and impact angle constraints[J]. Journal of Astronautics,2013,34(6):782-787.]
    [4]刁兆师,单家元.带末端攻击角约束连续有限时间稳定制导律[J].宇航学报,2014,35(10):1141-1149.[Diao Zhaoshi,Shan Jia-yuan. Continuous finite time stabilization guidance law for terminal impact angle constrained flight trajectory[J].Journal of Astronautics,2014,35(10):1141-1149.]
    [5] Erer K S,Merttopcuoglu O. Indirect impact angle control against stationary targets using biased pure proportional navigation[J].Journal of Guidance,Control,and Dynamics,2012,35(2):700-703.
    [6] Lee C H,Kim T H,Tahk M J. Interception angle control guidance using proportional navigation with error feedback[J].Journal of Guidance,Control,and Dynamics,2013,36(5):1556-1561.
    [7] Lu P,Doman D B,Schierman J D. Adaptive terminal guidance for hypervelocity impact in specified direction[J]. Journal of Guidance,Control,and Dynamics,2006,29(2):269-278.
    [8] Ratnoo A,Ghose D. Impact angle constrained interception of stationary targets[J]. Journal of Guidance, Control, and Dynamics,2008,31(6):1816-1821.
    [9] Lu P. Entry guidance:a unified method[J]. Journal of Guidance,Control,and Dynamics,2014,37(3):713-728.
    [10] Xue S B,Lu P. Constrained predictor-corrector entry guidance[J]. Journal of Guidance,Control,and Dynamics,2010,33(4):1273-1281.
    [11] Kluever C A,Neal C A. Approach and landing range guidance for an unpowered reusable launch vehicle[J]. Journal of Guidance,Control,and Dynamics,2015,38(11):2057-2066.
    [12]刘鹏云,孙瑞胜,李伟明,等.基于锥形运动的制导火箭速度控制导引律设计[J].航空学报,2014,35(4):933-941.[Liu Peng-yun,Sun Rui-sheng,Li Wei-ming,et al. A coning motion-based guidance law for guided rocket with velocity[J].Acta Aeronautics et Astronautica Sinica,2014,35(4):933-941.]
    [13]宋加洪.基于模拟飞行的再入飞行器速度控制方法.导弹与航天运载技术[J]. 2012,2:4-7.[Song Jia-hong. A velocity control method of the reentry vehicle based on flight simulation[J]. Missiles and Space Vehicles,2012,2:1-7.]
    [14]李强,夏群利,何镜,等.基于大气预估的再入飞行器机动减速制导方法[J].兵工学报,2013,34(9):1091-1096.[Li Qiang,Xia Qun-li,He Jing,et al. Maneuvering-deceleration guidance algorithm based on atmosphere estimation for reentry vehicle[J]. Acta Armamentarii,2013,34(9):1091-1096.]
    [15] Wang L L,Yu J Q,Mei Y S,et al. Guidance law with deceleration control for moving-mass reentry warhead[J]. Journal of Aerospace Enginerring,2016,230(13):2639-2653.
    [16]赵汉元,陈克俊.再入机动弹头的速度控制[J].国防科技大学学报,1993,15(2):11-17.[Zhao Han-yuan,Chen Kejun. Velocity control of maneuvering reentry vehicle[J]. Journal of National University of Defense Technology,15(2):11-17.]
    [17]赵汉元.飞行器再入动力学和制导[M].长沙:国防科学技术大学出版社,1997:214-245.
    [18]乔浩,李新国,郑玺.助推滑翔导弹对地攻击快速下压弹道设计[J].弹道学报,2016,28(3):7-11.[Qiao Hao,Li Xinguo,Zheng Xi. Design of fast down-pressuring trajectory for ground attack of boost-glide missile[J]. Journal of Ballistics,2016,28(3):7-11.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700