用户名: 密码: 验证码:
Simultaneous size characterization and mass quantification of the in vivo core-biocorona structure and dissolved species of silver nanoparticles
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simultaneous size characterization and mass quantification of the in vivo core-biocorona structure and dissolved species of silver nanoparticles
  • 作者:Lijie ; Dong ; Xiaoxia ; Zhou ; Ligang ; Hu ; Yongguang ; Yin ; Jingfu ; Liu
  • 英文作者:Lijie Dong;Xiaoxia Zhou;Ligang Hu;Yongguang Yin;Jingfu Liu;State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 英文关键词:Silver nanoparticle;;In vivo study;;Size characterization;;Mass quantification;;Size exclusion chromatography
  • 中文刊名:HJKB
  • 英文刊名:环境科学学报(英文版)
  • 机构:State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 出版日期:2018-01-15
  • 出版单位:Journal of Environmental Sciences
  • 年:2018
  • 期:v.63
  • 基金:supported by the National Key Research and Development Program of China (No. 2016YFA0203102);; the National Natural Science Foundation of China (Nos. 21337004, 21620102008);; the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB14020101)
  • 语种:英文;
  • 页:HJKB201801022
  • 页数:9
  • CN:01
  • ISSN:11-2629/X
  • 分类号:230-238
摘要
Size characterization of silver nanoparticles with biomolecule corona(AgNP@BCs) and mass quantification of various silver species in organisms are essential for understanding the in vivo transformation of Ag NPs. Herein, we report a versatile method that allows simultaneous determination of the size of AgNP@BCs and mass concentration of various silver species in rat liver. Both particulate and ionic silver were extracted in their original forms from the organs by alkaline digestion, and analyzed by size exclusion chromatography combined with inductively coupled plasma mass spectrometry(SEC-ICP-MS). While the silver mass concentrations were quantified by ICP-MS with a detection limit of 0.1 μg/g, the effective diameter of AgNP@BCs was determined based on the retention time in SEC separation with size discrimination of 0.6-3.3 nm. More importantly, we found that the BC thickness of AgNP@BCs is core size independent, and a linear correlation was found between the effective diameter and core diameter of AgNP@BCs in extracted tissues, which was used to calibrate the core diameter with standard deviations in the range of 0.2-1.1 nm. The utility of this strategy was demonstrated through application to rat livers in vivo. Our method is powerful for investigating the transformation mechanism of Ag NPs in vivo.
        Size characterization of silver nanoparticles with biomolecule corona(AgNP@BCs) and mass quantification of various silver species in organisms are essential for understanding the in vivo transformation of Ag NPs. Herein, we report a versatile method that allows simultaneous determination of the size of AgNP@BCs and mass concentration of various silver species in rat liver. Both particulate and ionic silver were extracted in their original forms from the organs by alkaline digestion, and analyzed by size exclusion chromatography combined with inductively coupled plasma mass spectrometry(SEC-ICP-MS). While the silver mass concentrations were quantified by ICP-MS with a detection limit of 0.1 μg/g, the effective diameter of AgNP@BCs was determined based on the retention time in SEC separation with size discrimination of 0.6-3.3 nm. More importantly, we found that the BC thickness of AgNP@BCs is core size independent, and a linear correlation was found between the effective diameter and core diameter of AgNP@BCs in extracted tissues, which was used to calibrate the core diameter with standard deviations in the range of 0.2-1.1 nm. The utility of this strategy was demonstrated through application to rat livers in vivo. Our method is powerful for investigating the transformation mechanism of Ag NPs in vivo.
引文
Ansari,M.A.,Shukla,A.K.,Oves,M.,Khan,H.M.,2016.Electron microscopic ultrastructural study on the toxicological effects of Ag NPs on the liver,kidney and spleen tissues of albino mice.Environ.Toxicol.Pharmacol.44,30-43.
    Arslan,Z.,Ates,M.,Mc Duffy,W.,Agachan,M.S.,Farah,I.O.,Yu,W.W.,Bednar,A.J.,2011.Probing metabolic stability of Cd Se nanoparticles:alkaline extraction of free cadmium from liver and kidney samples of rats exposed to Cd Se nanoparticles.J.Hazard.Mater.192,192-199.
    Asare,N.,Duale,N.,Slagsvold,H.H.,Lindeman,B.,Olsen,A.K.,Gromadzka-Ostrowska,J.,Meczynska-Wielgosz,S.,Kruszewski,M.,Brunborg,G.,Instanes,C.,2016.Genotoxicity and gene expression modulation of silver and titanium dioxide nanoparticles in mice.Nanotoxicology 10,312-321.
    Asha Rani,P.V.,Mun,G.L.K.,Hande,M.P.,Valiyaveettil,S.,2009.Cytotoxicity and genotoxicity of silver nanoparticles in human cells.ACS Nano 3,279-290.
    Austin,C.A.,Hinkley,G.K.,Mishra,A.R.,Zhang,Q.,Umbreit,T.H.,Betz,M.W.,Wildt,B.E.,Casey,B.J.,Francke-Carroll,S.,Hussain,S.M.,Roberts,S.M.,Brown,K.M.,Goering,P.L.,2016.Distribution and accumulation of 10 nm silver nanoparticles in maternal tissues and visceral yolk sac of pregnant mice,and a potential effect on embryo growth.Nanotoxicology 10,654-661.
    Chrastina,A.,Schnitzer,J.E.,2010.Iodine-125 radiolabeling of silver nanoparticles for in vivo SPECT imaging.Int.J.Nanomedicine 5,653-659.
    De Matteis,V.,Malvindi,M.A.,Galeone,A.,Brunetti,V.,De Luca,E.,Kote,S.,Kshirsagar,P.,Sabella,S.,Bardi,G.,Pompa,P.P.,2015.Negligible particle-specific toxicity mechanism of silver nanoparticles:the role of Ag+ion release in the cytosol.Nanomed.Nanotechnol.Biol.Med.11,731-739.
    Docter,D.,Westmeier,D.,Markiewicz,M.,Stolte,S.,Knauer,S.K.,Stauber,R.H.,2015.The nanoparticle biomolecule corona:lessons learned-challenge accepted?Chem.Soc.Rev.44,6094-6121.
    Gliga,A.R.,Skoglund,S.,Wallinder,I.O.,Fadeel,B.,Karlsson,H.L.,2014.Size-dependent cytotoxicity of silver nanoparticles in human lung cells:the role of cellular uptake,agglomeration and Ag release.Part.Fibre.Toxicol.11,11.
    Gonzalez,C.,Rosas-Hernandez,H.,Ramirez-Lee,M.A.,Salazar-Garcia,S.,Ali,S.F.,2016.Role of silver nanoparticles(Ag NPs)on the cardiovascular system.Arch.Toxicol.90,493-511.
    Gray,E.P.,Coleman,J.G.,Bednar,A.J.,Kennedy,A.J.,Ranville,J.F.,Higgins,C.P.,2013.Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry.Environ.Sci.Technol.47,14315-14323.
    Gromadzka-Ostrowska,J.,Dziendzikowska,K.,Lankoff,A.,Dobrzynska,M.,Instanes,C.,Brunborg,G.,Gajowik,A.,Radzikowska,J.,Wojewodzka,M.,Kruszewski,M.,2012.Silver nanoparticles effects on epididymal sperm in rats.Toxicol.Lett.214,251-258.
    Hedberg,J.,Skoglund,S.,Karlsson,M.E.,Wold,S.,Wallinder,I.O.,Hedberg,Y.,2014.Sequential studies of silver released from silver nanoparticles in aqueous media simulating sweat,laundry detergent solutions and surface water.Environ.Sci.Technol.48,7314-7322.
    Jimenez-Lamana,J.,Laborda,F.,Bolea,E.,Abad-Alvaro,I.,Castillo,J.R.,Bianga,J.,He,M.,Bierla,K.,Mounicou,S.,Ouerdane,L.,Gaillet,S.,Rouanet,J.M.,Szpunar,J.,2014.An insight into silver nanoparticles bioavailability in rats.Metallomics 6,2242-2249.
    Lankveld,D.P.,Oomen,A.G.,Krystek,P.,Neigh,A.,Troost-de Jong,A.,Noorlander,C.W.,Van Eijkeren,J.C.,Geertsma,R.E.,De Jong,W.H.,2010.The kinetics of the tissue distribution of silver nanoparticles of different sizes.Biomaterials 31,8350-8361.
    Lee,S.,Bi,X.Y.,Reed,R.B.,Ranville,J.F.,Herckes,P.,Westerhoff,P.,2014.Nanoparticle size detection limits by single particle ICP-MS for 40 elements.Environ.Sci.Technol.48,10291-10300.
    Liu,W.,Worms,I.A.M.,Herlin-Boime,N.,Truffier-Boutry,D.,Michaud-Soret,I.,Mintz,E.,Vidaud,C.,Rollin-Genetet,F.,2017.Interaction of silver nanoparticles with metallothionein and ceruloplasmin:impact on metal substitution by Ag(I),corona formation and enzymatic activity.Nanoscale 9,6581-6594.
    Liu,W.,Wu,Y.A.,Wang,C.,Li,H.C.,Wang,T.,Liao,C.Y.,Cui,L.,Zhou,Q.F.,Yan,B.,Jiang,G.B.,2010.Impact of silver nanoparticles on human cells:effect of particle size.Nanotoxicology 4,319-330.
    Loeschner,K.,Brabrand,M.S.,Sloth,J.J.,Larsen,E.H.,2014.Use of alkaline or enzymatic sample pretreatment prior to characterization of gold nanoparticles in animal tissue by single-particle ICPMS.Anal.Bioanal.Chem.406,3845-3851.
    Mishra,A.R.,Zheng,J.W.,Tang,X.,Goering,P.L.,2016.Silver nanoparticle-induced autophagic-lysosomal disruption and NLRP3-inflammasome activation in Hep G2 cells is size-dependent.Toxicol.Sci.150,473-487.
    Mudalige,T.K.,Qu,H.,Linder,S.W.,2015.Asymmetric flow-field flow fractionation hyphenated ICP-MS as an alternative to cloud point extraction for quantification of silver nanoparticles and silver speciation:application for nanoparticles with a protein corona.Anal.Chem.87,7395-7401.
    Nóbrega,J.A.,Santos,M.C.,de Sousa,R.A.,Cadore,S.,Barnes,R.M.,Tatro,M.,2006.Sample preparation in alkaline media.Spectrochim.Acta B At.Spectrosc.61,465-495.
    Nowack,B.,Krug,H.F.,Height,M.,2011.120 years of nanosilver history:implications for policy makers.Environ.Sci.Technol.45,1177-1183.
    Osborne,O.J.,Lin,S.J.,Chang,C.H.,Ji,Z.X.,Yu,X.C.,Wang,X.,Lin,S.,Xia,T.,Nel,A.E.,2015.Organ-specific and size-dependent Ag nanoparticle toxicity in gills and intestines of adult zebrafish.ACS Nano 9,9573-9584.
    Paluri,S.L.A.,Ryan,J.D.,Lam,N.H.,Nepal,D.,Sizemore,I.E.,2017.Analytical-based methodologies for examining the in vitro absorption,distribution,metabolism,and elimination(ADME)of silver nanoparticles.Small 1603093.
    Park,K.,Lee,Y.,2013.The stability of citrate-capped silver nanoparticles in isotonic glucose solution for intravenous injection.J.Toxicol.Environ.Health A 76,1236-1245.
    Picó,Y.,2016.Challenges in the determination of engineered nanomaterials in foods.Tr AC Trends Anal.Chem.84,149-159.
    Piella,J.,Bastús,N.G.,Puntes,V.,2017.Size-dependent protein-nanoparticle interactions in citrate-stabilized gold nanoparticles:the emergence of the protein corona.Bioconjugate Chem.28,88-97.
    Radziuk,D.,Grigoriev,D.,Zhang,W.,Su,D.S.,Mohwald,H.,Shchukin,D.,2010.Ultrasound-assisted fusion of preformed gold nanoparticles.J.Phys.Chem.C 114,1835-1843.
    Recordati,C.,De Maglie,M.,Bianchessi,S.,Argentiere,S.,Cella,C.,Mattiello,S.,Cubadda,F.,Aureli,F.,D'Amato,M.,Raggi,A.,Lenardi,C.,Milani,P.,Scanziani,E.,2016.Tissue distribution and acute toxicity of silver after single intravenous administration in mice:Nano-specific and size-dependent effects.Part.Fibre.Toxicol.13,12.
    Rocker,C.,Potzl,M.,Zhang,F.,Parak,W.J.,Nienhaus,G.U.,2009.Aquantitative fluorescence study of protein monolayer formation on colloidal nanoparticles.Nat.Nanotechnol.4,577-580.
    Schmidt,B.,Loeschner,K.,Hadrup,N.,Mortensen,A.,Sloth,J.J.,Koch,C.B.,Larsen,E.H.,2011.Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry.Anal.Chem.83,2461-2468.
    Sperling,R.A.,Liedl,T.,Duhr,S.,Kudera,S.,Zanella,M.,Lin,C.A.J.,Chang,W.H.,Braun,D.,Parak,W.J.,2007.Size determination of(bio)conjugated water-soluble colloidal nanoparticles:a comparison of different techniques.J.Phys.Chem.C 111,11552-11559.
    Su,C.K.,Liu,H.T.,Hsia,S.C.,Sun,Y.C.,2014.Quantitatively profiling the dissolution and redistribution of silver nanoparticles in living rats using a knotted reactor-based differentiation scheme.Anal.Chem.86,8267-8274.
    van der Zande,M.,Vandebriel,R.J.,Doren,E.V.,Kramer,E.,Rivera,Z.H.,Serrano-Rojero,C.S.,Gremmer,E.R.,Mast,J.,Peters,R.J.B.,Hollman,P.C.H.,Hendriksen,P.J.M.,Marvin,H.J.P.,Peijnenburg,A.A.C.M.,Bouwmeester,H.,2012.Distribution,elimination,and toxicity of silver nanoparticles and silver ions in rats after28-day oral exposure.ACS Nano 6,7427-7442.
    Veronesi,G.,Deniaud,A.,Gallon,T.,Jouneau,P.H.,Villanova,J.,Delangle,P.,Carriere,M.,Kieffer,I.,Charbonnier,P.,Mintz,E.,Michaud-Soret,I.,2016.Visualization,quantification and coordination of Ag+ions released from silver nanoparticles in hepatocytes.Nanoscale 8,17012-17021.
    Wang,X.,Ji,Z.X.,Chang,C.H.,Zhang,H.Y.,Wang,M.Y.,Liao,Y.P.,Lin,S.J.,Meng,H.,Li,R.B.,Sun,B.B.,Winkle,L.V.,Pinkerton,K.E.,Zink,J.I.,Xia,T.,Nel,A.E.,2014.Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential.Small 10,385-398.
    Wang,Z.,Xia,T.,Liu,S.J.,2015.Mechanisms of nanosilver-induced toxicological effects:more attention should be paid to its sublethal effects.Nanoscale 7,7470-7481.
    Yu,S.J.,Chao,J.B.,Sun,J.,Yin,Y.G.,Liu,J.F.,Jiang,G.B.,2013.Quantification of the uptake of silver nanoparticles and ions to Hep G2 cells.Environ.Sci.Technol.47,3268-3274.
    Zhou,X.X.,Liu,J.F.,Jiang,G.B.,2017.Elemental mass size distribution for characterization,quantification and identification of trace nanoparticles in serum and environmental waters.Environ.Sci.Technol.51,3892-3901.
    Zhou,X.X.,Liu,R.,Liu,J.F.,2014.Rapid chromatographic separation of dissoluble Ag(I)and silver-containing nanoparticles of 1-100 nanometer in antibacterial products and environmental waters.Environ.Sci.Technol.48,14516-14524.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700