用户名: 密码: 验证码:
激光选区熔化技术制造医用多孔金属材料研究现状
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Status of Biomedical Porous Metal Materials Fabricated by Selective Laser Melting
  • 作者:吴先哲 ; 刘红旗 ; 王富友 ; 何鹏
  • 英文作者:WU Xianzhe;LIU Hongqi;WANG Fuyou;HE Peng;Chongqing Institute of Optics and Mechanics;China Academy of Machinery Science and Technology Group Co.,Ltd.;Army Medical University;
  • 关键词:增材制造 ; 激光选区熔化 ; 医用金属材料 ; 多孔结构
  • 英文关键词:additive manufacturing;;SLM biomedical metallic materials;;porous structure
  • 中文刊名:JGZZ
  • 英文刊名:Laser Journal
  • 机构:重庆光学机械研究所;机械科学研究总院集团有限公司;陆军军医大学;
  • 出版日期:2018-11-25
  • 出版单位:激光杂志
  • 年:2018
  • 期:v.39;No.254
  • 基金:重庆市科技研发基地建设计划(国际科技合作)项目(No.cstc2014gjhz110003);; 国家重点研发计划课题(No.2016YFB1101400)
  • 语种:中文;
  • 页:JGZZ201811002
  • 页数:10
  • CN:11
  • ISSN:50-1085/TN
  • 分类号:12-21
摘要
多孔金属材料被视为医学植入体的理想材料。增材制造技术可以实现高精度复杂结构零件个性化制造,为直接制造医用多孔金属材料植入体提供了完美的解决方案。本文介绍了目前激光选区熔化技术制造316L不锈钢、Co基合金、钛及钛合金、Ta等几种典型医用多孔金属材料的研究情况,包括多孔结构设计、力学性能研究、生物相容性研究等方面的研究进展。最后简单评述展望了增材制造技术打印医用多孔钽材料的研究趋势。
        Porous metal materials are considered ideal materials for medical implants. Additive manufacturing technology can realize complex structure parts personalized manufacturing with high precision,and provide a perfect solution for directly manufacturing medical porous metal implants. In this paper,the recent progress in the manufacture of typical medical porous metal materials such as 316 L stainless steel,Co-based alloy,titanium and titanium alloy,Ta etc. by selective laser melting is reviewed,including porous structure design,mechanical properties and biocompatibility. Finally,we briefly review the research trend of printing porous medical tantalum materials by adding manufacturing technology.
引文
[1] BRETT P. Conner,GUHA P. Manogharan,ASHLEY N.Martof,LAUREN M. Rodomsky,CAITLYN M. Rodomsky,DAKESHA C. Jordan,JAMES W. Limperos. Making sense of 3-D printing:Creating a map of additive manufacturing products and services[J]. Additive Manufacturing,2014,12:1-4.
    [2] GIDEON N. Levy,RALF Schindel,J.P. Kruth. rapid manufacturing and rapid tooling with layer manufacturing(lm)technologies,state of the art and future perspectives[J].CIRP Annals-Manufacturing Technology,2003,52(2):17-19.
    [3] ZIYAUR rahman,SOGRA f. barakh ali,TANIL ozkan. Additive Manufacturing with 3D Printing:Progress from Bench to Bedside[J]. Crossref,2018(20):101.
    [4] WANG M,LIN X,HUANG W. Laser additive manufacture of titanium alloys[J]. Taylor& Francis,2016,31(2):90-97.
    [5] WILLIAM E. Frazier. Metal Additive Manufacturing:A Review. Journal of Materials Engineering and Performance,2014,23(6):1917-1928.
    [6]王华明.高性能大型金属构件激光增材制造:若干材料基础问题[J].航空学报,2014,35(10):2690-2698.
    [7] BARRY Berman. 3-D printing:The new industrial revolution[J]. Business Horizons,2012,55(2).
    [8] S Gross,E. W Abel. A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur[J]. Journal of Biomechanics,2001,34(8):21-23.
    [9]魏青松,史玉升,等. 3D打印多孔支架及性能评测[A].中国机械工程学会特种加工分会.第16届全国特种加工学术会议论文集(下)[C].中国机械工程学会特种加工分会:中国机械工程学会,2015:10.
    [10] MICHAELA fousová,DALIBOR vojtěch,Jiíkubásek,et al.Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process2017[J]. Elsevier. Ltd.,2017,69:368-376.
    [11] JULIA matena,SVEA petersen,MATTHIAS gieseke,et al.SLM Produced Porous Titanium Implant Improvements for Enhanced Vascularization and Osteoblast Seeding[J].Crossref,2015,16(4),7478-7492.
    [12]史玉升,鲁中良,章文献,黄树槐,陈国清.选择性激光熔化快速成形技术与装备[J].中国表面工程,2006,(1):150-153.
    [13] J-P. Kruth,P. Mercelis,J. Van Vaerenbergh,L. Froyen,M.Rombouts. Binding mechanisms in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal,2005,11(1):101-103.
    [14] ALIDA Mazzoli. Selective laser sintering in biomedical engineering[J]. Medical&Biological Engineering&Computing,2013,51(3):245-256.
    [15]杨永强,陈杰,宋长辉,王迪,白玉超.金属零件激光选区熔化技术的现状及进展[J].激光与光电子学进展,2018,55(01):9-21.
    [16] J.P. Kruth,L. Froyen,J. Van Vaerenbergh,P. Mercelis,M.Rombouts,B. Lauwers. Selective laser melting of ironbased powder[J]. Journal of Materials Processing Tech.,2003,149(1):78-81.
    [17]杨强,鲁中良,黄福享,李涤尘.激光增材制造技术的研究现状及发展趋势[J].航空制造技术,2016(12):26-31.
    [18] D. Buchbinder,W. Meiners,K. Wissenbach,R. Poprawe.Selective laser melting of aluminum die-cast alloy—Correlations between process parameters,solidification conditions,and resulting mechanical properties[J]. Laser Institute of America,2015,7(10):21-23.
    [19] LI X.P,J. VAN Humbeeck,J.P. Kruth. Selective laser melting of weak-textured commercially pure titanium with high strength and ductility:A study from laser power perspective[J]. Materials& Design,2017,116:23-25.
    [20]宋长辉,翁昌威,杨永强,王迪,李阳.激光选区熔化设备发展现状与趋势[J].机电工程技术,2017,46(10):1-5.
    [21]刘培生.多孔材料引论(第二版)[M].北京:材料科学与工程系列,清华大学出版社,2014.
    [22]杨广宇,汤慧萍,贾文鹏,赵培,贺卫卫,黄瑜,贾亮.电子束快速成形技术制备医用金属多孔材料研究进展[J].材料导报,2013,27(11):118-122.
    [23] XIAO Zefeng,YANG Yongqiang,XIAO Ran,et al. Evaluation of topology-optimized lattice structures manufactured via selective laser melting[J]. sciencedirect,2018,VOLUME143:27-37.
    [24] MURR L. E.,GAYTAN S. M.,MEDINA F.,LOPEZ H.,Martinez E.,Machado B. I.,Hernandez D. H.,Martinez L.,Lopez M. I.,Wicker R. B.,Bracke J.. Next-generation biomedical implants using additive manufacturing of complex,cellular and functional mesh arrays[J]. Philosophical Transactions of the Royal Society A,2010,368:30-31.
    [25] YAN Chunze,LIANG Hao,AHMED Hussein,PHILIPPE Young. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials,2015,51.
    [26]赵培,贾文鹏,向长淑,弋阳,周勃延,全俊涛.EBM医用金属多孔结构的设计及孔径测量方法[J].机械研究与应用,2017,30(05):9-12+16.
    [27]康建峰,王玲,孙畅宁,李涤尘,靳忠民.面向3D打印可变模量金属假体的微结构设计[J].机械工程学报,2017,53(05):175-180.
    [28]李强,于景媛,石萍,齐锦刚.生物医用多孔金属材料的制备及表面改性[M].冶金工业出版社. 2015.
    [29]徐林,巴德纯,王庆,姜媛媛.医用316L不锈钢表面改性研究及发展[J].真空与低温,2014,20(01):52-56.
    [30] JAROSLAVˇCapek,MARKTA Machová,MICHAELA Fousová,JIˇRKubásek,DALIBOR Vojtěch,JAROSLAV Fojt,EVA Jablonská,JAN Lipov,TOMˇS Ruml. Highly porous,low elastic modulus 316L stainless steel scaffold prepared by selective laser melting[J]. Materials Science& Engineering C,2016,69:45-46.
    [31] QIU Chunlei,MOHAMMED al kindi,Aiman salim aladawi,Issa Al Hatmi. A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel[J]. Crossref,2018,7785:17-19.
    [32] YAN Chunze,LIANG Hao,AHMED Hussein,PHILIPPE Young,David Raymont. Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting[J]. Materials and Design,2014,55:101-103.
    [33]潘露,刘麒慧,王亮.选区激光熔化制备316L不锈钢镂空件实验研究[J].锻压技术,2018,43(09):103-107.
    [34] E. Sallica-Leva,A.L. Jardini,J.B. Fogagnolo. Microstructure and mechanical behavior of porous Ti-6Al-4V parts obtained by selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials,2013,26:25-26.
    [35] J. Kadkhodapour,H. Montazerian,A. Ch. Darabi,A. P.Anaraki,S.M. Ahmadi,A.A. Zadpoor,S. Schmauder. Failure mechanisms of additively manufactured porous biomaterials:Effects of porosity and type of unit cell[J]. Journal of the Mechanical Behavior of Biomedical Materials,2015,50:30-31.
    [36] S. Amin Yavari,S. M. Ahmadi,R. Wauthle,B. Pouran,J.Schrooten,H. Weinans,A. A. Zadpoor. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials[J]. Journal of the Mechanical Behavior of Biomedical Materials,2015,43:45-47.
    [37] BRECHT Van Hooreweder,YANNI Apers,KAREL Lietaert,JEAN-Pierre Kruth. Improving the fatigue performance of porous metallic biomaterials produced by Selective Laser Melting[J]. Acta Biomaterialia,2017,47:19-24.
    [38] ZHAO Bingjing,WANG Hong,QIAO Ning,WANG Chao,MIN Hu. Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo[J].Materials Science& Engineering C,2017,70:36-39.
    [39] ZHANG Boqing,PEI Xuan,ZHOU Changchun,et. The biomimetic design and 3D printing of customized mechanical properties porous Ti6Al4V scaffold for load-bearing bone reconstruction[J]. Materials and Design,2018,152:0-30.
    [40] RAN Qichun,YANG Weihu,HU Yan,et. Osteogenesis of3D printed porous Ti6Al4V implants with different pore sizes[J]. Journal of the mechanical behavior of biomedical materials,2018,84:1-11.
    [41] RUBEN Wauthle,SEYED Mohammad Ahmadi,SABER Amin Yavari,et. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing[J].Materials Science&Engineering C,2015,54:94-100.
    [42]张永涛,刘汉源,王昌,等.生物医用金属材料的研究应用现状及发展趋势[J].热加工工艺,2017(04):21-26.
    [43] HAN Changjun,YAN Chunze,WEN Shifeng,et al. Effects of the unit cell topology on the compression properties of porous Co-Cr scaffolds fabricated via selective laser melting[J]. Rapid Prototyping Journal,2017(23/1):16-27.
    [44] R. hedayati,S. m. ahmadi,K. lietaert,et al. Isolated and modulated effects of topology and material type on the mechanical properties of additively manufactured porous biomaterials[J]. Journal of the Mechanical Behavior of Biomedical Materials,2018,79:254-263.
    [45]宋长辉,杨永强,王赟达,余家阔,麦淑珍.CoCrMo合金激光选区熔化成型工艺及其性能研究[J].中国激光,2014,41(06):58-65.
    [46]张国庆,杨永强,宋长辉,王赟达,余家阔.激光选区熔化成型Co Cr Mo多孔结构的设计与性能研究[J].中国激光,2015,42(11):59-68.
    [47]杨坤,汤慧萍,王建,杨广宇,刘楠,贾亮,支浩,许忠国.标准化和增材制造个性化多孔钽植入体的研究进展[J].热加工工艺,2017,46(22):5-8+12.
    [48] IVAN de martino,VINCENZO de santis,PETER k. sculco,et al. Long-Term Clinical and Radiographic Outcomes of Porous Tantalum Monoblock Acetabular Component in Primary Hip Arthroplasty:A Minimum of 15-Year Follow-Up[J]. The Journal of Arthroplasty,2016,31(9):110-114.
    [49] BALLA V K,BODHAK S,BOSE S,et al.Porous tantalum structures for bone implants:Fabrication,mechanical and in vitro biological properties[J]. Acta Biomaterialia,2010,6(8):3349-3359.
    [50] RUBEN wauthle,JOHAN van der stok,SABER amin yavari,et al. Additively manufactured porous tantalum implants[J]. Acta Biomaterialia,2015,3(14):217-225.
    [51] ZHOU Libo,YUAN Tiechui,LI Ruidi,et al. Selective laser melting of pure tantalum:Densification, microstructure and mechanical behaviors[J]. Materials Science and Engineering:A,2017,11(707):443-451.
    [52]叶雷.一种采用三维打印成型制备多孔钽医用植入材料的方法:中国,CN201210022122.1[P]. 2012-01-31.
    [53]陈长军,张敏.多孔钽的制备方法及装置:中国,CN201110395892.6[P]. 2012-04-11.
    [54]唐建中. 3D打印用金属粉体的制备方法:中国,CN201610323857.6[P]. 2016-05-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700