用户名: 密码: 验证码:
人工光合成制氢
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Artificial Photosynthesis for Hydrogen Production
  • 作者:陈雅静 ; 李旭兵 ; 佟振合 ; 吴骊珠
  • 英文作者:Yajing Chen;Xubing Li;Chenho Tung;Lizhu Wu;Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences;School of Future Technology, University of Chinese Academy of Sciences;
  • 关键词:太阳能 ; 人工光合成 ; 制氢 ; 分解水 ; 有机转换
  • 英文关键词:solar energy;;artificial photosynthesis;;H_2 production;;water splitting;;organic transformation
  • 中文刊名:HXJZ
  • 英文刊名:Progress in Chemistry
  • 机构:中国科学院理化技术研究所光化学转换与功能材料重点实验室;中国科学院大学未来技术学院;
  • 出版日期:2019-02-11 10:52
  • 出版单位:化学进展
  • 年:2019
  • 期:v.31;No.225
  • 基金:国家自然科学基金项目(No.91427303,21861132004,21603248);; 科技部(No.2017YFA0206903);; 王宽诚基金资助~~
  • 语种:中文;
  • 页:HXJZ201901020
  • 页数:12
  • CN:01
  • ISSN:11-3383/O6
  • 分类号:50-61
摘要
氢气的燃烧热值高(285.8 kJ/mol),且燃烧时只生成水不生成任何污染物,被认为是理想的能源载体。模拟自然界光合作用系统活性中心的结构和功能,利用光催化分解水制取氢气是将太阳能转换为化学能的重要方式,也是人工光合成的重要内容。本文对近年来国内外人工光合成制氢领域取得的重要进展进行了总结,并对人工光合成制氢的发展趋势和前景进行了展望。
        Hydrogen(H_2) gas acquires a high combustion calorific value(285.8 kJ/mol) and only produces water during combustion, so it is considered as an ideal energy carrier. Photocatalytic H_2 evolution from water by simulating the structure and function of active center in natural photosynthesis is not only an important way to convert solar light into chemical energy but also an essential part of artificial photosynthesis. Here, we summarize the recent major progress of this field and forecast the development and potential applications of artificial photosynthetic H_2 production in the near future.
引文
[1] Kim J H, Nam D H, Park C B. Curr. Opin. Biotechnol., 2014, 28: 1.
    [2] Lazarides T, Delor M, Sazanovich I V, McCormick T M, Georgakaki I, Charalambidis G, Weinstein J A, Coutsolelos A G. Chem. Commun., 2014, 50: 521.
    [3] Leung C F, Ng S M, Ko C C, Man W L, Wu J S, Chen L J, Lau T C. Energy. Environ. Sci., 2012, 5: 7903.
    [4] Khnayzer R S, Thoi V S, Nippe M, King A E, Jurss J W, El Roz K A, Long J R, Chang C J, Castellano F N. Energy. Environ. Sci., 2014, 7: 1477.
    [5] Martindale B C M, Hutton G A M, Caputo C A, Reisner E. J. Am. Chem. Soc., 2015, 137: 6018.
    [6] Porcher J P, Fogeron T, Gomez-Mingot M, Derat E, Chamoreau L M, Li Y, Fontecave M. Angew. Chem. Int. Ed., 2015, 54: 14090.
    [7] Lazarides T, McCormick T, Du P W, Luo G G, Lindley B, Eisenberg R. J. Am. Chem. Soc., 2009, 131: 9192.
    [8] Le T T, Akhtar M S, Park D M, Lee J C, Yang O B. Appl. Catal. B-Environ., 2012, 111: 397.
    [9] Hartley C L, DiRisio R J, Screen M E, Mayer K J, McNamara W R. Inorg. Chem., 2016, 55: 8865.
    [10] Guo L, Yang Z, Marcus K, Li Z, Luo B, Zhou L, Wang X, Du Y, Yang Y. Energy. Environ. Sci., 2018, 11: 106.
    [11] Han Q, Cheng Z H, Wang B, Zhang H M, Qu L T. ACS Nano., 2018, 12: 5221.
    [12] Hao X Q, Jin Z L, Yang H, Lu G X, Bi Y P. Appl. Catal. B-Environ., 2017, 210: 45.
    [13] Pachfule P, Acharjya A, Roeser J, Langenhahn T, Schwarze M, Schomacker R, Thomas A, Schmidt J. J. Am. Chem. Soc., 2018, 140: 1423.
    [14] Quo Q, Liang F, Gao X Y, Gan Q C, Li X B, Li J, Lin Z S, Tung C H, Wu L Z. ACS Catal., 2018, 8: 5890.
    [15] Sandroni M, Gueret R, Wegner K D, Reiss P, Fortage J, Aldakov D, Collomb M N. Energy. Environ. Sci., 2018, 11: 1752.
    [16] Zeng D Q, Xu W J, Ong W J, Xu J, Ren H, Chen Y Z, Zheng H F, Peng D L. Appl. Catal. B-Environ., 2018, 221: 47.
    [17] Chen X B, Liu L, Yu P Y, Mao S S. Science., 2011, 331: 746.
    [18] Liu G, Yin L C, Wang J Q, Niu P, Zhen C, Xie Y P, Cheng H M. Energy. Environ. Sci., 2012, 5: 9603.
    [19] Xiao M, Luo B, Lyu M Q, Wang S C, Wang L Z. Adv. Energy Mater., 2018, 8: 180:2820.
    [20] Lubner C E, Knorzer P, Silva P J, Vincent K A, Happe T, Bryant D A, Golbeck J H. Biochemistry., 2010, 49: 10264.
    [21] Brown K A, Wilker M B, Boehm M, Dukovic G, King P W. J. Am. Chem. Soc., 2012, 134: 5627.
    [22] Greene B L, Joseph C A, Maroney M J, Dyer R B. J. Am. Chem. Soc., 2012, 134: 11108.
    [23] Brown K A, Dayal S, Ai X, Rumbles G, King P W. J. Am. Chem. Soc., 2010, 132: 9672.
    [24] Brown K A, Song Q, Mulder D W, King P W. ACS Nano, 2014, 8: 10790.
    [25] Caputo C A, Gross M A, Lau V W, Cavazza C, Lotsch B V, Reisner E. Angew. Chem. Int. Ed. Engl., 2014, 53: 11538.
    [26] Caputo C A, Wang L, Beranek R, Reisner E. Chem. Sci., 2015, 6: 5690.
    [27] Chica B, Wu C H, Liu Y, Adams M W W, Lian T Q, Dyer R B. Energy. Environ. Sci., 2017, 10: 2245.
    [28] Peters J W, Lanzilotta W N, Lemon B J, Seefeldt L C. Science, 1998, 282: 1853.
    [29] Nicolet Y, Piras C, Legrand P, Hatchikian C E, Fontecilla-Camps J C. Structure, 1999, 7: 13.
    [30] Cao W N, Wang F, Wang H Y, Chen B, Feng K, Tung C H, Wu L Z. Chem. Commun., 2012, 48: 8081.
    [31] Jian J X, Ye C, Wang X Z, Wen M, Li Z J, Li X B, Chen B, Tung C H, Wu L Z. Energy. Environ. Sci., 2016, 9: 2083.
    [32] Wang F, Wang W G, Wang X J, Wang H Y, Tung C H, Wu L Z. Angew. Chem. Int. Ed. Engl., 2011, 50: 3193.
    [33] Wang F, Wang W G, Wang H Y, Si G, Tung C H, Wu L Z. ACS. Catal., 2012, 2: 407.
    [34] Gloaguen F, Lawrence J D, Rauchfuss T B. J. Am. Chem. Soc., 2001, 123: 9476.
    [35] Song L C, Tang M Y, Su F H, Hu Q M. Angew. Chem. Int. Ed., 2006, 45: 1130.
    [36] Song L C, Wang L X, Tang M Y, Li C G, Song H B, Hu Q M. Organometallics., 2009, 28: 3834.
    [37] Na Y, Wang M, Pan J X, Zhang P, Akermark B, Sun L C. Inorg. Chem., 2008, 47: 2805.
    [38] Kluwer A M, Kapre R, Hartl F, Lutz M, Spek A L, Brouwer A M, van Leeuwen P W N M, Reek J N H. Proc. Natl. Acad. Sci. USA., 2009, 106: 10460.
    [39] Wang W G, Wang F, Wang H Y, Si G, Tung C H, Wu L Z. Chem. Asian J., 2010, 5: 1796.
    [40] Wang H Y, Si G, Cao W N, Wang W G, Li Z J, Wang F, Tung C H, Wu L Z. Chem. Commun., 2011, 47: 8406.
    [41] Wen F Y, Wang X L, Huang L, Ma G J, Yang J H, Li C. ChemSusChem., 2012, 5: 849.
    [42] Li C B, Li Z J, Yu S, Wang G X, Wang F, Meng Q Y, Chen B, Feng K, Tung C H, Wu L Z. Energy. Environ. Sci., 2013, 6: 2597.
    [43] Jian J X, Liu Q, Li Z J, Wang F, Li X B, Li C B, Liu B, Meng Q Y, Chen B, Feng K, Tung C H, Wu L Z. Nat. Commun., 2013, 4: 2695.
    [44] Wang F, Liang W J, Jian J X, Li C B, Chen B, Tung C H, Wu L Z. Angew. Chem. Int. Ed. Engl., 2013, 52: 8134.
    [45] Wen M, Li X B, Jian J X, Wang X Z, Wu H L, Chen B, Tung C H, Wu L Z. Sci. Rep., 2016, 6: 29851.
    [46] Gimbert-Surinach C, Albero J, Stoll T, Fortage J, Collomb M N, Deronzier A, Palomares E, Llobet A. J. Am. Chem. Soc., 2014, 136: 7655.
    [47] Yuan Y J, Chen D Q, Xiong M, Zhong J S, Wan Z Y, Zhou Y, Liu S, Yu Z T, Yang L X, Zou Z G. Appl. Catal. B-Environ., 2017, 204: 58.
    [48] Lv H J, Ruberu T P A, Fleischauer V E, Brennessel W W, Neidig M L, Eisenberg R. J. Am. Chem. Soc., 2016, 138: 11654.
    [49] Han Z, Qiu F, Eisenberg R, Holland P L, Krauss T D. Science, 2012, 338: 1321.
    [50] Li Z J, Li X B, Wang J J, Yu S, Li C B, Tung C H, Wu L Z. Energy. Environ. Sci., 2013, 6: 465.
    [51] Li Z J, Fan X B, Li X B, Li J X, Ye C, Wang J J, Yu S, Li C B, Gao Y J, Meng Q Y, Tung C H, Wu L Z. J. Am. Chem. Soc., 2014, 136: 8261.
    [52] Li X B, Gao Y J, Wang Y, Zhan F, Zhang X Y, Kong Q Y, Zhao N J, Guo Q, Wu H L, Li Z J, Tao Y, Zhang J P, Chen B, Tung C H, Wu L Z. J. Am. Chem. Soc., 2017, 139: 4789.
    [53] Liu M, Chen Y, Su J, Shi J, Wang X, Guo L J. Nat. Energy., 2016, 1: 16151.
    [54] Wu L Z, Chen B, Li Z J, Tung C H. Acc. Chem. Res., 2014, 47: 2177.
    [55] Pan C, Takata T, Nakabayashi M, Matsumoto T, Shibata N, Ikuhara Y, Domen K. Angew. Chem. Int. Ed. Engl., 2015, 54: 2955.
    [56] Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K. J. Am. Chem. Soc., 2005, 127: 8286.
    [57] Mu L C, Zhao Y, Li A L, Wang S Y, Wang Z L, Yang J X, Wang Y, Liu T F, Chen R T, Zhu J, Fan F T, Li R G, Li C. Energy. Environ. Sci., 2016, 9: 2463.
    [58] Wang B, Shen S H, Guo L J. ChemCatChem., 2016, 8: 798.
    [59] Wang D A, Hisatomi T, Takata T, Pan C S, Katayama M, Kubota J, Domen K. Angew. Chem. Int. Ed., 2013, 52: 11252.
    [60] Takata T, Pan C S, Nakabayashi M, Shibata N, Domen K. J. Am. Chem. Soc., 2015, 137: 9627.
    [61] Bard A J. J. Photochem., 1979, 10: 59.
    [62] Abe R, Sayama K, Domen K, Arakawa H. Chem. Phys. Lett., 2001, 344: 339.
    [63] Maeda K, Higashi M, Lu D L, Abe R, Domen K. J. Am. Chem. Soc., 2010, 132: 5858.
    [64] Liu J, Ke J, Li Y, Liu B J, Wang L D, Xiao H N, Wang S B. Appl. Catal. B-Environ., 2018, 236: 396.
    [65] Abe R, Shinmei K, Koumura N, Hara K, Ohtani B. J. Am. Chem. Soc., 2013, 135: 16872.
    [66] Wang W, Chen J, Li C, Tian W. Nat. Commun., 2014, 5: 4647.
    [67] Zhu M, Sun Z, Fujitsuka M, Majima T. Angew. Chem. Int. Ed. Engl., 2018, 57: 2160.
    [68] Wang Q, Hisatomi T, Jia Q X, Tokudome H, Zhong M, Wang C Z, Pan Z H, Takata T, Nakabayashi M, Shibata N, Li Y B, Sharp I D, Kudo A, Yamada T, Domen K. Nat. Mater., 2016, 15: 611.
    [69] Wang Q, Hisatomi T, Suzuk Y, Pan Z, Seo J, Katayama M, Minegishi T, Nishiyama H, Takata T, Seki K, Kudo A, Yamada T, Domen K. J. Am. Chem. Soc., 2017, 139: 1675.
    [70] Fujishima A, Honda K. Nature, 1972, 238: 37.
    [71] Mersch D, Lee C Y, Zhang J Z, Brinkert K, Fontecilla-Camps J C, Rutherford A W, Reisner E. J. Am. Chem. Soc., 2015, 137: 8541.
    [72] Wang W, Wang H, Zhu Q, Qin W, Han G, Shen J R, Zong X, Li C. Angew. Chem. Int. Ed., 2016, 55: 9229.
    [73] Li Z, Wang W, Ding C, Wang Z, Liao S, Li C. Energy. Environ. Sci., 2017, 10: 765.
    [74] Sivula K, Zboril R, Le Formal F, Robert R, Weidenkaff A, Tucek J, Frydrych J, Graetzel M. J. Am. Chem. Soc., 2010, 132: 7436.
    [75] Kment S, Schmuki P, Hubicka Z, Machala L, Kirchgeorg R, Liu N, Wang L, Lee K, Olejnicek J, Cada M, Gregora I, Zboril R. ACS Nano, 2015, 9: 7113.
    [76] Luo Z, Li C, Liu S, Wang T, Gong J. Chem. Sci., 2017, 8: 91.
    [77] Tang P, Xie H, Ros C, Han L, Biset-Peiro M, He Y, Kramer W, Rodriguez A P, Saucedo E, Galan-Mascaros J R, Andreu T, Morante J R, Arbiol J. Energy. Environ. Sci., 2017, 10: 2124.
    [78] Seabold J A, Choi K S. J. Am. Chem. Soc., 2012, 134: 2186.
    [79] Kim T W, Choi K S. Science, 2014, 343: 990.
    [80] Gao X, Li J, Du R, Zhou J, Huang M Y, Liu R, Li J, Xie Z, Wu L Z, Liu Z, Zhang J. Adv Mater., 2017, 29: 1605308.
    [81] Oh K, Meriadec C, Lassalle-Kaiser B, Dorcet V, Fabre B, Ababou-Girard S, Joanny L, Gouttefangeas F, Loget G. Energy. Environ. Sci., 2018, 11: 2590.
    [82] Kenney M J, Gong M, Li Y, Wu J Z, Feng J, Lanza M, Dai H. Science, 2013, 342: 836.
    [83] Mayer M T, Du C, Wang D. J. Am. Chem. Soc., 2012, 134: 12406.
    [84] Chandra D, Saito K, Yui T, Yagi M. Angew Chem. Int. Ed., 2013, 52: 12606.
    [85] Ma M, Zhang K, Li P, Jung M S, Jeong M J, Park J H. Angew Chem. Int. Ed., 2016, 55: 11819.
    [86] Solarska R, Bienkowski K, Zoladek S, Majcher A, Stefaniuk T, Kulesza P J, Augustynski J. Angew Chem. Int. Ed., 2014, 53: 14196.
    [87] Li X B, Tung C H, Wu L Z. Nat. Rev. Chem., 2018, 2: 160.
    [88] Nann T, Ibrahim S K, Woi P M, Xu S, Ziegler J, Pickett C J. Angew. Chem. Int. Ed. Engl., 2010, 49: 1574.
    [89] Wu H L, Li X B, Tung C H, Wu L Z. Adv. Sci., 2018, 5: 1700684.
    [90] Liu B, Li X B, Gao Y J, Li Z J, Meng Q Y, Tung C H, Wu L Z. Energy. Environ. Sci., 2015, 8: 1443.
    [91] Li X B, Liu B, Wen M, Gao Y J, Wu H L, Huang M Y, Li Z J, Chen B, Tung C H, Wu L Z. Adv. Sci., 2016, 3: 1500282.
    [92] Li J, Gao X, Liu B, Feng Q L, Li X B, Huang M Y, Liu Z F, Zhang J, Tung C H, Wu L Z. J. Am. Chem. Soc., 2016, 138: 3954.
    [93] Pan L F, Kim J H, Mayer M T, Son M K, Ummadisingu A, Lee J S, Hagfeldt A, Luo J S, Gratzel M. Nature Catalysis., 2018, 1: 412.
    [94] Meng Q Y, Zhong J J, Liu Q, Gao X W, Zhang H H, Lei T, Li Z J, Feng K, Chen B, Tung C H, Wu L Z. J. Am. Chem. Soc., 2013, 135: 19052.
    [95] Zhong J J, Meng Q Y, Liu B, Li X B, Gao X W, Lei T, Wu C J, Li Z J, Tung C H, Wu L Z. Org. Lett., 2014, 16: 1988.
    [96] Chen B, Wu L Z, Tung C H. Acc. Chem. Res., 2018, 51: 2512.
    [97] Wu C J, Meng Q Y, Lei T, Zhong J J, Liu W Q, Zhao L M, Li Z J, Chen B, Tung C H, Wu L Z. ACS Catal., 2016, 6: 4635.
    [98] Zhang G, Liu C, Yi H, Meng Q, Bian C, Chen H, Jian J X, Wu L Z, Lei A. J. Am. Chem. Soc., 2015, 137: 9273.
    [99] Yang Q, Zhang L, Ye C, Luo S, Wu L Z, Tung C H. Angew Chem. Int. Ed., 2017, 56: 3694.
    [100] Zheng Y W, Chen B, Ye P, Feng K, Wang W, Meng Q Y, Wu L Z, Tung C H. J. Am. Chem. Soc., 2016, 138: 10080.
    [101] Zheng Y W, Ye P, Chen B, Meng Q Y, Feng K, Wang W, Wu L Z, Tung C H. Org. Lett., 2017, 19: 2206.
    [102] Li X B, Li Z J, Gao Y J, Meng Q Y, Yu S, Weiss R G, Tung C H, Wu L Z. Angew. Chem. Int. Ed., 2014, 53: 2085.
    [103] Zhao L M, Meng Q Y, Fan X B, Ye C, Li X B, Chen B, Ramamurthy V, Tung C H, Wu L Z. Angew. Chem. Int. Ed. Engl., 2017, 56: 3020.
    [104] Chai Z G, Zeng T T, Li Q, Lu L Q, Xiao W J, Xu D S. J. Am. Chem. Soc., 2016, 138: 10128.
    [105] Liu H, Xu C Y, Li D D, Jiang H L. Angew. Chem. Int. Ed., 2018, 57: 5379.
    [106] Wang J J, Li Z J, Li X B, Fan X B, Meng Q Y, Yu S, Li C B, Li J X, Tung C H, Wu L Z. ChemSusChem., 2014, 7: 1468.
    [107] Han G Q, Jin Y H, Burgess R A, Dickenson N E, Cao X M, Sun Y J. J. Am. Chem. Soc., 2017, 139: 15584.
    [108] Kasap H, Achilleos D S, Huang A, Reisner E. J. Am. Chem. Soc., 2018, 140: 11604.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700