用户名: 密码: 验证码:
便携式X射线荧光光谱仪现场测定萤石矿伴生锑矿样品中钙
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:On-site determination of calcium in fluorite associated antimony ore sample by portable X-ray fluorescence spectrometer
  • 作者:杨载明 ; 翁申富
  • 英文作者:YANG Zai-ming;WENG Shen-fu;No.106 Geological Team,Bureau of Geology and Mineral Exploration and Development of Guizhou Province;
  • 关键词:便携式X射线荧光光谱仪(PXRF) ; 萤石矿伴生锑矿 ; ; 光谱重叠 ; 数学校正模型
  • 英文关键词:portable X-ray fluorescence spectrometer;;fluorite associated antimony ore;;calcium;;spectral overlap;;mathematical correction model
  • 中文刊名:YJFX
  • 英文刊名:Metallurgical Analysis
  • 机构:贵州省地质矿产勘查开发局一O六地质大队;
  • 出版日期:2018-10-15
  • 出版单位:冶金分析
  • 年:2018
  • 期:v.38
  • 语种:中文;
  • 页:YJFX201810010
  • 页数:5
  • CN:10
  • ISSN:11-2030/TF
  • 分类号:55-59
摘要
便携式X射线荧光光谱仪(PXRF)具有检测速度快、多元素同时测定等优点,已在各种现场检测中得到大量应用。但地质样品矿物伴生类型丰富、基体复杂、各元素之间极易产生干扰,让便携式X射线荧光光谱仪的现场应用受到一定限制。以贵州某萤石矿伴生锑矿区为例,便携式X射线荧光光谱仪现场分析萤石矿伴生锑矿样品中钙,由于仪器应用软件设计不足及仪器能量分辨率所限,样品中元素锑的特征谱线能量叠加在钙元素的特征谱线能量上而使钙的检测结果偏高,实际样品检测发现,偏高程度与样品中锑的含量具有相关性。实验经过回归趋势分析及乘幂方式回归,得出公式y=0.351 9x0.8881(x表示便携式X射线荧光光谱仪测试出锑的含量,y表示受锑影响的假象钙的含量),相关系数R2为0.999 2。根据测得的总钙减去假象钙即得实际钙的含量。实际验证15件样品,经校正后的测试结果与室内EDTA滴定法测试结果基本吻合。方法检出限为0.077%,相对标准偏差(RSD)为1.2%,测定范围3%~30%。实验方法很好地解决了该矿区现场对钙元素含量的检测,可快速指导找矿工作圈定矿体,节约了大量成本及时间。
        The portable X-ray fluorescence spectrometer(PXRF)has many advantages such as rapid detection speed and simultaneous determination of multi-elements,and it has been widely used in various onsite tests.The geological samples usually contain abundant associated minerals and complex matrix.Moreover,the interference is very easily caused among elements.Therefore,the on-site application of PXRF is limited.One fluorite associated antimony ore sample from Guizhou was selected as an example for the onsite analysis of calcium by PXRF.Due to the insufficient design of application software and the limitation of energy resolution of instrument,the energy of characteristic spectral line of antimony in sample was superposed on the characteristic spectral line of calcium,leading to higher detection result of calcium.The determination of actual sample indicated that the degree of deviation was relevant to the content of antimony in sample.By regression trend analysis and exponentiation regression,the equation of y=0.351 9 x0.8881(x presented the content of antimony measured by PXRF,while y presented the content of false calcium which was affected by antimony)was obtained with correlation coefficient of R2=0.999 2.Then,the actual content of calcium could be obtained by subtracting false calcium from total calcium.15 samples were analyzed for verification.It was found that the determination results after correction were basically consistent with those obtained by EDTA titration in laboratory.The detection limit was 0.077%,the relative standard deviation(RSD)was 1.2%,and the determination range was 3%-30%.The experimental method well solved the problem for the on-site detection of calcium in this mine area.It could rapidly guide the searching of ore body,saving much cost and time.
引文
[1]宋新艳.萤石中二氧化硅和氟化钙的系统分析[J].冶金分析,2010,30(10):58-61.SONG Xin-yan.Systematic analysis of silicon dioxide and calcium fluoride in fluorite[J].Metallurgical Analysis,2010,30(10):58-61.
    [2]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 5195.1—2017萤石氟化钙含量的测定EDTA滴定法和蒸馏-电位滴定法[S].北京:中国标准出版社,2017.
    [3]苏峥,马建平.X射线荧光光谱法与红外吸收法联合测定萤石中氟化钙[J].冶金分析,2008,28(8):73-75.SU Zheng,MA Jian-ping.Determination of calcium fluoride in fluorite with X-ray fluorescence spectrometry and infrared absorption[J].Metallurgical Analysis,2008,28(8):73-75.
    [4]吴超超,马秀艳,邢文青,等.熔融制样-X射线荧光光谱法测定萤石中主次成分[J].冶金分析,2017,37(4):42-47.WU Chao-chao,MA Xiu-yan,XING Wen-qing,et al.Determination of major and minor components in fluorite by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis,2017,37(4):42-47.
    [5]杨珍,孙银生,贺攀红,等.电感耦合等离子体原子发射光谱法快速测定萤石矿中氟化钙[J].冶金分析,2013,33(11):71-73.YANG Zhen,SUN Yin-sheng,HE Pan-hong,et al.Rapid determination of calcium fluoride in fluorite by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis,2013,33(11):71-73.
    [6]陆安祥,王纪华,潘立刚,等.便携式X射线荧光光谱测定土壤中Cr,Cu,Zn,Pb和As的研究[J].光谱学与光谱分析,2010,30(10):2848-2852.LU An-xiang,WANG Ji-hua,PAN Li-gang,et al.Determination of Cr,Cu,Zn,Pb and As in soil by field portable X-ray fluorescence spectrometry[J].Spectroscopy and Spectral Analysis,2010,30(10):2848-2852.
    [7]郭龙滨,赖万昌,张永涛,等.便携式能量色散X射线荧光仪测定矿渣中铟[J].冶金分析,2011,31(1):19-22.GUO Long-bin,LAI Wan-chang,ZHANG Yong-tao,et al.Determination of indium in slag using portable energy dispersive X-ray fluorescence spectrometer[J].Metallurgical Analysis,2011,31(1):19-22.
    [8]张鹏,张寿庭,邹灏,等.便携式X荧光分析仪在萤石矿勘查中的应用[J].物探与化探,2012,36(5):718-722.ZHANG Peng,ZHANG Shou-ting,ZOU Hao,et al.The application of portable X-ray fluorescence analyzer to fluorite prospecting[J].Geophysical&Geochemical Exploration,2012,36(5):718-722.
    [9]李向超.便携式X射线荧光光谱仪现场测定地质样品中钛[J].冶金分析,2014,34(4):32-36.LI Xiang-chao.On-site determination of titanium in geological samples by portable X-ray fluorescence spectrometer[J].Metallurgical Analysis,2014,34(4):32-36.
    [10]梁钰.X射线荧光光谱分析基础[M].北京:科学出版社,2007:204-205.
    [11]中华人民共和国国土资源部.DZ/T 0130.3—2006地质矿产实验室测试质量管理规范第3部分:岩石矿物样品化学成分分析[S].北京:中国标准出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700