用户名: 密码: 验证码:
二叠纪泛大陆球壳三维力学模拟及其构造意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanical simulation of 3D spherical shell model for Permian Pangaea supercontinent and its tectonic significance
  • 作者:李江海 ; 宋珏琛 ; 毛翔
  • 英文作者:LI Jianghai;SONG Juechen;MAO Xiang;Key Laboratory of Ministry of Education of Orogenic Belts and Crustal Evolution,Peking University;School of Earth and Space Sciences,Peking University;New Energy Research Institute,SINOPEC Star Petroleum Co.,Ltd.;Key Laboratory of Geothermal Exploitation and Utilization,SINOPEC;
  • 关键词:二叠纪 ; 泛大陆 ; 古特提斯洋 ; 新特提斯洋 ; 三维球壳模型 ; 力学模拟
  • 英文关键词:Permian;;Pangaea supercontinent;;Paleo-Tethys ocean;;Neo-Tethys ocean;;3D spherical shell model;;mechanical simulation
  • 中文刊名:DZLP
  • 英文刊名:Geological Review
  • 机构:造山带与地壳演化教育部重点实验室北京大学;北京大学地球与空间科学学院;中国石化集团新星石油有限责任公司新能源研究院;中国石化地热资源开发利用重点实验室;
  • 出版日期:2019-05-15
  • 出版单位:地质论评
  • 年:2019
  • 期:v.65
  • 基金:大型油气田及煤层气开发国家科技重大专项(编号:2016ZX05033-002-007和2016ZX05033-001)的成果~~
  • 语种:中文;
  • 页:DZLP201903003
  • 页数:7
  • CN:03
  • ISSN:11-1952/P
  • 分类号:33-39
摘要
二叠纪时期,泛大洋包围泛大陆并向其俯冲,在此背景下泛大陆内部洋盆呈现剪刀差式旋转关闭,并具有此消彼长的特征。前人通过自俯冲平面模型来解释泛大陆裂解过程中裂谷盆地的成因和泛大陆内部简单的应力状态,但是该模型与实际的地质背景相差较大。本文通过球壳三维模型,并考虑非洲核幔边界低速带以及阿拉伯地幔柱对泛大陆的影响,建立了二叠纪时期泛大陆所处的力学模型,模拟了泛大陆形成后古特提斯洋盆俯冲、关闭对大陆内部产生的应力应变影响。模拟结果显示三维球壳模型能够较好地解释该时期中亚区域发育的大型断裂、残余洋盆,也支持古特提斯洋盆剪刀差式关闭、新特提斯洋盆从古特提斯洋盆被动陆缘后侧张开的地质现象;非洲—阿拉伯板块的地幔垂向作用为新特提斯洋盆的张开提供了力学支持。由于在泛大陆分裂过程中,新老洋盆此消彼长、早期洋盆剪刀差式关闭的模式并不仅局限于古特提斯—新特提斯洋,本模拟结果可适当推广到其他洋盆。
        Objectives: In the Permian period,the Panthalassa encircled and subducted the Pangaea. In this context,the ocean basin within the Pangaea appears to be rotating and closing like a scissors,with the fluctuation of each other.Previous studies have explained the genesis of rift basins and the simple stress states of the interior of Pangaea by using the self-subduction plane model,but this model is quite different from the actual geological background. By means of numerical simulation,a more accurate mechanical model conforming to the geological background at that time will be established in this paper to analyze and discuss the mechanical state in the process of the Permian Pangaea pyrolysis.Methods: In this paper,a mechanical model of Pangaea in the Permian period was established by using a 3D spherical shell model and considering the effects of low-velocity zone of the African nuclear mantle boundary and the Arabian mantle plume on Pangaea,and the effects of subduction and closure of the Paleo-Tethys Ocean basin on the internal stress and strain of the continent after the formation of Pangaea were simulated.Results: The simulation results of Pangaea 3D spherical shell model 1 show that the axial tensile stress is mainly concentrated in the core of Pangaea,and there is also tensile stress in the south of the passive continental margin corresponding to the Hercynian orogenic belt and the southern side of the Paleo-Tethys Ocean. The axial compressive stress distribution is concentric and increased successively from the outside to the inside. The absolute value of the differential stress is larger in the central Eurasia and the Neo-Tethys Ocean. The simulation results of the pan-continental 3D spherical shell model 2 show that the tensile stress is mainly distributed behind the passive continental margin of the Paleo-Tethys Ocean,and the absolute value of differential stress is the largest in this region,which is prone to tectonic fracture. The strain vector diagram of the model shows that the maximum tensile stress occurs after the passive continental margin of the Paleo-Tethys Ocean,and the rupture is prone to occur parallel to the passive continental margin.Conclusions: The simulation results show that the 3D spherical shell model can well explain the large faults and residual ocean basins developed in the central Asian region during this period,and also support the geological phenomena of the clipping closure of the Paleo-Tethys Ocean basin and the opening of the Neo-Tethys Ocean basin from the back of the passive continental margin of the Paleo-Tethys Ocean basin. The mantle vertical action of the Afro—Arabian plate provides mechanical support for the opening of the Neo-Tethys Ocean basin. Because the old and new ocean basins were not limited to the old and new ocean basins in the process of the Pangaea splitting,the simulation results can be extended to other ocean basins.
引文
冯建伟,戴俊生,鄢继华,黄立良,王军.2009.准噶尔盆地乌夏前陆冲断带构造活动—沉积响应.沉积学报,27(3):494~502.
    高尚华,佘雅文,付广裕.2016.利用重力/GPS联合观测数据计算地壳垂向构造应力的新方法.地球物理学报,59(6):2006~2013.
    洪有密.1993.测井原理与综合解释.东营:石油大学出版社:1~270.
    李江海,李维波,王洪浩,毛翔,杨静懿,傅臣建.2014.晚古生代泛大陆聚合的全球构造背景:板块漩涡运动轨迹含义的探讨.地质学报,88(6):980~991.
    李江海,李维波,王洪浩,张华添,毛翔.2013.晚古生代泛大陆聚合过程中板块碰撞的运动学分析.地质论评,59(6):1047~1059.
    徐均涛.1996.泛大陆时期的全球变化.自然科学进展:国家重点实验室通讯,6(2):140~145.
    杨树锋,贾承造,陈汉林,魏国齐,程晓敢,贾东,肖安成,郭召杰.2002.特提斯构造带的演化和北缘盆地群形成及塔里木天然气勘探远景.科学通报,47(s1):36~43.
    杨兴悦.2012.青藏高原巴颜喀拉块体强震动力学过程数值模拟.导师:杨立明,陈连旺.兰州:中国地震局兰州地震研究所硕士学位论文:1~79.
    杨兴悦,陈连旺,杨立明,李玉江,谭佩.2013.巴颜喀拉块体强震动力学过程数值模拟.地震学报,35(3):304~314.
    尹和珍,李积明,何钟强,赵乙蘅,蒋国良.2017.黑沙山地区晚三叠世岩体地球化学特征及其成岩环境.青海大学学报(自然科学版),35(1):22~28.
    张洪信,管殿柱.2009.有限元基础理论与ANSYS 11.0应用.北京:机械工业出版社:1~402.
    张咸恭.2000.中国工程地质学.北京:科学出版社:1~534.
    赵远,李时.2008.ANSYS 11.0/LS-DYNA基础理论与工程实践.北京:中国水利水电出版社:1~351.
    Abrajevitch A,Voo R V D,Bazhenov M L,Levashova N M,Mccausland P J A.2008.The role of the Kazakhstan orocline in the late Paleozoic amalgamation of Eurasia.Tectonophysics,455(1):61~76.
    Cawood P A,Buchan C.2007.Erratum to “Linking accretionary orogenesis with supercontinent assembly” by P.A.Cawood and C.Buchan [Earth-Science Reviews 82 (2007) 217–256].Earth Science Reviews,85(1~2):82~83.
    Collins W J.2003.Slab pull,mantle convection,and Pangaean assembly and dispersal.Earth & Planetary Science Letters,205(3):225~237.
    Dai L M,Li S Z,Guo L L,Suo Y H,Zhang J,Hu M Y,Li Q W.2016.Numerical modelling of the relationship between the present tectonic stress field and the earthquakes in the Western Pacific Subduction Zone:Stress and Earthquakes in the WPSZ.Geological Journal,51(S1):609~623.
    Domeier M,Torsvik T H.2014.Plate tectonics in the late Paleozoic.Geoscience Frontiers,5(3):303~350.
    Domeier M,Voo R V D,Torsvik T H.2012.Paleomagnetism and Pangea:The road to reconciliation.Tectonophysics,514~517:14~43.
    Dong L H,Xu Xingwang,Qu Xun,Li Guangming.2009.Tectonic setting and formation mechanism of the circum——Junggar porphyritic copper deposit belts.Acta Petrologica Sinica,25(4):713~737.
    Feng Jianwei,Dai Junsheng,Yan Jihua,Huang Liliang,Wang Jun.2009&.Sedimentary Response to Permian Structural Movements in Wuxia Foreland Thrust Belt of Junggar Basin.Acta Sedimentologica Sinica,27(3):494~502.
    Flesch L M,Holt W E,Haines A J,Shen-Tu B.2000.Dynamics of the Pacific—North American Plate Boundary in the Western United States.Science,287(5454):834.
    Gao Shanghua,She Yawen,Fu Guangyu.2016&.A new method for computing the vertical tectonic stress of the crust by use of hybrid gravity and GPS data.Chinese Journal of Geophysics,59(6):2006~2013.
    Gutiérrezalonso G,Fernándezsuárez J,Weil A B,Murphy J B,Nance R D,Corfú F,Johnston S T.2008.Self-subduction of the Pangaean global plate.Nature Geoscience,1(8):549~553.
    Hong Youmi.2008#.Logging Principle and Comprehensive Interpretation.Shangdong Dongying:Petroleum University Press:1~270.
    Li Jianghai,Li Weibo,Wang Honghao,Mao Xiang,Yang Jingyi,Fu Chenjian.2014&.Global Tectonic Setting during the Late Paleozoic Convergence of Pangea:Discussion of Plate Vortex Trajectory.Acta Geologica Sinica,88(6) :980~991.
    Li Jianghai,Li Weibo,Wang Honghao,Zhang Huatian,Mao Xiang.2013&.Kinematic Analysis of Plate Collision during the Assembly of Pangea in Late Paleozoic.Geological Review,312(6):254~257.
    Lü Ziqiang,Lei Jianshe.2018.Shear-wave velocity structure beneath the central Tien Shan from seismic ambient noise tomography.Journal of Asian Earth Sciences,163:80~89.
    Metcalfe I.2006.Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments:The Korean Peninsula in context.Gondwana Research,9(1):24~46.
    Metelkin D V,Vernikovsky V A,Kazansky A Y,Wingate M T D.2010.Late Mesozoic tectonics of Central Asia based on paleomagnetic evidence.Gondwana Research,18(2):400~419.
    Natal’in B A,?eng?r A M C.2005.Late Palaeozoic to Triassic evolution of the Turan and Scythian platforms:The pre-history of the Palaeo-Tethyan closure.Tectonophysics,404(3):175~202.
    Nerlich R,Colli L,Ghelichkhan S,Schuberth B,Bunge H P.2016.Constraining central Neo‐Tethys Ocean reconstructions with mantle convection models.Geophysical Research Letters,43(18):9595~9603.
    Saccani E,Allahyari K,Beccaluva L,Bianchini G.2013.Geochemistry and petrology of the Kermanshah ophiolites (Iran):Implication for the interaction between passive rifting,oceanic accretion,and OIB-type components in the Southern Neo-Tethys Ocean.Gondwana Research,24(1):392~411.
    Torsvik T H,Steinberger B,Cocks L R M,Burke K.2008.Longitude:Linking Earth’s ancient surface to its deep interior.Earth & Planetary Science Letters,276(3):273~282.
    Torsvik T H,Voo R V D,Preeden U,Niocaill C M,Steinberger B,Doubrovine P V,Hinsbergen D J J V,Domeier M,Gaina C,Tohver E.2012.Phanerozoic polar wander,palaeogeography and dynamics.Earth-Science Reviews,114(3~4):325~368.
    Vicente D G,S,Besse J,Frizon D L,D,Grefflefftz M,Lescanne M,Gueydan F,Leparmentier F.2018.Evidence of hotspot paths below Arabia and the Horn of Africa and consequences on the Red Sea opening.Earth & Planetary Science Letters,487:210~220.
    Voo R V D,Levashova N M,Skrinnik L I,Kara T V,Bazhenov M L.2006.Late orogenic,large-scale rotations in the Tien Shan and adjacent mobile belts in Kyrgyzstan and Kazakhstan.Tectonophysics,426(3):335~360.
    Xu Juntao 1996&.Global changes in the pan-continental period.Progress in natural science:communications of state key laboratories,6 (2):140~145.
    Yang Gaoyue,Li Yongjun,Santosh M,Yang Baokai,Yan Jing,Zhang Bing,Tong Lili.2012.Geochronology and geochemistry of basaltic rocks from the Sartuohai ophiolitic mélange,NW China:Implications for a Devonian mantle plume within the Junggar Ocean.Journal of Asian Earth Sciences,59:141~155.
    Yang Shufeng,Jia Chengzao,Chen Hanlin,Wei Guoqi,Cheng Xiaogan,Jia Dong,Xiao Ancheng,Guo Shaojie.2002&.Evolution of tethys tectonic belt and formation of northern margin basin group and tarim gas exploration prospects.Chinese science bulletin,47(s1):36~43.
    Yang Xingyue.2012&.Numerical simulation of the dynamic process of strong earthquakes in bayankera block on the Qinghai—Tibet plateau.Tutor:Yang Liming,Chen Lianwang.Lanzhou:Lanzhou Seismological Research Institute,China Seismological Administration,master’s degree thesis:1~79.
    Yang Xingyue,Chen Lianwang,Yang Liming,Li Yujiang,Tan Pei.2013&.Numerical simulation on strong earthquake dynamic process of Bayan Har block.Acta Seismologica Sinica,35(3):304~314.
    Yin Hezhen,Li Jiming,He Zhongqiang,Zhao Yiheng,Jiang Guoliang.2017&.Geochemical characteristics and diagenetic environment of the Heishashan late Triassic rock mass.Journal of Qinghai University,35(1):22~28.
    Zahirovic Sabin,Matthews K J,Yang Ting,Flament N,Garrad D,Brocard G,Iwanec J,Hill K,Gurnis M,Hassan R.2018.Tectonics and geodynamics of the eastern Tethys and northern Gondwana since the Jurassic.Aseg Extended Abstracts,2018(1):1~6.
    Zhai Qingguo,Wang Jun,Hu Peiyuan,Lee Haoyang,Tang Yue,Wang Haitao,Tang Suohan,Chung Sunlin.2017.Late Paleozoic granitoids from central Qiangtang,northern Tibetan plateau:A record of Paleo-Tethys Ocean subduction.Journal of Asian Earth Sciences,167:139~151.
    Zhang Hongxin,Guan Dianzhu.2009&.Basic Theory of Finite Element and Application of ANSYS 11.0.Beijing:China Machine Press,1~402.
    Zhang Xiangong.2000#.Engineering geology in China.Beijing:Science Press,1~534.
    Zhang Xiuzheng,Dong Yongsheng,Wang Qiang,Dan Wei,Zhang Chunfu,Deng Mingrong,Xu Wang,Xia Xiaoping,Zeng Jipeng,Liang He.2016.Carboniferous and Permian evolutionary records for the Paleo-Tethys Ocean constrained by newly discovered Xiangtaohu ophiolites from central Qiangtang,central Tibet.Tectonics,35(7):1670~1686.
    Zhao Yuan,Li Shi.2008#.ANSYS 11.0/ ls-dyna basic theory and engineering practice.Beijing:Water Conservancy and Hydropower Press:1~351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700