用户名: 密码: 验证码:
Extensional collapse of the Gondwana orogen: Evidence from Cambrian ma?c magmatism in the Trivandrum Block, southern India
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Extensional collapse of the Gondwana orogen: Evidence from Cambrian ma?c magmatism in the Trivandrum Block, southern India
  • 作者:Qiong-Yan ; Yang ; Sohini ; Ganguly ; E.Shaji ; Yunpeng ; Dong ; V.Nanda-Kumar
  • 英文作者:Qiong-Yan Yang;Sohini Ganguly;E. Shaji;Yunpeng Dong;V. Nanda-Kumar;School of Earth Science and Resources, China University of Geosciences;Department of Earth Science, Goa University;Department of Geology, University of Kerala;State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University;National Center for Earth Science Studies;
  • 英文关键词:Ma?c dykes;;Geochemistry;;Zircon Ue Pb geochronology;;Post-collisional extension;;Gondwana supercontinent
  • 中文刊名:GSFT
  • 英文刊名:地学前缘(英文版)
  • 机构:School of Earth Science and Resources, China University of Geosciences;Department of Earth Science, Goa University;Department of Geology, University of Kerala;State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University;National Center for Earth Science Studies,Akkulam, Trivandrum, India;
  • 出版日期:2019-01-15
  • 出版单位:Geoscience Frontiers
  • 年:2019
  • 期:v.10
  • 基金:funded by Foreign Expert grants to M. Santosh from the China University of Geosciences, Beijing;; SG acknowledges DST INSPIRE Faculty project [IFA 14-EAS-25] for financial support
  • 语种:英文;
  • 页:GSFT201901021
  • 页数:22
  • CN:01
  • ISSN:11-5920/P
  • 分类号:267-288
摘要
The assembly of Late Neoproterozoice Cambrian supercontinent Gondwana involved prolonged subduction and accretion generating arc magmatic and accretionary complexes, culminating in collision and formation of high grade metamorphic orogens. Here we report evidence for mafic magmatism associated with post-collisional extension from a suite of gabbroic rocks in the Trivandrum Block of southern Indian Gondwana fragment. Our petrological and geochemical data on these gabbroic suite show that they are analogous to high Fe tholeiitic basalts with evolution of the parental melts dominantly controlled by fractional crystallization. They display enrichment of LILE and LREE and depletion of HFSE with negative anomalies at Zre Hf and Ti corresponding to subduction zone magmatic regime. The tectonic affinity of the gabbros coupled with their geochemical features endorse a heterogeneous mantle source with collective melt contributions from sub-slab asthenospheric mantle upwelling through slab break-off and arc-related metasomatized mantle wedge, with magma emplacement in subduction to post-collisional intraplate settings. The high Nb contents and positive Nbe Ta anomalies of the rocks are attributed to inflow of asthenospheric melts containing ancient recycled subducted slab components and/or fusion of subducted slab materials owing to upwelling of hot asthenosphere. Zircon grains from the gabbros show magmatic crystallization texture with low U and Pb content. The LA-ICPMS analyses show ~(206) Pb/~(238) U mean ages in the range of 507-494 Ma suggesting Cambrian mafic magmatism. The post-collisional mafic magmatism identified in our study provides new insights into mantle dynamics during the waning stage of the birth of a supercontinent.
        The assembly of Late Neoproterozoice Cambrian supercontinent Gondwana involved prolonged subduction and accretion generating arc magmatic and accretionary complexes, culminating in collision and formation of high grade metamorphic orogens. Here we report evidence for mafic magmatism associated with post-collisional extension from a suite of gabbroic rocks in the Trivandrum Block of southern Indian Gondwana fragment. Our petrological and geochemical data on these gabbroic suite show that they are analogous to high Fe tholeiitic basalts with evolution of the parental melts dominantly controlled by fractional crystallization. They display enrichment of LILE and LREE and depletion of HFSE with negative anomalies at Zre Hf and Ti corresponding to subduction zone magmatic regime. The tectonic affinity of the gabbros coupled with their geochemical features endorse a heterogeneous mantle source with collective melt contributions from sub-slab asthenospheric mantle upwelling through slab break-off and arc-related metasomatized mantle wedge, with magma emplacement in subduction to post-collisional intraplate settings. The high Nb contents and positive Nbe Ta anomalies of the rocks are attributed to inflow of asthenospheric melts containing ancient recycled subducted slab components and/or fusion of subducted slab materials owing to upwelling of hot asthenosphere. Zircon grains from the gabbros show magmatic crystallization texture with low U and Pb content. The LA-ICPMS analyses show ~(206) Pb/~(238) U mean ages in the range of 507-494 Ma suggesting Cambrian mafic magmatism. The post-collisional mafic magmatism identified in our study provides new insights into mantle dynamics during the waning stage of the birth of a supercontinent.
引文
Aldanmaz, E., Koprubasi, N., 2006. Platinum-group-element systematics of peridotites from Ophiolite Complexes of Northwest Anatolia, Turkey:implications for mantle metasomatism by Melt Percolation in a supra-subduction zone environment. International Geology Reviews 48(5), 420-442.
    Aldanmaz, E., Pearce, J., Thirlwall, M., Mitchell, J., 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research 102, 67-95.
    Aldanmaz, E., Yaliniz, M.K., Guctekin, A., Goncuoglu, M.C., 2008. Geochemical characteristics of mafic lavas from the Neotethyan ophiolites in western Turkey:implications for heterogeneous source contribution during variable stages of ocean crust generation. Geological Magazine 145, 37-54.
    Andersen, T., 2002. Correction of common lead in U-Pb analyses that do not report204Pb. Chemical Geology 192, 59-79.
    Bea, F., Fershtater, G.B., Montero, P., Whitehouse, M., Levin, V.Y., Scarrow, J.H.,Austrheim, H., Pushkariev, E.V., 2001. Recycling of continental crust into the mantle as revealed by Kytlym dunite zircons, Ural Mts, Russia. Terra Nova 13,407-412.
    Bindu, R.S., Suzuki, K., Yoshida, M., San tosh, M., 1998. The first report of CHIME monazite age from the south Indian granulite terrain. Current Science 74,852-858.
    Bourdon, E., Eissen,J.-P., Monzier, M., Robin, C., Martin, H., Gotten, J., Hall, M.L., 2002.Adakite-like lavas from Antisana Volcano(Ecuador):evidence for slab melt metasomatism beneath the Andean Northern volcanic zone. Journal of Petrology 43, 199-217.
    Cabral, R.A., Jackson, M.G., Rose-Koga, E.F., Koga, K.T., Whitehouse, M.J.,Antonelli, M.A., Farquhar, J., Day,J.M.D., Hauri, E.H., 2013. Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature496, 490-494.
    Carlson, R.W., 1991. Physical and chemical evidence on the cause and source characteristics of flood-basalt volcanism. Australian Journal of Earth Sciences38, 525-544.
    Carlson, R.W., Hart, W.K., 1988. Flood basalt volcanism in the Northwestern United States. In:Macdougall, J.D.(Ed.), Continental Flood Basalts. Kluwer Academic Publication, Dordrecht, pp. 35-61.
    Carr, M.J., Feigenson, M.D., Bennett, E.A., 1990. Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central-American arc. Contributions to Mineralogy and Petrology 105,369-380.
    Cervantes, P., Wallace, P.J., 2003. Role of H2O in subduction-zone magmatism:new insights from melt inclusions in high-Mg basalts from central Mexico. Geology31, 235-238.
    Chacko,T., Ravindra Kumar, G.R., Newton, R.C., 1987. Metamorphic P-T conditions of Kerala(South India)Khondalite Belt, a granulite facies supracrustal terrain. The Journal of Geology 95, 343-358.
    Chetty, T.R.K., Rao,Y.J.B., 2006. The Cauvery shear zone, Southern Granulite Terrain,India:a crustal-scale flower structure. Gondwana Research 10, 77-85.
    Clark, C., Collins, A.S., Timms, N.E., Kinny, P.D., Santosh, M., 2009. SHRIMP U-Pb age constraints on magmatism and high-grade metamorphism in the Salem Block,southern India. Gondwana Research 16, 27-36.
    Clark, C., Healy, D., Johnson, T., Collins, A.S., Taylor, T.J., Santosh, M., Timms, N.E.,2015. Hot orogens and supercontinent amalgamation:a Gondwanan example from southern India. Gondwana Research 28,1310-1328.
    Collins, A.S., Clark, C., Plavsa, D., 2014. Peninsular India in Gondwana:the tectonothermal evolution of the southern granulite terrain and its Gondwanan counterparts. Gondwana Research 25,190-203.
    Collins, A.S., Santosh, M., Braun, I., Clark, C., 2007. Age and sedimentary provenance of the southern granulites, south India:U-Th-Pb SHRIMP. Precambrian Research155,125-138.
    Condie, K.C., 2001. Mantle Plumes and Their Record in Earth History. Cambridge University Press, London, p. 305.
    Condie, K.C., 2003. Incompatible element ratios in oceanic basalts and komatiites:tracking deep mantle sources and continental growth rates with time.Geochemistry, Geophysics, Geoscystems 4, 2002GC000333.
    Conrad, C.P., Molnar, P., 1999. Convective instability of a boundary layer with temperature-and strain-rate-dependent viscosity in terms of'available buoyancy'. Geophysical Journal International 139, 51-68.
    Cox, K.G., Bell, J.D., Pankhurst, R.J., 1979. The Interpretation of Igneous Rocks.George, Allen and Unwin, London, p. 450.
    Davies, J.H., von Blanckenburg, F., 1995. Slab breakoff:a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters 129, 85-102.
    Defant, M.J., Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662-665.
    DePaolo, D.J., 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallisation. Earth and Planetary Science Letters53,189-202.
    Dilek, Y., Fumes, H., Shallo, M., 2008. Geochemistry of the Jurassic Mirdita Ophiolite(Albania)and the MORB to SSZ evolution of a marginal basin oceanic crust.Lithos 100, 174-209.
    Dokuz, A., 2011. A slab detachment and delamination model for the generation of Carboniferous high-potassium I-type magmatism in the Eastern Pontides, NE Turkey:the Kose composite pluton. Gondwana Research 19, 926-944.
    Elburg, A.M., van-Bergen, V.M., Hoogewerff, J., Foden, J., Vroon, P., ZulkarnainIskandar, I., Nasution-Asnawir, A., 2002. Geochemical trends across an arccontinent collision zone; magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia. Geochimica et Cosmochimica Acta66, 2771-2789.
    Elliott, T., Plank, T., Zindler, A., White, W., Bourdon, B., 1997. Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research 102,14991-15019.
    Erlank, A.J., Kable, E.J.D., 1976. The significance of incompatible elements in MidAtlantic Ridge basalts from 45°N, with particular reference to Zr/Nb. Contributions to Mineralogy and Petrology 54, 281-291.
    Ewart, A., Collerson, K.D., Regelous, M., Wendt J.I., Niu, Y., 1998. Geochemical evolution within the Tonga-Kermadec-Lau arc-back-arc systems:the role of varying mantle wedge composition in space and time. Journal of Petrology 39, 331-368.
    Fei, H., Wiedenbeck, M., Yamazaki, D., Katsura, T., 2013. Small effect of water on upper-mantle rheology based on silicon self diffusion coefficients. Nature 498,213-216.
    Ferrari, L., 2004. Slab detachment and control on mafic volcanic pulse and mantle heterogeneity in Central Mexico. Geology 32, 77-80.
    Foley, S., Tiepolo, M., Vannucci, R., 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417, 837-840.
    Fulmer, E.C., Nebel,O., van Westrenen, W., 2010. High-precision high field strength element partitioning between garnet, amphibole and alkaline melt from Kakanui, New Zealand. Geochimica et Cosmochimica Acta 74, 2741-2759.
    Gallagher, K., Hawkesworth, C.J., 1992. Dehydration melting and generation of continental flood-basalts. Nature 358, 57-59.
    Ganguly, S., Manikyamba, C., Saha, A., Lingadevaru, M., Santosh, M., Rambabu, S.,Khelen, A.C., Purushotham, D., Linga, D., 2016. Geochemical characteristics of gold bearing boninites and banded iron formations from Shimoga greenstone belt, India:implications for gold genesis and hydrothermal processes in diverse tectonic settings. Ore Geology Reviews 73, 59-82.
    Gerya, T.V., Yuen, D.A., Maresch, W.V., 2004. Thermomechanical modelling of slab detachment. Earth and Planetary Science Letters 226,101-116.
    Gibson, S.A., Thompson, R.N., Leonardos, O.H., Dickin, A.P., Mitchell, J., 1995. The Late Cretaceous impact of the Trindade Mantle Plume:evidence from largevolume, mafic, potassic magmatism in SE Brazil. Journal of Petrology 36,189-229.
    Green, T.H., Blundy, J.D., Adam, J., Yaxley, G.M., 2000. SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2-7.5 GPa and 1080-1200℃. Lithos 53,165-187.
    Harley, S.L.,Nandakumar, V., 2016. New evidence for Palaeoproterozoic high grade metamorphism in the Trivandrum Block, Southern India. Precambrian Research280,120-138.
    Hawkesworth, C.J., Rogers, N.W., Vancalsteren, P.W.C., 1984. Mantle enrichment processes. Nature 311, 331-335.
    Hawkesworth, C.J., Turner, S.P., McDermott, F., Peate, D.W., van Calsteren, P., 1997.U-Th isotopes in arc magmas:implications for element transfer from the subducted crust. Science 276, 551-555.
    He, Q., Xiao, L., Balta, B., Gao, R., Chen, J., 2010. Variety and complexity of the LatePermian Emeishan basalts:reappraisal of plume-lithosphere interaction process. Lithos 119, 91-107.
    He, X.F., Santosh, M., Tsunogae, T., Malaviarachchi, S.P.K., 2016a. Early to late Neoproterozoic magmatism and magma mixing-mingling in Sri Lanka:implications for convergent margin processes during Gondwana assembly. Gondwana Research 32,151-180.
    He, X.F., Santosh,M., Tsunogae, T., Malaviarachchi, S.P.K., Dharmapriya, P.L., 2016b.Neoproterozoic arc accretion along the'eastern suture'in Sri Lanka during Gondwana assembly. Precambrian Research 279, 57-80.
    Hergt, J., Peate, D., Hawkesworth, C.J., 1991. The petrogenesis of Mesozoic Gondwana low Ti fold basalts. Earth and Planetary Science Letters 105,134-148.
    Hofmann, A.W., 1997. Mantle geochemistry:the message from oceanic volcanism.Nature 385, 219-229.
    Houseman, G.A., Mckenzie, D.P., Molnar, P., 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. Journal of Geophysical Research 86, 6115-6132.
    Hu, C.N., Santosh, M., Yang, Q.Y., Kim, S.W., Nakagawa, M., Maruyama, S., 2017.Magmatic and metasomatic imprints in a long-lasting subduction zone:evidence from zircon in rodingite and serpentinite of Kochi, SW Japan. Lithos274-275, 349-362.
    Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523-548.
    Irving, A.J., Frey, F.A., 1978. Distribution of trace elements between garnet megacrystas and host volcanic liquids of kimberlitic to rhyolitic composition. Geochimica et Cosmochimica Acta 42, 771-787.
    Iwamori, H., Nakamura, H., 2015. Isotopic heterogeneity of oceanic, arc and continental basalts and its implications for mantle dynamics. Gondwana Research27, 1131-1152.
    Jenner, F.E., Bennett, V.C., Nutman, A.P., Friend, C.R.L.,Norman, M.D., Yaxley, G.,2009. Evidence for subduction at 3.8 Ga:geochemistry of arc-like metabasalts from the southern edge of the Isua Supracrustal Belt. Chemical Geology 261,82-97.
    Jensen, L.S., 1976. A New Cation Plot for Classifying Sub-alkaline Volcanic Rocks.Miscellaneous Papers, Ontario Division of Mines, MP66, p. 22.
    Jiang, Y.H., Jiang, S.Y., Dai, B.Z., Liao, S.Y., Zhao, K.D., Ling, H.F., 2009. Middle to late Jurassic felsic and mafic magmatism in southern Hunan province, southeast China:implications for a continental arc to rifting. Lithos 107,185-204.
    Katayama, I., Hirose, K., Yurimoto, H., Nakashima, S., 2003. Water solubility in majoritic garnet in subducting oceanic crust. Geophysical Research Letters 30.https://doi.org/10.1029/2003GL018127.
    Kay, R.W., Kay, S.M., 1993. Delamination and delamination magmatism. Tectonophysics 219.177-189.
    Kelemen, P., 1990. Reaction between ultramafic rock and fractionating basaltic liquid I. Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite. Journal of Petrology 31, 51-98.
    Kerrich, R., Wyman, D., Fan, J., Bleeker, W., 1998. Boninite series:low Ti-tholeiite association from the 2.7 Ga Abitibi greenstone belt. Earth and Planetary Science Letters 164, 303-316.
    Keskin, M., 2003. Magma generation by slab steepening and break off beneath a subduction-accretion complex:an alternative model for collision-related volcanism in Eastern Anatolia, Turkey. Geophysical Research Letters 30,8046-8049.
    Keskin,M., 2007. Eastern Anatolia:a hotspot in a collision zone without a mantle plume. In:Fougler, G.,Jurdy, D.M.(Eds.), Plates, Plumes and Planetary Processes.Geological Society of America, Colorado, pp. 693-722.
    Kimura, J., Yoshida, T., 2006. Contributions of slab fluid, mantle wedge and crust to the origin of quaternary lavas in the NE Japan arc. Journal of Petrology 47(11),2185-2232.
    Kimura,J.-I., Nakajima,J., 2014. Behaviour of subducted water and its role in magma genesisin the NE Japan arc:a combined geophysical and geochemical approach.Geochimica et Cosmochimica Acta 143,165-188.
    Kinzler, R.J., 1997. Melting of mantle peridotite at pressures approaching the spinel to garnet transition:application to midocean ridge basalt petrogenesis. Journal of Geophysical Research 102, 853-874.
    Klimm, K., Blundy, J.D., Green, T.H., 2008. Trace element partitioning and accessory phase saturation during H2O-saturated melting of basalt with implications for subduction zone chemical fluxes. Journal of Petrology 49, 523-553.
    Konig, S., Munker, C., Schuth, S., Luguet, A., Hoffmann, J.E., Kuduon, J., 2010.Boninites as windows into trace element mobility in subduction zones. Geochimica et Cosmochimica Acta 74, 684-704.
    Konig, S., Schuth, S., 2011. Deep melting of old subducted oceanic crust recorded by superchondritic Nb/Ta in modern island arc lavas. Earth and Planetary Science Letters 301, 265-274.
    Krishna, A.K., Murthy, N.N., Govil, P.K., 2007. Multi-element analysis of soils by wavelength-dispersive X-ray fluorescence spectrometry. Atomic Spectroscopy28, 202-214.
    Kroner, A., Santosh, M., Hegner, E., Shaji, E., Nanda-Kumar, V., 2015. Palaeoproterozoic ancestry of Pan-African high-grade granitoids in southernmost India:implications for Gondwana reconstructions. Gondwana Research 27,1-37.
    Krystopowicz, N.J., Currie, C.A., 2013. Crustal eclogitization and lithosphere delamination in orogens. Earth and Planetary Science Letters 361,195-207.
    Lai, S., Qin, J., Li, Y., Li, S., Santosh, M., 2012. Permian high Ti/Y basalts from the eastern part of the Emeishan Large Igneous Province, southwestern China:petrogenesis and tectonic implications. Journal of Asian Earth Sciences 47,216-230.
    Lassiter, J.C., DePaolo, D.J., Mahoney, J.J., 1995. Geochemistry of the Wrangellia Flood Basalt Province:implications for the role of continental and oceanic lithosphere in Flood Basalt Genesis. Journal of Petrology 36, 983-1009.
    Le Roex, A.P., Dick,HJ.B., Erlank, A.J., Reid, A.M., Frey, F.A., Hart, S.R., 1983.Geochemistry, mineralogy and petrogenesis of lavas erupted along the Southwest Indian Ridge between the Bouvet Triple Junction and 11 degrees east.Journal of Petrology 24(3), 267-318.
    Liao, F., Chen, N., Santosh, M., Wang, Q., Gong, S., He, C., Mustafa, H.A., 2018. Paleoproterozoic Nb-enriched meta-gabbros in the Quanji Massif, NW China:implications for assembly of the Columbia supercontinent. Geoscience Frontiers 9(2),577-590.
    Lightfoot, P.C., Hawkesworth, C.J., Hergt, J., Naldrett, A.J., Gorbachev, N.S.,Fedorenko, V.A., Doherty, W., 1993. Remobilisation of the continental lithosphere by a mantle plume:major-, trace-element, and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril'sk District, Siberian Trap,Russia. Contributions to Mineralogy and Petrology 114,171-188.
    Liu, S., Kroner, A., Wan, Y., Santosh, M., Shaji, E., Dhanil Dev, S.G., 2016. Late Palaeoproterozoic depositional age for khondalite protoliths in southern India and tectonic implications. Precambrian Research 283, 50-67.
    Liu, S., Zhang, J., Li, Q., Zhang, L., Wang, W., Yang, P., 2012. Geochemistry and U-Pb zircon ages of metamorphic volcanic rocks of the Paleoproterozoic Luliang Complex and constraints on the evolution of the Trans-North China Orogen,North China Craton. Precambrian Research 222-223,173-190.
    Ludwig, K.R., 2003. User's Manual for Isoplot/Ex v30, a Geochronology Toolkit for Microsoft Excel. In:Berkeley Geochronological Center Special Publications, vol.4, pp. 25-31.
    Mahoney, J.J., 1988. Deccan traps. In:Macdougall, J.D.(Ed.), Continental Flood Basalts. Kluwer, Dordrecht, pp. 151-194.
    Manikyamba, C., Ray, J., Ganguly, S., Rajanikanta Singh, M., Santosh, M., Saha, A.,Satyanarayanan, M., 2015. Boninitic metavolcanic rocks and island arc tholeiites from the Older Metamorphic Group(OMG)of Singhbhum Craton, eastern India:geochemical evidence for Archean subduction processes. Precambrian Research271,138-251.
    Maruyama, S., Hasegawa, A., Santosh,M., Kogiso, T., Omori, S., Nakamura, H.,Kawai, K., Zhao, D., 2009. The dynamics of big mantle wedge, magma factory,and metamorphic-metasomatic factory in subduction zones. Gondwana Research 16, 414-430.
    McCulloch, M.T., 1993. The role of subducted slabs in an evolving earth. Earth and Planetary Science Letters 115, 89-100.
    McCulloch, M.T., Gamble, A.J., 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters 102,358-374.
    McDonough, W.F., 1990. Constraints on the composition of the continental lithospheric mantle. Earth and Planetary Science Letters 101,1-18.
    McKenzie, D., 1989. Some remarks on the movement of small melt fractions in the mantle. Earth and Planetary Science Letters 95, 53-72.
    McKenzie, D., Biclkle, M.J., 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology 29, 625-679.
    McKenzie, D.A.N., O'Nions, R.K., 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology 32, 1021-1091.
    Molnar, P., Houseman, G.A., Conrad, C.P., 1998. Rayleigh-Taylor instability and convective thinning of mechanically thickened lithosphere:effects of nonlinear viscosity decreasing exponentially with depth and of horizontal shortening of the layer. Geophysical Journal International 133, 568-584.
    Mullen, E.D.,1983. MnO/TiO2/P2O5:a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters 62, 53-62.
    Muller, D., Rock,N.M.S., Groves, D.I., 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings:a pilot study. Mineralogy and Petrology 46, 259-289.
    Munker, C., Worner, G., Ygodzinski, G., Chrikova, T., 2004. Behaviour of high field strength elements in subduction zones:constraints from Kamchatka--Aleutianarc lavas. Earth and Planetary Science Letters 224, 275-293.
    Patino, L.C., Carr, M.J., Feigenson, M.D., 2000. Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input.Contributions to Mineralogy and Petrology 138, 265-283.
    Pearce, J.A., Parkinson, I.J., 1993. Trace Element Models for Mantle Melting:Application to Volcanic Arc Petrogenesis. In:Geological Society of London Special Publication, vol. 76, pp. 373-403.
    Pearce, J.A., Kempton, P.D., Nowell, G.M., Noble, S.R., 1999. Hf-Nd element an isotope perspective on the nature and provenance of mantle and subduction components in Western Pacific arc-basin systems. Journal of Petrology 40,1579-1611.
    Pearce, J.A., Baker, P.E., Harvey, P.K., Luff, I.W., 1995. Geochemical evidence for subduction fluxes, mantle melting and fractional crystallisation beneath the South Sandwich island arc. Journal of Petrology 36, 1073-1109.
    Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100,14-48.
    Pearce, J.A., Barker, P.F., Edwards, S.J., Parkinson, I.J., 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system,South Atlantic. Contributions to Mineralogy and Petrology 139, 36-53.
    Pearce, J.A., Norry, M.J., 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology 69, 33-47.
    Pearce, J.A., Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences 23, 251-285.
    Pearce, J.A., Vander Laan, S.R., Arculus, R.J., Murton, B.J., Ishii, T., Peate, D.W.,Parkinson, I.J., 1992. Boninite and harzburgite from Leg 125(Bonin-Mariana forearc):a case study of magma genesis during the initial stages of subduction, in Fryer. Proceeding of the Ocean Drilling Program Scientific Results 125, 623-659.
    Peate, D.W., Hawkesworth, C.J., Marta,M.S.M., Nick, W.R., Turner, S.P., 1999. Petrogenesis and stratigraphy of the high-Ti/Y Urubici magma type in the Parana Flood Basalt Province and implications for the nature of Dupal-type mantle in the South Atlantic region. Journal of Petrology 40, 451-473.
    Perfit, M.R., Gust, D.A., Bence, A.E., Arculus, R.J., Taylor, S.R., 1980. Chemical characteristics of Island-arc basalts:implications for mantle sources. Chemical Geology 30, 227-256.
    Plank, T., Kelley, K.A., Zimmer, M.M., Hauri, E.H., Wallace, P.J., 2013. Why do mafic arc magmas contain~4%water on average? Earth and Planetary Science Letters 364, 168-179.
    Plank, T., Lamgmuir, C.H., 1993. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology 145,325-384.
    Plank, T., Langmuir, C.H., 1998. The chemical composition of subducting sediments and its consequences for the crust and mantle. Chemical Geology 145,325-394.
    Plank, T., Ludden, J.N., 1992. Geochemistry of sediments in the Argo Abyssal Plain at Site 765:a continental margin reference section for sediment recycling in subduction zones. Proceedings of the Ocean Drilling Program, Scientific Results123,167-189.
    Polat, A., 2012. Growth of Archean continental crust in oceanic island arcs. Geology40, 383-384.
    Ray, J., Saha, A., Koeberl, C., Thoni, M., Ganguly, S., Hazra, S., 2013. Geochemistry and petrogenesis of Proterozoic mafic rocks from east Khasi Hills, Shillong Plateau,northeastern India. Precambrian Research 230,119-137.
    Reichow, M.K., Saunders, A.D., White, R.V., Al'Mukhamedov, A.I., Medvedev, A.Y.,2005. Geochemistry and petrogenesis of basalts from the West Siberian Basin:an extension of the Permo-Triassic Siberian Traps, Russia. Lithos 79, 425-452.
    Rollinson, H.R., 1993. Using Geochemical Data:Evaluation, Presentation, Interpretation. John Wiley, Chichester, p. 352.
    Rudnick, R.L., Gao, S., 2003. Composition of the continental crust. In:Kusky, T.M.(Ed.), Precambrian Ophiolites and Related Rocks. Elsevier, Amsterdam, pp. 1-64.
    Rudnick, R.L., Ireland, T.R., Gehrels, G., Irving, A.J., Chesley, J.T., Hanchar, J.M., 1999.Dating Mantle Metasomatism:U-Pb Geochronology of Zircons in Cratonic Mantle Xenoliths from Montana and Tanzania(The P.H. Nixon Volume, Proceedings of the Vllth International Kimberlite Conference).
    Saal, A.E., Hauri, E.H., Langmuir, C.H., Perfit, M.R., 2002. Vapour undersaturation in primitive mid oceanic ridge basalt and the volatile content of Earth's upper mantle. Nature 419, 451-455.
    Saccani, E., Beccaluva, L., Coltorti, M., Siena, F., 2004. Petrogenesis and tectonomagmatic significance of the Albanide-Hellenide Subpelagonian ophiolites.Ofioliti 29, 77-95.
    Saccani, E., Beccaluva, L., Photiades, A., Zeda, O., 2011. Petrogenesis and tectonomagmatic significance of basalts and mantle peridotites from the AlbanianGreek ophiolites and sub-ophiolitic melanges. New constraints for theTriassic-Jurassic evolution of the Neo-Tethys in the Dinaride sector. Lithos 124,227-242.
    Safonova, I.Yu, 2009. Intraplate magmatism and oceanic plate stratigraphy of the Paleo-Asian and Paleo-Pacific Oceans from 600 to 140 Ma. Ore Geology Reviews35,137-154.
    Safonova, I.Yu, Simonov, V.A., Buslov, M.M., Ota, T., Maruyama, Sh, 2008. Neoproterozoic basalts of the Paleo-Asian Ocean(Kurai accretion zone, Gorny Altai,Russia):geochemistry, petrogenesis, geodynamics. Russian Geology and Geophysics 49, 254-271.
    Saha, A., Manikyamba, C., Santosh, M., Ganguly, S., Khelen, A.C., Subramanyam, K.S.V.,2015. Platinum Group Elements(PGE)geochemistry of komatiites and boninites from Dharwar Craton, India:implications for mantle melting processes. Journal of Asian Earth Sciences 105, 300-319.
    Saha, A., Ganguly, S., Ray, J., Koeberl, C., Thoni, M., Sarbajna, C., Sawant, S.S., 2017.Petrogenetic evolution of Cretaceous Samchampi-Samteran Alkaline Complex,Mikir Hills, Northeastern India:implications on multiple melting events of heterogeneous plume and metasomatized sub-continental lithospheric mantle.Gondwana Research 48, 237-256.
    Sajona, F.G., Maury, R.C., Bellon, H., Cotton, J., Defant, M., 1996. High field strength element enrichment of Pliocene-Pleistocene island arc basalts, Zamboanga Peninsula, western Mindanao(Philippines). Journal of Petrology 37, 693-726.
    Santosh, M., 1987. Cordierite gneisses of southern Kerala, India:petrology, fluid inclusions and implications for crustal uplift history. Contributions to Mineralogy and Petrology 96, 343-356.
    Santosh, M., 2010. Supercontinent tectonics and biogeochemical cycle:a matter of'life and death'. Geoscience Frontiers 1, 21-30.
    Santosh, M., 2013. Evolution of continents, cratons and supercontinents:building the habitable Earth. Current Science 104, 871-879.
    Santosh, M., Maruyama, S., Sato, K., 2009. Anatomy of a Cambrian suture in Gondwana:Pacific-type orogeny in southern India. Gondwana Research 16,321-341.
    Santosh, M., Liu, D., Shi, Y., Liu, S.J., 2013. Paleoproterozoic accretionary orogenesis in the North China Craton:a SHRIMP zircon study. Precambrian Research 227,29-54.
    Santosh, M., Morimoto, T., Tsutsumi, Y., 2006. Geochronology of the khondalite belt of Trivandrum Block, southern India:electron probe ages and implications for Gondwana tectonics. Gondwana Research 9, 261-278.
    Santosh, M.,Tsunogae, T., Malaviarachchi, S.P.K., Zhang, Z., Ding, H., Tang, L.,Dharmapriya, P.L., 2014. Neoproterozoic crustal evolution in Sri Lanka:Insights from petrologic, geochemical and zircon U-Pb and Lu-Hf isotopic data and implications for Gondwana assembly. Precambrian Research 255,1-29.
    Santosh, M.,Yang, Q.Y., Shaji,E.,Ram Mohan, M.,Tsunogae, T., Satyanarayanan, M.,2016. Oldest rocks from Peninsular India:evidence for Hadean to Neoarchean crustal evolution. Gondwana Research 29,105-135.
    Santosh, M., Yang, Q.Y., Shaji, E., Tsunogae, T., Mohan, M.R., Satyanarayanan, M.,2015. An exotic Mesoarchean microcontinent:the Coorg Block, southern India.Gondwana Research 27,165-195.
    Santosh, M., Yokoyama, K., Sekhar, S.B., Rogers,J.J.W., 2003. Multiple tectonothermal events in the Granulite Block of Southern India revealed from EPMA dating:implications on the history of supercontinents. Gondwana Research 6,29-63.
    Santosh, M., Hu, C.N., He, X.F., Li, S.S., Tsunogae, T., Shaji, E., Indu, G., 2017. Neoproterozoic arc magmatism in the southern Madurai Block, India:subduction,relamination, continental outbuilding, and the growth of Gondwana. Gondwana Research 45,1-42.
    Sato, M., Shuto, K., Uematsu, M., Takahashi, T., Ayabe, M., Takanashi, K., Ishimoto, H.,Kawabata, H., 2013. Origin of Late Oligocene to Middle Miocene adakitic andesites, high magnesian andesites and basalts from the back-arc margin of the SW and NE Japan arcs. Journal of Petrology 54, 481-524.
    Satyanarayanan, M., Balaram, V., Sawant, S.S., Subramanyam, K.S.V., Krishna, G.V.,2014. High precision multielement analysis on geological samples by HR-ICPMS. In:Aggarwal, S.K., Jaisan, P.G., Sarkar, A.(Eds.), 28th ISMAS Symposium and Workshop on Mass Spectrometry ISMAS Secretariat, Mumbai,pp. 181-184.
    Saunders, A.D., Norry, M.J., Tarney, J., 1988. Origin of MORB and chemically-depleted mantle reservoirs:trace element constrains. Journal of Petrology(Special Lithosphere Issue)415-445.
    Saunders, A.D., Storey, M., Kent, R.W., Norry, M.J., 1992. Consequences of plumelithosphere interactions. In:Storey, B.C., Alabaster, T., Pankhurst, R.J.(Eds.),Magmatism and the Causes of Continental Breakup, Geological Society of London Special Publication, vol. 68, pp. 41-60.
    Saunders, A.D., Tarney,J., Weaver, J., 1980. Transverse geochemical variations across the Antarctic Peninsula:implications for the genesis of calc-alkaline magmas.Earth and Planetary Science Letters 46, 344-360.
    Schuth, S.,Munker, C.,Konig, S., Qopoto, C.,Basi, S., Garbe-Schonberg, D.,Ballhaus, C., 2009. Petrogenesis of Lavas along the Solomon Island Arc, SW Pacific:coupling of compositional variations and subduction zone geometry.Journal of Petrology 50, 781-811.
    Shellnutt, J.G., Bhat, G.M., Wang, K., Brookfield, M.E., Jahn, B., Dostal, J., 2014.Petrogenesis of the flood basalts from the Early Permian Panjal Traps, Kashmir,India:geochemical evidence for shallow melting of the mantle. Lithos 204,159-171.
    Sheraton, J.W., Black, L.P., McCulloch, M.T., Oliver, R.L., 1990. Age and origin of a compositionally varied mafic dyke swarm in the Bunger Hills, East Antarctica.Chemical Geology 85, 215-246.
    Shuto, K., Sato, M., Kawabata, H., Osanai, Y., Nakano, N., Yashima, R., 2013. Petrogenesis of Middle Miocene Primitive Basalt, andesite and garnet-bearing adakitic rhyodacite from the Ryozen Formation:implications for the tectonomagmatic evolution of the NE Japan Arc. Journal of Petrology 54, 2413-2454.
    Sklyarov, E.V., Gladkochub, D.P., Mazukabzov, A.M., Menshagin, Y.V., Watanabe, T.,Pisarevsky, S.A., 2003. Neoproterozoic mafic dike swarms of the Sharyzhalgai metamorphic massif, southern Siberian craton. Precambrian Research 122,359-376.
    Song, X.-Y., Qi, H.-W., Robinson, P.T., Zhou, M.-F., Cao, Z.-M., Chen, L.-M., 2008.Melting of the subcontinental lithospheric mantle by the Emeishan mantle plume; evidence from the basal alkaline basalts in Dongchuan, Yunan, Southwestern China. Lithos 100, 93-111.
    Song, X.-Y., Zhou, M.-F., Hou, Z.-Q., Cao, Z.-M.,Wang, Y.-L., Li, Y., 2001. Geochemical constraints on the mantle source of the Upper Permian Emeishan Continental Flood Basalts, Southwestern China. International Geology Review 43, 213-225.
    Song, X.-Y., Zhou, M.-F., Keays, R.R., Cao, Z.-M., Sun, M., Qi, L., 2006. Geochemistry of the Emeishan flood basalts at Yangliuping, Sichuan, SW China:implications for sulphide segregation. Contributions to Mineralogy and Petrology 152, 53-74.
    Spencer, C.J.,Kirkland, C.L.,Taylor,R.J.M., 2016. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology. Geoscience Frontiers 7(4), 581-589.
    Spencer, C.J., Yakymchuk, C., Ghaznavi, M., 2017. Visualising data distributions with kernel density estimation and reduced chi-squared statistic. Geoscience Frontiers 8(6), 1247-1252.
    Stern, R.J., Morris, J., Bloomer, S.H., Hawkins Jr., J.W., 1991. The source of metasomatic fluids and the generation of arc melts:trace element and radiogenic isotope evidence from Eocene boninites, Mariana forearc. Geochimica et Cosmochimica Acta 55,1467-1481.
    Stern, R.J., 2002. Subduction zones. Reviews of Geophysics 40(4), 3-1-3-38.
    Sun, S.S., Mc Donough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts, implications for mantle composition and processes. In:Saunders, A.D.,Norry, M.J.(Eds.), Magmatism in the Ocean Basins, Geological Society of London Special Publication, vol. 42. Blackwell Scientific Publication, UK, pp. 313-345.
    Sweeney, R.J., Duncan, A.R., Erlank, A.J., 1994. Geochemistry and petrogenesis of central Lebombo basalts of the Karoo igneous province. Journal of Petrology 35,95-125.
    Sylvester, P.J., Campbell, I.H., Bowyer, D.A., 1997. Niobium/uranium evidence for early formation of continental crust. Science 275, 521-523.
    Tatsumi, Y., 2005. The subduction factory:how it operates in the evolving Earth.Geological Society of America Today 15, 4-10.
    Taylor, S.R., McLennan, S.M., 1985. The Continental Crust:Its Composition and Evolution. Blackwell, Oxford, p. 312.
    Thompson, R.N., Morrison, M.A., Hendry, G.L., Parry, S.J., 1984. An assessment of the relative roles of crust and mantle in magma genesis:an elemental approach.Philosophical Transactions of the Royal Society of London A310, 549-590.
    Volker, D., Wehrmann, H., Kutterolf, S., Iyer, K., Rabbel,W., Geersen, J., Hoernle, K.,2014. Contrasting input and output fluxes of southern-central Chile subductionzone:water, chlorine and sulphur. International Journal of Earth Science 103(7), 2129-2153.
    Walter, M.J., 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology 39, 29-60.
    Wilson, M., 1989. Igneous Petrogenesis. Unwin Hyman, London, p. 466.
    Woodhead, J.D., Hergt, J.M., Davidson, J.P., Eggins, S.M., 2001. Hafnium isotope evidence for'conservative'element mobility during subduction zone processes.Earth and Planetary Science Letters 192, 331-346.
    Woodhead,J., Eggins, S., Gamble,J., 1993. High field strength and transition element systematics in island arc and back-arc basin basalts:evidence for multi-phase melt extraction and a depleted mantle wedge. Earth and Planetary Science Letters 114, 491-504.
    Xiong, X., Keppler, H., Audetat, A., Ni, H., Sun, W., Li, Y., 2011. Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt. Geochimica et Cosmochimica Acta 75,1673-1692.
    Xu, Y.-G., Ma, J.-L, Frey, F.A., Feigenson, M.D., Liu, J.-F., 2005. Role of lithosphereasthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chemical Geology 224(4), 247-271.
    Yang, Q.Y., Santosh, M., Ganguly, S., Arun-Gokul, J., Dhanil Dev, S.G., Tsunogae, T.,Shaji, E., Dong, Y., Manikyamba, C., 2016b. Melt-fluid infiltration in Archean suprasubduction zone mantle wedge:evidence from geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes from Wynad, southern India. Precambrian Research 281,101-127.
    Yang, Q.Y., Santosh, M., Maruyama, S., Nakagawa, M., 2016a. Proto-Japan and tectonic erosion:evidence from zircon geochronology of blueschist and serpentinite. Lithosphere 8, 386-395.
    Yang, W.B., Niu, H.C.,Shan, Q., Chen, H.Y., Hollings, P., Li,N.B., Yan, S., Zartman, R.E.,2014. Geochemistry of primary-carbonate bearing K-rich igneous rocks in the Awulale Mountains, western Tianshan:implications for carbon-recycling in subduction zone. Geochimica et Cosmochimica Acta 143,143-164.
    Yaxley, G.M., 2000. Experimental study of the phase and melting relations of homogeneous basalt+peridotite mixtures and implications for the petrogenesis of flood basalts. Contributions to Mineralogy and Petrology 139, 326-338.
    Yogodzinski, G.M., Kay, R.W., Volynets, O.N., Koloskov, A.V., Kay, S.M., 1995.Magnesian andesite in the western Aleutian Komandorsky region:implications for slab melting and processes in the mantle wedge. The Geological Society of America Bulletin 107, 505-519.
    Yuan, H.L., Gao, S., Liu, X.M., Li, H.M., Gunther, D., Wu, F.Y., 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostandards Newsletter 28, 353-370.
    Zhao,J.J., Zhou, M.F., 2007. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district(Sichuan Province, SW China):implications for subduction related metasomatism in the upper mantle. Precambrian Research 152, 27-47.
    Zhao, J.-X., Shiraishi, K., Ellis, D.J., Sheraton, J.W., 1995. Geochemical and isotopic studies of syenites from the Yamato Mountains, East Antarctica:implications for the origin of syenitic magmas. Geochimica et Cosmochimica Acta 59,1363-1382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700