用户名: 密码: 验证码:
应力对锂离子电池中空碳包覆硅负极电化学性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of stress on electrochemical performance of hollow carbon-coated silicon snode in lithium ion batteries
  • 作者:孙凤楠 ; 冯露 ; 卜家贺 ; 张静 ; 李林安 ; 王世斌
  • 英文作者:Sun Feng-Nan;Feng Lu;Bu Jia-He;Zhang Jing;Li Lin-An;Wang Shi-Bin;Tianjin Key Laboratory of Modern Engineering Mechanics;Department of Mechanics, School of Mechanical Engineering, Tianjin University;
  • 关键词:电化学-力耦合 ; 中空碳包覆硅负极 ; 有限元数值计算 ; 循环稳定性
  • 英文关键词:electrochemical-mechanical coupling;;hollow carbon coated silicon particles;;finite element numerical method;;cyclic stability
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:天津市现代工程力学重点实验室;天津大学机械学院力学系;
  • 出版日期:2019-06-23
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:11272231,11472186,11572218)资助的课题~~
  • 语种:中文;
  • 页:WLXB201912002
  • 页数:10
  • CN:12
  • ISSN:11-1958/O4
  • 分类号:42-51
摘要
针对锂离子电池硅及其复合电极材料,采用Cahn-Hilliard型扩散方程与有限变形理论全耦合的电化学-力模型来描述其在循环锂化过程中的扩散和力学相关性问题,构造高效的数值算法,在商用有限元软件平台上实现对该理论的数值求解.在此基础上,研究了硅电极恒流锂化和脱锂过程,基于界面反应动力学,得到电压响应曲线,计算结果整体趋势与实验结果吻合较好,同时预测的应力响应也与实验结果一致,验证了本方法的有效性.其次,研究了中空碳包覆硅负极锂化过程中的电化学与力学行为,计算结果表明,锂化期间中空碳包覆硅负极应力水平明显低于实心硅负极,随锂化的进行,应力差值越来越大,锂化结束时应力值降低约27%,这种应力的缓解提高了整个电极内化学势水平,使得锂离子浓度水平显著提高,更易达到完全锂化状态.同时,数值研究表明应力水平的缓解延缓了中空碳包覆硅负极的容量衰减(容量提升74%),充分显示出该电极良好的电化学性能.本研究揭示了应力对硅复合电极容量影响的作用机制,为将连续介质电化学-力耦合理论应用于实验预测提供了途径并为电极材料设计提供了理论依据.
        Electrochemical-mechanical coupling mechanism plays an important role in stress relaxation and cycle stability during charging and discharging of lithium ion batteries. The hollow core-shell structure has become a research hotspot in recent years due to the dual effects of its carbon layer and internal voids on volume expansion. However, the theory of diffusion induced stress has not been used to determine how the elastoplastic deformation of amorphous silicon affects the electrochemical performance of silicon anodes with more complex geometries. Based on the Cahn-Hilliard type of material diffusion and finite deformation, a fully coupled diffusion-deformation theory is developed to describe the electrochemical-mechanical coupling mechanism of silicon-polar particles. According to the interface reaction kinetics, the voltage response curve is obtained. The overall trend of the calculated results accords well with the experimental results, and the predicted stress response is also consistent with the experimental result, and thus verifying the effectiveness of the method.Taking the hollow carbon-coated silicon structure that has received much attention in recent years as an example, we study the electrochemical and mechanical behavior during lithiation of hollow carbon-coated silicon anodes and the capacity decay and stress evolution after charge and discharge cycles. The numerical simulation results show that the stress level of the hollow carbon-coated silicon electrode is significantly lower than that of the solid silicon electrode during the whole lithiation. With the lithiation, the stress difference becomes larger and the stress value at the end of lithiation is reduced by about 27%. It fully shows the dual effects of carbon layer and internal pores on stress relaxation and release. In addition, the concentration gradient in the solid silicon negative electrode is too large, which will result in greater stress. In contrast, the lithium ion concentration inside the hollow carbon-coated silicon particles during lithiation is significantly higher than that of the solid silicon particles, and tends to be evenly distributed, which conduces to alleviating the mechanical degradation of the electrode. At the same time, the hollow carbon coated silicon electrode reaches the fully lithiated state earlier, which fully shows the excellent electrochemical performance of the hollow core-shell structure. Finally, the numerical calculation shows that the capacity attenuation is quite consistent with the experimental measurements. Mitigation of stress levels under structural control delays the attenuation of the capacity of hollow carbon-coated silicon anodes. The excellent cycle stability can be attributed to the dual effect of carbon coating and internal pores on volume expansion and stress relief.
引文
[1] Cheng Y, Li J, Jia M, Tang Y W, Du S L, Ai L H, Yin B H,Ai L 2015 Acta Phys.Sin. 64 210202(in Chinese)[程的,李劼,贾明,汤依伟,杜双龙,艾立华,殷宝华,艾亮2015物理学报64 210202]
    [2] Jiang Y H, Ai L, Jia M, Cheng Y, Du S L, Li S G 2017 Acta Phys.Sin. 66 118202(in Chinese)[蒋跃辉,艾亮,贾明,程昀,杜双龙,李书国2017物理学报66 118202]
    [3] Zhang J Q, LuB, Song Y C 2017 Chin. Quart. Mech. 38 14(in Chinese)[张俊乾,吕浡,宋亦诚2017力学季刊38 14]
    [4] DeLuca C M, Maute K, Dunn M L 2011 J. Power Sources196 9672
    [5] Liu N, Lu Z, Zhao J, Mcdowell M T, Lee H W, Zhao W, CuiY 2014 Nat. Nanotechnol. 9 187
    [6] Sun Y, Liu N, Cui Y 2016 Nat. Energy 1 16071
    [7] Jia Z, Li T 2015 J. Power Sources 275 866
    [8] Yao Y, McDowell M T, Ryu I, Wu H, Liu N, Hu L, Nix W D, Cui Y 2011 Nano Lett. 11 2949
    [9] Hu B, Ma Z S, Lei W, Zou Y, Lu C 2017 Theor. Appl. Mech.Lett. 7 199
    [10] Ma Z S, Xie Z C, Wang Y, Zhang P P, Pan Y, Zhou Y C, Lu C 2015 J. Power Sources 290 114
    [11] Zhang X Y, Song W L, Liu Z L, Chen H S, Li T, Wei Y J,Fang D N 2017 J. Mater. Chem. A 51 2793
    [12] Cho J 2010 J. Mater. Chem. 20 4009
    [13] Luo F, Liu B, Zheng J, Chu G, Zhong K, Li H, Huang X,Chen L 2015 J. Electrochem. Soc. 162 A2509
    [14] Terranova M L, Orlanducci S, Tamburri E, Guglielmotti V,Rossi M 2014 J. Power Sources 246 167
    [15] Hao F, Fang D 2013 J. Electrochem. Soc. 160 A595
    [16] Su L W, Zhou Z, Ren M M 2010 Chem. Commun. 46 2590
    [17] Hwa Y, Kim W S, Hong S H, Sohn H J 2012 Electrochim.Acta 71 201
    [18] Yan D, Bai Y, Yu C, Li X, Zhang W 2014 J. Alloys Compd.609 86
    [19] Xu Y, Zhu Y, Wang C 2014 J. Mater. Chem. A 2 9751
    [20] Shao D, Tang D, Mai Y, Zhang L 2013 J. Mater. Chem. A 115068
    [21] Ma X, Liu M, Gan L, Tripathi P K, Zhao Y, Zhu D, Xu Z,Chen L 2014 Phys. Chem. Chem. Phys. 16 4135
    [22] Liu N, Wu H, McDowell M T, Yao Y, Wang C, Cui Y 2012Nano Lett. 12 3315
    [23] Ashuri M, He Q, Liu Y, Zhang K, Emani S, Sawicki M S,Shamie J S, Shaw L L 2016 Electrochim. Acta 215 126
    [24] Ashuri M, He Q, Zhang K, Emani S, Shaw L L 2016 J. SolGel. Sci. Technol. 82 201
    [25] Guo Z, Ji L, Chen L 2017 J. Mater. Sci. 52 13606
    [26] Zhang J, Lu B, Song Y, Ji X 2012 J. Power Sources 209 220
    [27] Song Y, Shao X, Guo Z, Zhang J 2013 J. Phys. D:Appl.Phys. 46 105307
    [28] Song X, Lu Y J, Shi M L, Zhao X, Wang F H 2018 Acta Phys.Sin.67 140201(in Chinese)[宋旭,陆勇俊,石明亮,赵翔,王峰会2018物理学报67 140201]
    [29] Zhao Y, Stein P, Xu B X 2015 Comput. Meth. Appl. Mech.Eng. 297 325
    [30] Anand L 2012 J. Mech. Phys. Solids 60 1983
    [31] Sethuraman V A, Chon M J, Shimshak M, van Winkle N,Guduru P R 2010 Electrochem. Commun. 12 1614
    [32] Lu Y, Zhang P, Wang F, Zhang K, Zhao X 2018 Electrochim.Acta 274 359
    [33] Ding N, Xu J, Yao Y X, Wegner G, Fang X, Chen C H,Lieberwirth I 2009 Solid State Ionics 180 222
    [34] Pharr M, Suo Z, Vlassak J J 2014 J. Power Sources 270 569
    [35] Bucci G, Nadimpalli S P V, Sethuraman V A, Bower A F,Guduru P R 2014 J. Mech. Phys. Solids 62 276

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700