用户名: 密码: 验证码:
ADS无窗散裂靶热工水力研究进展
详细信息    查看官网全文
摘要
加速器驱动次临界系统(ADS)可将高放长寿命物质转变成非放射性或低放射性和短寿命物质,散裂靶作为连接加速器和反应堆的中间部件,是加速器驱动次临界系统的"心脏"。液态重金属铅铋合金(LBE)是最有前途的流动工质,它为整个系统产生高通量的中子并带走散裂反应热量。ADS无窗散裂靶热工水力研究对其设计优化具有重大的作用,本文总结了ADS无窗散裂靶热工水力的研究进展。ADS无窗散裂靶的研究包括靶型结构及流型和热输运等。欧洲研究机构最先通过数值模拟和实验等方法,对MYRRHA计划的靶型进行了十多年的研究和优化。上海交通大学也开展了流型结构研究工作;本文作者采用数值模拟了流动过程,并在入口加旋转速度以优化回流区。理论推导了流动结构,并数值模拟了热输运过程,分别计算得到了不同质子束流强及能量情况下的温度场。上述回流区优化和热输运研究为ADS无窗散裂靶的设计和优化提供了可靠的依据,特别是对我国ADS的研究和应用具有重要的参考价值。
Accelerator driven sub-critical system(ADS) can translate the high radioactive and longlived substances into non-radioactive or low radioactive and short-lived substances.The target is the'heart' of the system,which couples the accelerator and the reactor.Liquid lead-bismuth eutectic(LBE) is the most promising working fluid which can produce high flux neutron and take the heat deposition away from the system,and the thermal hydraulics of ADS windowless spallation target plays a significant role in the designation and optimization of ADS,and this paper summarizes the thermal hydraulics of ADS windowless spallation target.The research of ADS windowless spallation target includes the target structure,the flow pattern and the heat transfer process.The European research institutions firstly adopt methods of numerical simulation and experimental to design and optimize the target structure in the MYRRHA program for ten years.Shanghai Jiao Tong University also studied flow pattern,and the method of numerical simulation is applied by the author of this paper to study the process of the flowing,and a rotation speed is added at the entrance to optimize the recirculation zone.He also acquires flow pattern through the theoretical derivation,and firstly simulates the heat transfer process and obtains temperature distribution at different proton beam intensity and energy,respectively.The optimization of the recirculation zone and the study of the heat transfer process in the ADS spallation target play an important role and can be applied to the further designation and optimization of the ADS windowless spallation target.
引文
[1]加速器驱动的嬗变实验装置,国家重大科技基础设施规划“十二五”建设项目建议书,中国科学院,2010,5.
    [2]加速器驱动的嬗变系统实验装置(PPT),国家重大科技基础设施建设中长期规划暨“十二五”建设项目建议报告,中国科学院、国防科技工业局,2011,1.
    [3]Y.Kadi,J.P.Revol,Design of an Accelerator-Driven System for the destruction of nuclear waste,Workshop on Hybrid Nuclear Systems for Energy Production,Utilisation of Actinides&Transmutation of Long-Lived Radioactive Waste,Trieste,2001,3-7.
    [4]L.Maciocco,Assessment of turbulence models for heavy liquid metals in computational fluid dynamics,CRS4Technical report,December,2002.
    [5]G.Groetzbach,Turbulence modeling issues in ADS thermal and hydraulic analyses,IAEA Technical Meeting on Theoretical and Experimental Studies of Heavy Liquid Metal Thermal Hydraulics,Karlsruhe,Germany,2003:28-31.
    [6]H.Oigawa,K.Tsujimoto,K.Nishihara,et al,Role of ADS in the back-end of the fuel cycle strategies and associated design activities:The case of Japan,Journal of Nuclear Materials,415,229-236,2011.
    [7]W.Maschek,X.-N.Chen,P.Liu,et al,Safety and design concepts of the 400 MWth-class EFIT accelerator driven transmuter and considerations for further developments,Energy Conversion and Management,51,1764-1773,2010.
    [8]Accelerator and spallation target technologies for ADS applications,Nuclear ScienceOSBN 92-64-01056-4),No.5421,NEA,OECD,2005.
    [9]K.V.Tichelen,P.Kupschus,H.A.Abderrahim,MYRRHA:design and verification experiments for the windowless spallation target of ADS prototype MYRRHA,Utilisation and Reliability of High Power Proton Accelerators,Workshop Proceedings,Daejeon,Republic of Korea,May 16-19,2004.
    [10]F.Roelofs,N.B.Siccama,B.de Jager,Comparison of the hydraulics in concentric and three feeder XT-ADS windowless spallation target designs,Proceedings of ICAPP'08,Anaheim,CA USA,June 8-12,2008.
    [11]F.Chen,X.L.Huai,J Cai,et al.Investigation on the applicability of turbulent-Prandtl-number models for liquid lead-bismuth eutectic,Nuclear Engineering and Design,257,128-133,2013.
    [12]F.Roelofs,N.B.Siccama,Application of a controlled swirl in the XT-ADS spallation target,Proceeding of ICAPP'08,Anaheim,CA USA,2008.
    [13]A.G.Class,D.Angeli,A.Batta,et al.XT-ADS windowless spallation target thermohydraulic design&experimental setup,Journal of Nuclear Materials,415,3783-3784,2011.
    [14]A.Batta,A.Class,K.Litfin,et al.Numerical study of the water experiment for XT-ADS windowless spallation target,Actinide and fission product partitioning and transmutation,Actinide and Fission Product Partinioning and Transmutation:10th Information Exchange Meeting,Mito,J,October 6-10,2008.
    [15]F.Roelofs,B.Jager,A.Class,et al.European research on HLM thermal-hydraulics for ADS applications,Journal of Nuclear Materials,376,401-404,2008.
    [16]M.Vanderhaegen,J.Vierandeels,B.Arien,CFD analysis of the MYRRHA primary cooling system,Nuclear Engineering and Design,241,775-784,2011.
    [17]V.Sobolev,Thermophysical properties of lead and lead-bismuth eutectic,Journal of Nuclear Materials,362,235-247,2007.
    [18]K.A.Prakash,G.Biswas,B.V.R.Kumar,Thermal hydraulics of the spallation target module of an accelerator driven sub-critical system;A numerical study,International Journal of Heat and Mass Transfer,49,4633-4652,2006.
    [19]G.Y.Su,H.Y.Gu,X.Cheng,Experimental and numerical studies on free surface flow of windowless target,Annals of Nuclear Energy,43,14149,2012.
    [20]苏冠字,柴翔,顾汉洋,等.ADS无窗靶件自由界面流动非稳态特性研究[J],工程热物理学报,2011,32(9):1509-1512.
    [21]刘捷,刘佰奇,张学智,等.ADS无窗散裂靶铅铋合金两相流动过程模拟[J],工程热物理学报,2013,34(9):1683-1686.
    [22]J.Liu,C.Z.Pan,J.F.Tong,et al,Theoretical analysis of recirculation zone and buffer zone in ADS windowless spallation target[J].Annals of Nuclear Energy,2015,77,444-450.
    [23]J.Liu,L.Gao,L.Yang,et al.Effect of adding a swirl on flow pattern and recirculation zone in ADS windowless spallation target,Nuclear Engineering and Design,276,249-258,2014.
    [24]Alt Abderrahim,H.,Kupschus,P.,Jongen,et al,A Multipurpose Accelerator Driven System for R&-D,First Step towards Waste Transmutation,SCK?CEN,Mol,BLG 841,2000.
    [25]V.Mantha,R.Chaudhary,S.Pal,et al.,Intense heat simulation studies on window of high density liquid metal spallation target module for accelerator driven systems,International Journal of Heat and Mass Transfer,49,3728-3745,2006.
    [26]A.Borgohain,B.K.Jaiswal,N.K.Maheshwari,et al.,Natural circulation studies in a lead bismuth eutectic loop,Progress in Nuclear Energy,53,308-319,2011.
    [27]C.Cho,Y.Kim,T.Y.Song,et al.,Numerical design of a 20 MW lead-bismuth spallation target with an injection tube,Nuclear Engineering and Design,238,90-101,2008.
    [28]B.Liu,J.Cai,X.L.Huai,et al,Heat transfer with the growth and collapse of cavitation bubble between two parallel heated walls,International Journal of Heat and Mass Transfer,78,830-838,2014.
    [29]J.Cai,X.F.Li,B.Liu,et al,Effect of cavitating flow on forced convective heat transfer;a modeling study,Chinese Science Bulletin,59(14):1580-1590,2014.
    [30]樊胜,叶沿林,肖玉衡,等.散裂中子靶能量沉积研究,原子能科学技术,2001,35(4):293-299.
    [31]时磊,景桂芬.基于MCNPX对ADS中子源散裂靶的物理研究,四川大学学报(自然科学版),2011,48(4):869-872.
    [32]J.Liu,L.Gao,H.Chen et al.,Two-way coupling simulation of heat transfer in ADS windowless spallation target,in Proceeding of the 21st International Conference on Nuclear Engineering(ICONE'13),vol.3 of Paper No.ICONE21-15903,Chengdu,China,July 2013.
    [33]刘捷,范俊辉,卢文强.质子束能量对ADS无窗散裂靶稳态热输运的影响,工程热物理学报(已接收)。
    [34]J.Liu,L.Gao,W.Q.Lu,The effect of beam intensity on temperature distribution in ADS windowless leadbismuth eutectic spallation target,Science and Technology of Nuclear Installations,984971,2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700