用户名: 密码: 验证码:
百合花中β-葡萄糖和木糖糖苷酶基因的克隆及序列分析
详细信息    查看官网全文
摘要
以‘西伯利亚'百合(Lilium‘Siberia')为材料,克隆得到β-葡萄糖糖苷酶LoGlu和木糖糖苷酶LoXyl基因。LoGlu的ORF长1461bp,编码486个氨基酸(aa)。LoXyl的ORF长2316bp,编码771个氨基酸。蛋白家族结构域分析LoGlu和LoXyl分别含有糖苷水解酶家族1和糖苷水解酶家族3的序列。亚细胞定位信号分析结果显示LoGlu和LoXyl均不存在核定位信号,LoGlu可能定位于细胞质,LoXyl可能定位于线粒体。氨基酸同源序列比对结果表明,LoGlu和LoXyl的同源性较低,可能与保守性基序差异有关。二级结构预测分析结果显示LoGlu含有36.83%的α螺旋残基,18.52%的延伸链,39.83%的无规则卷曲;LoXyl含有21.66%的α螺旋残基,28.02%的延伸链,50.32%的无规则卷曲。
Two glycosidase gene,named LoGlu 和 LoXyl was isolated from the flowers of Lilium' Siberia',The LoGlu gene has an ORF of 1461 bp coding 486 amino acids.The LoXyl gene has an ORF of 2316 bp coding 771 amino acids.Protein predicted domain indicated that LoGlu and LoXyl have CH1 and CH3 sites.It predicted that LoGlu in the cytoplasm and LoXyl in the mitochondrion by Subcellular localization.The result of amino acid sequence alignment reveals that the protein LoGlu 和LoXyl poss little homology,because of the difference of Conserved motifs.The secondary structure prediction results manifests that LoGlu has 36.83%α-helix,18.52%extended strand,39.83%random coil;LoXyl has 21.66%α-helix,28.02%extended strand,50.32%random coil.
引文
1.范燕萍,范丽琨.不同类型百合花瓣挥发性香气成分分析:张启翔:中国观赏园艺研究进展2008[C].北京:中国林业出版社,2008.
    2.Muhlemann J K,Klempien A,Dudareva N.2014.Floral volatiles:from biosynthesis to function[J].Plant Cell and Environment,37(8):1936-1949.
    3.Raguso RA.2008.Wake up and smell the roses:the ecology and evolution of floral scent[J].Annual Review of Ecology,Evolution,and Systematics 39:549-569.
    4.Unsicker SB,Kuneit G,Gershenzon J.2009.Protective perfumes:the role of vegetative volatiles in plant defense against herbivores[J].Current Opinion In Plant Biology 12:479-485.
    5.Ali JG,Alborn HT,Campos-Herrera R,Kaplan F,Duncan LW,Rodriguez-Saona C,Koppenhofer AM,Stelinski LL2012.Subterranean,herbivore-induced plant volatile increases biological control activity of multiple beneficial nematode species in distinct habitats[J].PLoS ONE 7:e38146.
    6.Hiltpold I,Turlings TCJ.2012.Manipulation of chemically mediated interactions in agricultural soils to enhance the control of crop pests and to improve crop yield[J].Journal of Chemical Ecology 38:641-650.
    7.Huang M,Sanchez-Moreiras AM,Abel C,Sohrabi R,Lee S,Gershenzon J,Tholl D.2012.The major volatile organic compound emitted from Arabidopsis thaliana flowers,the sesquiterpene(E)-b-caryophyllene,is a defense against a bacterial pathogen[J].New Phytologist 193:997-1008.
    8.Baldwin IT,Halitschke R,Paschold A,von Dahl CC,Preston CA.2006.Volatile signaling in plant-plant interactions:"Talking trees"in the genomics era[J].Science 311:812-815.
    9.Dudareva N,Negre F,Nagegowda DA,Orlova I.2006.Plant volatiles:recent advances and future perspectives[J].Critical Reviews in Plant Sciences 25:417-440.
    10.Vickers CE,Gershenzon J,Lerdau MT,Loreto F.2009.A unified mechanism of action for volatile isoprenoids in plant abiotic stress[J].Nature Chemical Biology 5:283-291.
    11.Winterhalter P,Skouroumounis GK(1997)Glycoconjugated aroma compounds:occurrence,role and biotechnological transformation.In:Scheper T(ed)Advances in biochemical engineering/biotechnology.Springer,Berlin Heidelberg New York,pp74-105.
    12.Sarry J E,Giinata Z.Plant and microbial glycoside hydrolases Volatile release from glycosidic aroma precursors[J].Food Chemistry,2004,87:509-521.
    13.Jacobson Ft,Schlein Y,Eisenberger C.2001.The biological function of sandfly and Leishmania glycosidases[J].Medical Microbiology and Immunology,190:51-55.
    14.Alfonso F,Emndez M.1991.Synthesis and modification of carbohydrates using glycosidases and lipases[J].Topics in Current Chemistry,186:1-20.
    15.Carl SR,Stephen GW.2000.Glycosidase mechanisms[J].Current Opinion in Chemical Biology,4:573-580.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700