用户名: 密码: 验证码:
辐射场下一步法原位制备还原氧化石墨烯-金复合材料及催化性能
详细信息    查看官网全文
摘要
金纳米催化剂作为最有发展潜力的催化材料之一,近年来得到广泛关注。在对其众多的合成方法中,如何降低由于小尺寸效应和高比表面积效应造成的粒子间团聚是重要的课题。本文在辐射场下,一步法制备了还原氧化石墨烯/金(rGO/Au)复合材料并对其催化性能进行了研究,材料制备过程中不加入任何表面活性剂或其他还原试剂,降低了引入杂原子的可能性,有利于提高材料的纯度,促进催化性能的提高。复合材料的表征结果证明,金纳米粒子均匀分散在rGO表面,尺寸约为10 nm。在紫外分光光度计下研究了复合材料的光催化性能,结果显示,辐射法所制备的复合材料对有机染料亚甲基蓝的降解有良好的催化效果。本文采用核技术手段,为制备还原氧化石墨烯-纳米贵金属催化材料提供了一个新的方法。
Noble metal particles of nanosized have attracted wide spread attentions because of their unusual physicochemical properties compared with bulk materials.As one of the most promising nanocatalysts,gold nanoparticles have been extensively explored for a variety of catalytic reactions in recent years.To overcome the aggregation of the smaller Au NPs which caused by higher surface energy and small size effect is an important issue.In this paper,rGO/Au composite has been prepared via a one pot in situ method.The preparation of the composite is free of surfactant and chemical reducing agents which is benefit to the purity of the product and enhancement of the catalytic properties.The characterization shows that Au nanoparticles are dispersed on the surface of rGO uniformly with the particle size of about 10 nm.The catalytic property was investigate by UVVis spectrum.The results indicate the composite has a good catalytic effect to the degradation of methylene blue(MB).The research provide a new method for the preparation of functional nanomaterials through nuclear technology.
引文
[1]Wang X,Maeda K,Thomas A,Takanabe K,Xin G,Carlsson JM,et al.Nat Mater.2009;8:76-80.
    [2]Yi Z,Ye J,Kikugawa N,Kako T,Ouyang S,Stuart-Williams H,et al.Nat Mater.2010:9:559-64.
    [3]Yang F,Yao Y,Yan Z,Min H,Goodman DW.Applied Surface Science.2013:283:263-8.
    [4]Xiang Q,Yu J,Jaroniec M.Journal of the American Chemical Society.2012;134:6575-8.
    [5]Balandin AA.Nat Mater.2011;10:569-81.
    [6]Wang H,Cui L-F,Yang Y,Sanchez Casalongue H,Robinson JT,Liang Y,et al.Journal of the American Chemical Society.2010;132:13978-80.
    [7]Mai L,Wei Q,An Q,Tian X,Zhao Y,Xu X,et al.Advanced Materials.2013;25:2968-.
    [8]Kou R,Shao Y,Mei D,Nie Z,Wang D,Wang C,et al.Journal of the American Chemical Society.2011;133:2541-7.
    [9]Li H,Han L,Cooper-White JJ,Kim I.Nanoscale.2012;4:1355-61.
    [10]Zhuo Q,Ma Y,Gao J,Zhang P,Xia Y,Tian Y,et al.Inorganic Chemistry.2013;52:3141-7.
    [11]Deng S,Tjoa V,Fan HM,Tan HR,Sayle DC,Olivo M,et al.Journal of the American Chemical Society.2012;134:4905-17.
    [12]Guo X,Hao C,Jin G,Zhu H-Y,Guo X-Y.Angewandte Chemie.2014;126:2004-8.
    [13]Yoo E,Okata T,Akita T,Kohyama M,Nakamura J,Honma I.Nano Letters.2009:9:2255-9.
    [14]Parvez K,Yang S,Hernandez Y,Winter A,Turchanin A,Feng X,et al.ACS Nano.2012;6:9541-50.
    [15]Liang Y,Li Y,Wang H,Zhou J,Wang J,Regier T,et al.Nat Mater.2011;10:780-6.
    [16]Kim S-S,Kim Y-R,Chung TD,Sohn B-H.Advanced Functional Materials.2014;24:2764-71.
    [17]Zhao H,Li Z,Zhang N,Du Y,Li S,Shao L,et al.RSC Advances.2014;4:30467-70.
    [18]Zhao H,Li Z,Zhang N,Li S,Xiong L,Liu S,et al.RSC Advances.2014;4:20247-51.
    [19]Bao C,Song L,Xing W,Yuan B,Wilkie CA,Huang J,et al.Journal of Materials Chemistry.2012;22:6088-96.
    [20]Grayfer ED,Nazarov AS,Makotchenko VG,Kim S-J,Fedorov VE.Journal of Materials Chemistry.2011:21:3410-4.
    [21]Wang H,Liu J,Wu X,Tong Z,Deng Z.Nanotechnology.2013;24:205102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700