用户名: 密码: 验证码:
平流层飞艇及其转运系统力学仿真与优化分析
详细信息    查看官网全文
摘要
侧风条件下,采用FLUENT数值模拟以及ADAMS动力学仿真相结合的方法,分析研究平流层飞艇及其转运系统在放飞场坪(无艇库干扰)时的受力情况,并对转运系统中系留绳弹性模量及飞艇囊皮与腹部支架间的摩擦系数进行优化设计。结果表明,飞艇在放飞场主要受气动升力、侧向力、偏航力矩及俯仰力矩的影响;风载作用下,开始阶段飞艇不断摆动振荡,导致转运系统各部件力不断振荡,然后摆动幅度达到最大,使得各部件力达到最大值.并高出平衡位置的值41%:为防止飞艇与支架发生碰撞,出现转运系统各部件力急剧增大的情况,系留绳弹性模量需大于等于2×10~9N/m~2;为防止偏航角过大,出现转运系统各部件极值力过大的情况,摩擦系数需高于0.3。
Under cross-wind conditions,FLUENT numerical simulation and ADAMS dynamics simulation are conducted to investigate force condition of stratospheric airship and its transfer system in the launch site,then to optimize the elasticity modulus of the captive ropes and the friction coefficient between the airship and its holder.The result showes that,airship is affected by aerodynamic lift,lateral force,yawing moment,pitching moment.At the beginning stage,due to the rotation of airship,the force of transfer system varies with the wind load and the maximum of force is larger than the stable value in the launching apron by 41%.In order to prevent collision between airship and its holder and to prevent the force from increasing sharply,the elasticity modulus of the captive ropes should be no less than 2×10~9 N/m~2.In order to prevent yaw angle and the force of transfer system from increasing sharply,the friction coefficient between the airship and its holder should be no less than 0.3.
引文
[1]Colozza A,Dolce J L,High-Altitude,Long-Endurance Airships for Coastal Surveillance[R].NASA/TM—2005-213427,Glenn Research Center;NASA,2005.
    [2]Androulakakis S P,Judy R A.Status and Plans of High Altitude Airship(HAA~(TM))Program[C]//AIAA LighterThan-Air Systems Technology(LTA)Conference.Daytona Beach,Florida,USA,25-28,March,2013.
    [3]Funk P,Lutz T,Wagner S.Experimental Investigations on Hull-fin Interferences of the LOTTE Airship[J].Aerospace Science and Technology,2003,7;603-610.
    [4]苏国,陈水福.复杂体型高层建筑表面风压及周围风环境的数值模拟[J].工程力学,2006,23(8):144-149.
    [5]Farley R E.Balloon Ascent;3-D Simulation Tool for the Ascent and Float of High-Altitude Balloons[R].AIAA2004-7412,NASA/Goddard Space Flight Center;NASA,2004.
    [6]Joseph B M,Michael A P,Zhao Yi-yuan,Development of an Aerodynamic Model and Control Law Design for a High Altitude Airship[R].OMB No.0704-0188,Witherspoon Street Princeton;Princeton Satellite Systems,2004.
    [7]姚伟,李勇,王文隽,等,平流层飞艇热力学模型和上升过程仿真分析[J].宇航学报,2007,28(3):603-607.
    [8]李波,杨庆山,侯亚委,等.大型客运码头风荷载特性和风环境分析[J].振动与冲击2014,33(17):184-190.
    [9]陈刚.六足步行机器人位姿控制及步态规划研究[D].杭州:浙江大学,2014.
    [10]郭春钊.基于鱼体肌肉模型的虚拟仿鱼机器人优化设计与仿真研究[D].合肥:中国科学技术大学.2007.
    [11]朱德泉.基于联合仿真的机电液一体化系统优化设计方法研究[D].合肥:中国科学技术大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700