用户名: 密码: 验证码:
碳氢燃料超临界压力热裂解和传热数值计算模型的验证
详细信息    查看官网全文
摘要
高超声速飞行器一般通过碳氢燃料在超临界压力下的流动和换热过程来实现对高温部件的热防护(主动再生冷却)。碳氢燃料热物性的剧烈变化以及燃料在高温下出现的裂解吸热化学反应使得该冷却过程十分复杂。数值模拟因而成为超临界压力碳氢燃料湍流换热和裂解吸热现象的一个重要研究手段。在本文中我们对一个相关数值模型进行了较为充分的验证,通过与一系列实验结果的详细对比发现:在不发生裂解化学反应的条件下,除入口段外,数值模型与实验结果基本一致,而在入口段,计算结果与实验数据存在一定的偏差,我们发现其中一个原因是加热壁面上设定的平均热流密度与实际值存在一定的偏差,其他原因还需要进一步的分析;在碳氢燃料发生裂解吸热反应的条件下,数值模型能够准确地预测流动、传热和化学反应过程。
引文
[1]W.R.Wagner,J.M.Shoji.Advanced regenerative cooling techniques for future space transportation systems[C],AIAA 75-1247.
    [2]D.R.Sobel,L.J.Spadaccini.Hydrocarbon Fuel Cooling Technologies for Advanced Propulsion[J].Journal of Engineering for Gas Turbines&Power,1997,119(2):344-351.
    [3]M.Pizzarelli,A.Urbano,F.Nasuti.Numerical Analysis of Deterioration in Heat Transfer to Near-Critical Rocket Propellants[J].Numerical Heat Transfer Applications,2010,57(5):297-314.
    [4]Y.Z.Wang,Y.X.Hua,H.Meng.Numerical studies of supercritical turbulent convective heat transfer of cryogenic-propellant methane[J].Journal of Thermophysics&Heat Transfer,2010,24(3):490-500.
    [5]H.Gu,H.Li,H.Wang,et al.Experimental investigation on convective heat transfer from a horizontal miniature tube to methane at supercritical pressures[J].Applied Thermal Engineering,2013,58(1–2):490-498.
    [6]K.Xu,L.Tang,H.Meng.Numerical study of supercritical-pressure fluid flows and heat transfer of methane in ribbed cooling tubes[J].International Journal of Heat&Mass Transfer,2015,84:346-358.
    [7]L.Wang,Z.Chen,H.Meng.Numerical study of conjugate heat transfer of cryogenic methane in rectangular engine cooling channels at supercritical pressures[J].Applied Thermal Engineering,2013,54(1):237-246.
    [8]M.Pizzarelli,F.Nasuti,M.Onofri,et al.Heat transfer modeling for supercritical methane flowing in rocket engine cooling channels[J].Applied Thermal Engineering,2015,75(2015):600-607.
    [9]T.A.Ward,S.Zabarnick,J.S.Ervin,et al.Simulations of flowing mildly-cracked normal alkanes incorporating proportional product distributions[J].Journal of Propulsion&Power,2004,20(3):394-402.
    [10]T.A.Ward,J.S.Ervin,S.Zabarnick,et al.Pressure effects on flowing mildly-cracked n-decane[J].Journal of Propulsion&Power,2005,21(2):344-355.
    [11]W.Bao,S.Zhang,J.Qin,et al.Numerical analysis of flowing cracked hydrocarbon fuel inside cooling channels in view of thermal management[J].Energy,2014,67(4):149-161.
    [12]B.Ruan,H.Meng,V.Yang.Simplification of pyrolytic reaction mechanism and turbulent heat transfer of n-decane at supercritical pressures[J].International Journal of Heat&Mass Transfer,2014,69(2):455-463.
    [13]Y.Zhu,B.Liu,P.Jiang.Experimental and Numerical Investigations on n-Decane Thermal Cracking at Supercritical Pressures in a Vertical Tube[J].Energy&Fuels,2013,28(1):2187–2193.
    [14]W.Zhou,Z.Jia,J.Qin,et al.Experimental study on effect of pressure on heat sink of n-decane[J].Chemical Engineering Journal,2014,243(4):127-136.
    [15]R.Jiang,G.Liu,X.Zhang.Thermal cracking of hydrocarbon aviation fuels in regenerative cooling microchannels[J].Energy&Fuels,2013,27(5):2563-2577.
    [16]K.Xu,H.Meng.Modeling and Simulation of Supercritical-Pressure Turbulent Heat Transfer of Aviation Kerosene with Detailed Pyrolytic Chemical Reactions[J].Energy&Fuels,2015,29:4137-4149.
    [17]H.Meng,G.C.Hsiao,V.Yang,et al.Transport and dynamics of liquid oxygen droplets in supercritical hydrogen streams[J].Journal of Fluid Mechanics,2005,527(3):115-139.
    [18]H.Meng,V.Yang.A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme[J].Journal of Computational Physics,2003,189(1):277-304.
    [19]H.W.Deng,C.B.Zhang,G.Q.Xu,et al.Density Measurements of Endothermic Hydrocarbon Fuel at Sub-and Supercritical Conditions[J].Journal of Chemical&Engineering Data,2011,56(6):2980-2986.
    [20]H.W.Deng,K.Zhu,G.Q.Xu,et al.Isobaric Specific Heat Capacity Measurement for Kerosene RP-3 in the Near-Critical and Supercritical Regions[J].Journal of Chemical&Engineering Data,2011,57(2):263-268.
    [21]H.W.Deng,C.B.Zhang,G.Q.Xu,et al.Viscosity Measurements of Endothermic Hydrocarbon Fuel from(298 to 788)K under Supercritical Pressure Conditions[J].Journal of Chemical&Engineering Data,2012,57(2):358-365.
    [22]G.Q.Xu,Z.X.Jia,J.Wen,et al.Thermal-Conductivity Measurements of Aviation Kerosene RP-3 from(285 to 513)K at Sub-and Supercritical Pressures[J].International Journal of Thermophysics,2015,36(4):620-632.
    [23]B.Liu,Y.Zhu,J.J.Yan,et al.Experimental investigation of convection heat transfer of n-decane at supercritical pressures in small vertical tubes[J].International Journal of Heat&Mass Transfer,2015,91:734-746.
    [24]王夕,刘波,祝银海等.超临界压力下RP-3在细圆管内对流换热实验研究[J].工程热物理学报,2015(2):360-365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700