用户名: 密码: 验证码:
基于类结构试件的航空发动机叶片超高周疲劳性能试验研究
详细信息    查看官网全文
摘要
航空发动机叶片在服役期内承受的载荷循环要高于传统疲劳极限,而且叶片通常都经过表面强化处理,常用的超高周疲劳试验方法不能正确反映叶片的失效机理。为研究叶片的超高周疲劳破坏行为及表面激光冲击强化对其疲劳性能的影响,本文设计了能模拟叶片振动状态,适合于超高周弯曲振动疲劳试验的类结构试验件,构建了叶片表面激光冲击强化后的有限元模型,并开展了超高周疲劳试验研究。发现了裂纹从类结构件的次表面开始萌生的现象,结果表明TC17钛合金的S-N曲线呈连续下降状态,在10~7~10~(10)周循环之间仍然会发生疲劳断裂。经腐蚀处理后材料的超高周疲劳性能略有降低,而经表面冲击强化处理后超高周疲劳性能显著提高。
The cyclic load number of aero-engine blade during its service life is very likely beyond 10,which is regarded as the conventional fatigue limit.Moreover,surface strengthening is very often used in the manufacturing process of blade.The conventional testing method in the VHCF regime cannot exactly reflect the stress state of the blade,including the mechanism of crack initiation and propagation.To study the fatigue behavior and effects of laser shock peening,a kind of dissymmetrical bending fatigue subcomponent specimen is designed and the laser shock peening model is established.Experiment about TC17 is accomplished by the Ultra-High Cycle bend fatigue system.It is found that the fatigue damage occurs beneath the surface and the S- N curve is continuously rather than multi-step declining in the VHCF regime.Process of surface strengthening has a significant effect on fatigue performance of TC17 titanium alloy.
引文
[1]宋兆泓.航空发动机典型故障分析[M].北京:北京航空航天大学出版社,1993:90-98.
    [2]Department of Defense Handbook Engine Structural Integrity Program(ENSIP)MIL-HDBH-1783B W/CHANGE 2 22.September.2004.
    [3]J Choi,B Dutta,J Mazumder.Spatial Texture of Crystal Texture by Laser DMD Process.TMS 2009 138th Annual Meeting and Exhibition,Materirals Processing and Properties,2009:405-412.
    [4]Morgan JM,Milligan and W Wu;A 1 kHz Servohydraulic Fatigue Testing System,Proc."High Cycle Fatigue of Structure Materials"1997,eds.Soboyejo,W.0.and Srivasan,T.S.,TMS,Warrendale PA,1997:305-312.
    [5]Zimmermann M and Christ H J.Experimentelle Herausforderungen bei der Versuchsfuhrun zur Charakterisierung des Ermudungsverhaltens im Ubergang von HCF zu VHCF,Tagungsband Werktoffprufung 2007,Konstruktion,Qualitatssicherugg und Schadensanalyse,ed.Pohl,M.Verlag Stahleisen GmbH,Dusseldorf,2007:385-391.
    [6]Nicholas T.Step Loading for Very High Cycle Fatigue[J],Fatigue Fract.Engng.Mater.Struct,2002,25;861-869.
    [7]CJ Szczepanski,SK Jha,JM Larsen.The Role of Microstructure on Sequential Stages of the Very High Cycle Fatigue Behavior of an a+p Titanium Alloy,Ti-6Al-2Sn-4Zr-6Mo.The Fifth International Conference Very High Cycle Fatigue,2011,Berlin,Germay:225-230.
    [8]Stefan Heinz,Frank Balle,Guntram.Analysis of Fatigue Properties and Failue Mechanisms of Ti6A14V in the Very High Cycle Fatigue Regime Using Ultrasonic Technology and 3D Laser Scanning Vibrometry.Ultrasonics,2013,53:1433-1440.
    [9]Youshi Hong,Zhengqiang Lei,Chengqi Sun.Propensities of Crack Interior Initiation and Early Growth for Very-HighCycle Fatigue of High Strength Steels.International Journal of Fatigue,2014,58:144-151.
    [10]陶春虎,钟培道,王仁智,等.航空发动机转动部件的失效与预防[M].北京:国防工业出版社,2008.
    [11]柳海龙.复杂边界约束条件下发动机叶片的固有振动特性研究[D].南京:南京航空航天大学,2007.
    [12]李启鹏,何卫峰,仝崇楼,等.航空发动机叶片的激光冲击强化研究.航空精密制造技术,2008(4):37-39.
    [13]王学德,周鑫,王路成,等.GH742合金激光冲击强化后的表面残余压应力[J].机械工程材料,2012,3(36):79~82.
    [14]AJ McEvily,T Nakamura,H Oguma,K Yamashita.On the Mechanism of Very High Cycle Fatigue in Ti-6A1-4V.Scripta Materialia,2008(59):1207-1209.
    [15]Bathias C.Fatigue Fract Eng Mater Struct,1999,(22):559.
    [16]Zuo J H,Wang Z G,Han E H.Effect of Microstructure on Ultra-High Cycle Fatigue Behavior of Ti-6A1-4V.Materials Science and Engineering,2008(A473):147-152.
    [17]David B Lanning,Theodore Nicholas,George K Haritos.Effect of Plastic Prestrain on High Cycle Fatigue of Ti-6A1-4V.Mechanics of Materials,2002(34):127-134.
    [18]赵光菊,钟蜀晖.钛合金疲劳断口形貌及断口分析[J].贵州工业大学学报,2007,36(6):25-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700