用户名: 密码: 验证码:
无陀螺捷联惯导系统初始对准技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无陀螺捷联惯导系统(GFSINS)作为一种自主式导航系统,具有寿命长、成本低、能耗低、反应速度快等特点。由于传统的捷联惯导系统不太适合应用于大过载、大角速度的场合,而无陀螺捷联惯导系统在具有大加速度、大角速度的情况下,仍能正常工作。所以,近年来,无陀螺捷联惯导系统得到广泛研究,取得了许多研究成果,但仍然离工程化、实用化有一定差距。鉴于此,论文以无陀螺捷联惯导系统作为研究对象,分别从加速度计配置、角速度解算、静基座初始对准、动基座初始对准几个方面问题进行了研究讨论。
     首先,根据构成无陀螺捷联惯导系统的加速度计配置的可行性条件,用扩展配置矩阵来分析在有加速度计失效的情况下,判断导航信息是否可完全解算。分析并给出无陀螺捷联惯导系统独立导航的加速度计配置条件。鉴于实用化的考虑,针对自主式对准的无陀螺捷联惯导系统所需要求,采用一种十二加速度计配置的无陀螺捷联惯导系统,该配置方案可在有加速度计失效的情况下,采用不同的加速度计配置方案保证系统的正常工作。
     其次,为了提高系统初始对准精度,对角速度解算方法进行研究。分析积分法和开平方法角速度解算方法的优缺点;详细分析对数算法解算角速度出现问题的原因,并改进对数算法,对积分法、开平方法和改进对数算法解算角速度进行仿真验证。为了消除加速度计随机噪声对解算结果的影响,选择适合的滤波器来估计角速度。
     接着,研究无陀螺捷联惯导系统静基座初始对准问题。研究初始时刻角速度符号的判断方法,并利用开平方法解算角速度的绝对值来确定初始时刻角速度,进而完成粗对准。在失准角为小角度情况下,建立无陀螺捷联惯导系统的误差方程,利用Kalman滤波进行误差估计。由于误差协方差需要在Kalman滤波运算后才能得到各状态的估计效果,而基于分段定常系统(Piece Wise Constant System,简称PWCS)的奇异值可观测度分析方法不需要事先进行Kalman滤波运算,就能得到系统各状态变量的可观测度,将PWCS的奇异值可观测度分析方法应用于GFSINS的误差方程中,为系统方案设计节省了时间。根据角速度常值解算误差,研究角速度常值解算误差的确定方法,利用PWCS的奇异值可观测度分析方法来分析角速度常值解算误差能否利用Kalman滤波器估计出来。在初始方位失准角为大角度情况下,推导非线性对准误差方程,研究EKF、UKF两种非线性滤波方法,对UKF中状态方差阵Pk可能出现负定的情况,利用奇异值分解方法的UT变化来计算Sigma点,求解状态方差阵,对比EKF、SUKF两种非线性滤波方法。
     最后,研究无陀螺捷联惯导系统动基座初始对准问题。分析杆臂效应、载体的震动和挠曲运动对传递对准的影响,推导传递对准模型的误差方程,其中状态方程是惯导系统的误差方程,而量测方程与传递对准的匹配方法相关,匹配方法不同,则量测方程的形式也就不同。本文以无陀螺捷联惯导系统作为子惯导系统,推导速度匹配传递对准的误差方程;推导姿态角匹配和姿态矩阵匹配两种基于姿态信息的匹配算法,对两种匹配方法进行比较;对姿态矩阵匹配传递对准方法进行改进。
Gyroscope-free strapdown inertial navigation system (GFSINS) as an autonomous navigation system has the characteristics with a long life, low cost, low energy consumption, fast response. Traditional strapdown inertial navigation system does not apply in fields of large overload, large angular velocity. GFSINS fixes accelerometer on the carrier, uses the accelerometer output signal to solve linear acceleration and angular velocity vector. This method is especially suitable for difficult situations used in routine application SINS as large acceleration and large angular velocity. This paper discusses aspects of GFSINS, which includes accelerometer configuration, angular velocity calculation, initial alignment approach on stationary base, initial alignment approach on dynamic base.
     Firstly, the feasibility of GFSINS configuration is given:configuration matrix J is full rank. If accelerometer is failed, when isolates failure of the accelerometer, use the remaining accelerometer to constitute GFSINS, and then proposes using the extended configuration matrix to analyze this case, judge navigation information can be completely calculated or not. This paper analyzes accelerometer configuration conditions rely on outside information form, independent GFSINS. Considering engineering realization, a twelve-accelerometer configuration is used in GFSINS, when one accelerometer is failed, it can be ensure to work properly with the different presentation for the system.
     Secondly, angular velocity calculation methods are studied for promoting navigation precision. The advantages and disadvantages are analyzed to methods of integral algorithm, extraction algorithm and logarithmic algorithm for solving angular velocity, and simulation verification. In order to eliminate the influence of random noises of accelerometer, a kind of adaptive filter is designed. Simulation is complete under the different magnitude of noise, variety of noise and initial estimated valve of state variable, and results show adaptive filter has better precision than Kalman filter.
     Then, initial alignment approach on stationary base of GFSINS is studied. To calculate the initial angular velocity of GFSINS, a method is present to determine the symbol of initial angular velocity and uses absolute value of extraction algorithm for angular velocity calculating to determine the initial angular velocity, and then completes the initial coarse alignment. In the case of small misalignment angle, the error equations of the GFSINS are established, Kalman filter is used for error estimates. Since the error covariance in the Kalman filtering method needs to be operational before the estimated effect of each state, and based on Piece Wise Constant System,(referred to PWCS) singular value analysis method does not require a substantial measure prior Kalman filter operation, system state variables can be considerable measure, for the system design time savings. Presents a constant angular velocity calculating method for determining the error, this method can analyze the error calculating constant angular velocity can be estimated using Kalman filter. When the initial azimuth misalignment angle is big, the nonlinear alignment error equations are derived, and the nonlinear filtering methods of EKF and UKF are studied. Because of the possible problem of the state covariance matrix in UKF, The singular value decomposition method of UT transformation is used to calculate Sigma point, and then solves the state covariance matrix. Compared with two nonlinear filtering methods, the results show that the performance of improved UKF algorithm is superior to EKF.
     Finally, initial alignment approach on dynamic base of GFSINS is studied. The impacts on transfer alignment are lever arm effect and flexural movement. Error equations of transfer alignment model are derived, in which the error state equations are the equation of the system, while the measurement equations of transfer alignment model are related to the methods of matching transfer alignment. The measurement equation of the form is different from matching methods. This article discusses several transfer alignment methods, analyzes the advantages and disadvantages of several methods of matching transfer alignment through simulation. Attitude matrix matching method for the transfer alignment is improved, studies the practical of improved attitude matrix matching method, and receives conclusions.
引文
[1]邓正隆.惯性导航原理.哈尔滨工业大学出版社.1994
    [2]万德钧,房建成.惯性导航初始对准.南京大学出版社.1998
    [3]柴卫华,张树侠.捷联惯导系统静基座解析粗对准的误差研究.中国惯性技术学报.1999,7(4):33-37页
    [4]陈令刚,刘建业,孙永荣等.微小型捷联惯导系统解析式对准方法研究.航天控制.2005,23(4):9-12页
    [5]李瑶,徐晓苏,吴炳祥.捷联惯导系统罗经法自对准.中国惯性技术学报.2008,16(4):386-389页
    [6]秦永元,严恭敏,顾冬晴.摇摆基座上基于信息的捷联惯导粗对准研究.西北工业大学学报.2005,23(5):681-684页
    [7]徐博,孙枫,高伟.舰船捷联航姿系统自主粗对准仿真与实验研究.兵工学报.2008,29(4):1467-1473页
    [8]Bar-Itzhack I.Y, Goshen-Meskin D. Unified approach to inertial navigation system error modeling. Journal of Guidance, Control and Dynamics.1992,15(3):648-653
    [9]秦永元.惯性导航.科学出版社.2007
    [10]Dmitriyev S.P, Stepanov O.A. Nonlinear filter methods application in INS alignment, IEEE Tran.AES.1997,33(1):268-276P
    [11]Brock L D. Statistical estimation in inertial navigation systems. Journal of Spacecraft and Rockets.1968,5(2):146-153P
    [12]Bellantoni J.F, Dodge K..W. A Square Root Formulation of the Kalman-Sehmidt Filter.Journal of AIAA.1967,5(7):1309-1314P
    [13]刘立恒.鲁棒滤波及其在导航系统中的应用.哈尔滨工业大学博士学位论文.2002
    [14]王丹力,张洪钺.惯导系统初始对准的非线性滤波算法.中国惯性技术学报.1999,7(3):17-21页
    [15]程向红.捷联惯性导航系统动基座对准技术研究.东南大学博士学位论文.1998
    [16]Joon Goo Park, Jinwon Kim, Jang Gyu Lee. The Enhancement of INS Alignment Using GPS measurement. IEEE Position, Location and Navigation Symposium.1998: 534-540P
    [17]马建军,郑志强.基于插值非线性滤波的SINS静基座初始对准.系统仿真学报.2007,19(12):2752-2759页
    [18]张卫明,张继惟,范子杰等.UKF方法在惯性导航系统初始对准中的应用研究.系 统工程与电子技术.2007,29(4):589-592页
    [19]Wang ya-feng, Sun Fu-chun, Zhang You-an. A Method for Rapid Transfer Alignment Based on UKF. IMACS Multi conference on Computational Engineering in Systems Applications.2006:809-813P
    [20]Eun-Hwan Shin, El-Sheimy N. An unscented Kalman filter for in-motion alignment of low-cost IMU. Position Location and Navigation Symposium.2004:824-836P
    [21]熊凯,张洪钺.粒子滤波在惯导系统非线性对准中的应用.中国惯性技术学报.2003,11(3):20-26页
    [22]丁杨斌,王新龙,王缜等Unscented卡尔曼滤波在SINS静基座大方位失准角初始对准中的应用研究.宇航学报.2006,27(6):1201-1204页
    [23]丁杨斌,申功勋Unscented粒子滤波有静基座捷联惯导系统大方位失准角初始对准中的应用研究.航空学报.2007,28(2):397-401页
    [24]Groves P.D. Transfer alignment using an integrated INS/GPS as the reference. Institute of Navigation,55th Annual Meeting Cambridge, MA,USA.1999:731-737 P
    [25]Groves P.D, Haddock J.C. An All-purpose Rapid Transfer Alignment Algorithm Set. Proc. of the Institute of Navigation, National Technical Meeting 2001. Long Beach,CA. 2001:160-171 P
    [26]Groves P.D, Wilson G.G, Mather C.J. Robust rapid transfer alignment with an INS/GPS reference. Proc. of the 2002 ION National Technical Meeting. California, USA. 2002:301-311 P
    [27]Goshen-Meskin D, Bar-Itzhack I.Y. Observability analysis of piece-wise constant systems-part Ⅰ.Theory IEEE Transactions on Aerospace and Electronic Systems. 1992,28(4):1056-1067 P
    [28]Goshen-Meskin D, Bar-Itzhack I.Y. Observability analysis of piece-wise constant systems-part II:Application to inertial navigation in-flight alignment. IEEE Transactions on Aerospace and Electronic Systems.1992,28(4):1068-1075 P
    [29]Vepa N.M. A Dynamic Alignment System for Applications on Flexible plotforms Such as Ship.Gyro technology.1989:1610-1613 P
    [30]Schneider A.M. Kalman filter formulations for transfer alignment of strapdown inertial units.Navigation.1983,30(1):72-89 P
    [31]Titterton D.H, Weston J.L. Dynamic shipboard alignment techniques. Proceedings of DGON Symposium on Gyro technology.Germany.1987:900-927.
    [32]Titterton D.H, Weston J.L, Rae F. The alignment of ship launched missile IN systems. IEEE Colloquium on Inertial Navigation Sensor Development. London, UK.. 1990:1/1-116.
    [33]Ross C.C, Elbert T.F. A transfer alignment algorithm study based on actual flight test data from a tactical air-to-ground weapon launch. Proc. of the 1994 IEEE Position Location and Navigation Symposium. Las Vegas, NV, USA.1994:431-438 P
    [34]Bar-Itzhack I.Y. Minimal order time sharing filters for INS in-flight alignment. Journal of Guidance, Control, and Dynamics.1982,5(4):396-402 P
    [35]Bar-Itzhack I.Y, Vitek Y. The enigma of false bias detection in a strapdown system during transfer alignment. Journal of Guidance, Control, and Dynamics. 1985,8(2):175-180.
    [36]Farrell J.L. Airborne transfer alignment simulation results. IEEE PLANS Orlando, FL, USA.1988:269-270 P
    [37]Kain J, Cloutier J. Rapid transfer alignment for tactical weapon applications. AIAA Guidance, Navigation and Control Conference. Boston, MA.1989:1290-1300P
    [38]Spalding K. An efficient rapid transfer alignment filter. AIAA Guidance, Navigation and Control Conference. Hilton Head Island,SC.1992:1276-1286 P
    [39]Shortelle K, Graham W. Advanced alignment concepts for precision-guided weapons. Proc. of the Institute of Navigation Technical Meeting. Anaheim, CA.1995:131-142 P
    [40]Graham W, Shortelle K. Advanced Transfer Alignment for Inertial Navigators (A-TRAIN). Proc. of the Institute of Navigation Technical Meeting. Anaheim, CA.1995:113-124 P
    [41]Shortelle K.J, Graham W.R. Rabourn,C..F-16 flight tests of a rapid transfer alignment procedure. IEEE 1998 Position Location and Navigation Symposium. Palm Springs, CA, USA.1998:379-386 P
    [42]俞济祥.惯性导航系统各种传递对准方法讨论.航空学报.1988,9(5):211-217页
    [43]胡国辉,胡恒章.舰载导弹的动基座对准.航天控制.1994,(4):20-25页
    [44]徐晓苏,万德钧.舰载捷联惯性系统中杆臂效应误差的研究.东南大学学报.1994,24(2):122-126页
    [45]马澍田,李贺军.舰载导弹中的捷联惯导系统在动基座上的初始对准.弹箭与制导学报.1996,(4):46-56页
    [46]张炎华,程加斌.鲁棒滤波及舰载武器捷联系统初始对准研究.上海交通大学学报.1997,31(4):65-67页
    [47]王丹力,张洪钺.几种可观性分析方法及在惯导中的应用.北京航空航天大学学报.1999,25(3):342-345页
    [48]杨亚非,谭久彬.惯导系统初始对准技术综述.中国惯性技术学报. 2002,10(2):68-72页
    [49]王司,邓正隆.惯导系统动基座传递对准技术综述.中国惯性技术学报.2003,11(2):61-67页
    [50]张洪铖,张洪华.弹性体上惯性测量系统的传递对准.航空学报.1993,14(11):657-661页
    [51]张海涛,顾冬晴,万彦辉.传递对准精度评估中参考匹配量的转换和修正.西北工业大学学报.2003,21(3):336-339页
    [52]徐清雷,邓正隆,张传斌.捷联惯导系统快速初始对准方法仿真研究.系统仿真学报.2004,16(6):1228-1230页
    [53]朱绍箕.姿态角传递对递对准研究.海军航空工程学院学报.2003,(6):06页
    [54]刘毅,刘志俭.捷联惯性导航系统传递对准技术研究现状及发展趋势.航天控制.2004,22(5):50-55页
    [55]韩军海,陈家斌.舰船在风浪于扰下的快速传递对准技术研究.北京理工大学学报.2004,24(10):894-896页
    [56]岳晓奎,袁建平,卢松华.精确制导炸弹传递对准算法与仿真.系统仿真学报.2006,18(6):1419-1421页
    [57]陈璞,冯培德.一种快速传递对准改进方案的设计仿真.中国惯性技术学报.2001,9(1):16-19页
    [58]周叶,杨莉,汪叔华.空空导弹动基座低成本传递对准技术研究.南京航空航天大学学报(英文版).1999,31(1):116-120页
    [59]肖绝霞,张洪铖.考虑机翼弹性变形时的传递对准方法研究.航天控制.2001,19(2):27-35页
    [60]方群,袁建平.机载导弹捷联惯导系统快速传递对准方法研究.飞行力学.2001,19(4):49-53页
    [61]车忠辉,秦永元.传递对准精度评估中的算法研究.导航与控制.1999,35(3):44-48页
    [62]王司,邓正隆.机载导弹空中二次快速传递对准方法研究.航空学报.2005,26(4):486-489页
    [63]何昆鹏,吴简彤,胡文彬.船用武器捷联姿态基准系统快速传递对准方法研究.中国惯性技术学报.2003,11(003):1-6页
    [64]吴美平,胡小平.捷联惯导系统误差状态可观性分析.宇航学报.2002,23(2):54-57页
    [65]DiNapoli L.D. The Measurement of Angular Velocities without the Use of Gyros,M.S. thesis, The Moore School of Electrical Engineering, University of Pennsylvania, Philadelphia.1965
    [66]Alfred R Schuler. Measuring Rotational Motion with Linear Accelerometers. IEEE Trans. On AES.1967,3(3):465-472 P
    [67]Padgaonkar A.J, Krieger K.W, King A.I. Measurement of angular acceleration of a rigid body using linear acclerometers. Journal of Applied Mechanics. 1975,42(5):552-556P
    [68]Schmuel J Merhav. A Nongyroscopic Inertial Measurement Unit. Journal of Guidance. 1982,5(3):227-235P
    [69]Marcelo C Algrain. Accelerometer-Based Platform Stabilization. SPIE Acquisition, Tracking, and Pointing.1991,1482:367-382P
    [70]Jeng-Heng Chen, Lee S.C, Daniel B. Gyroscope Free Strapdown Inertial Measurement Unit by Six Linear Accelerometers. Journal of Guidance, Control and Dynamics. 1994,17(2):286-290P
    [71]Sou-Chen Lee, Cheng-Yu liu. An Innovative Estimation Method with Own-ship Estimator for an All Accelerometer-type Inertial Navigation System. International Journal of Systems Science.1999,30(12):1259-1266P
    [72]Kirill S Mostov. Design of Accelerometer-based Gyro-free Navigation Systems. Berbekey:University of California.2000:85-136P
    [73]Yaakov Oshman, Markley F.L. Sequential Gyro-less Attitude and Attitude-rate Estimation from Vector Observations. Acta Astronautica.2000,46(7):449-463P
    [74]Kirill S Mostov, Andrey A, Soloviev, T K. Initial Attitude Determination and Correction of Gyro-free INS Angular Orientation on the Basis of GPS Linear Navigation Parameters.2001 IEEE Intelligent Transportation System. 2001:1034-1039P
    [75]Sou-Chen Lee, Yu-Chao Huang. Innovative Estimation Method with Likehood for All-accelerometer Type Inertial Navigation System. IEEE Transactions on Aerospace and Electronic Systems.2002,38(1):339-346P
    [76]赵建伟,马澍田,陈慧.无陀螺捷联惯导系统角速度解算方法的研究.哈尔滨工程大学学报.1999,20(4):40-45页
    [77]尹德进,王宏力,刘光斌.捷联惯导系统六加速度计配置方案研究.中国惯性技术学报.2003,11(2):48-51页
    [78]陈穆清,许江宁,刘强.GFSINS角速度代数提取算法设计.海军工程大学学报.2008,20(5):10-13页
    [79]陈穆清,赵国荣,曲君吾.GFSINS姿态角速度双路组合方案设计.中国惯性技术学报.2006,14(6):15-19页
    [80]Jin Xudan, Mao Zheng, Wei Fuling, Wang Yali. Research on Gyroscope Free Strapdown Inertial Navigation System Based on 3-axis accelerometer[C].The Eighth International Conference on Electronic Measurement and Instruments.2007:967-970 P
    [81]丁明理,王祁,殷栩.基于自适应卡尔健滤波的NGMIMU/GPS组合导航设计.哈尔滨工业大学学报.2006,38(1):67-70页
    [82]赵龙,陈哲.提高无陀螺捷联惯导系统角速度解算精度的新方法.系统仿真学报.2003,15(4):579-603页
    [83]赵建伟,马澎田.提高无陀螺捷联惯导系统角速度解算精度的方法.自动化技术及应用.1999,18(5):42-44页
    [84」赵国荣,陈穆清.一种用于九加速度计GFSINS的姿态角速度辅助算法.系统仿真学报.2007,19(14):3350-3353页
    [85]赵霞.扩展Kalman滤波算法在GFSINS角速度解算中的应用.弹箭与制导学报.2008,28(4):52-54页
    [86]丁明理,王祁,洪亮.无陀螺微惯性测量单元的卡尔曼滤波方法研究.仪器与仪表学报.2003,24(4):310-313页
    [87]王劲松,王祁,孙圣和.基于数据融合理论的无陀螺微惯性测量组合算法研究.南京理工大学学报.2004,28(1):24-28页
    [88]孟松,张志杰,范锦彪.基于BP神经网络的飞行体姿态预测模型.弹箭与制导学报.2008,28(1):138-142页
    [89]曹咏弘,张慧,马铁华.基于神经网络的无陀螺捷联惯导系统姿态预测.中国惯性技术学报.2009,16(2):159-161页
    [90]陈世友,李春花.无陀螺捷联惯导系统方案研究.航空学报.1999,20(6):566-568页
    [91]肖伟光,杜祖良,王祁等.九加速度计NGMIMU实用设计方案.航空学报.2006,27(3):478-482页
    [92]汪小娜,王树宗,朱华兵.无陀螺捷联惯导系统角速度解算方法研究.海军工程大学学报.2008,20(3):15-19页
    [93]史震.无陀螺捷联惯导系统中加速度计配置方式.中国惯性技术学报.2002,10(1):15-19页
    [94]尹德进.捷联惯导系统六加速度计配置方案研究.中国惯性技术学报.2003,11(2):48-51页
    [95]熊永虎,马宝华.弹道修正引信的无陀螺捷联惯性导航方法.探测与控制学报.1999,21(4):3-6页
    [96]牟淑志.无陀螺惯性测量组合仿真及实验研究.南京理工大学博士学位论文.2006
    [97]周百令,黄胜华,王寿荣等.一种新型的单陀螺多加速度计捷联惯导系统.中国 惯性技术学报.2002,10(1):6-9页
    [98]牟淑志,卜雄沫,李永新等.高转速载体惯性测量组合研究.弹道学报.2003,15(4):579-603页
    [99]谭方君,许江宁,李安等.一种准无陀螺惯导系统解算新方法研究.系统仿真学报.2008,20(1):49-52页
    [100]肖长,郝永平,王磊.高转速制导弹药中惯性测量组合的研究.国外电子测量技术.2008,27(10):35-38页
    [101]刘志平,郝艳玲.无陀螺捷联惯导系统静基座粗对准实用方法.中国惯性技术学报.2009,17(2):140-144页
    [102]周红进,许江宁.无陀螺惯性导航系统对准误差分析.弹箭与制导学报.2008,27(4):1-4页
    [103]范蓓蓓,许江宁,周红进.外部信息辅助无陀螺捷联惯导初始对准仿真研究.电子测量与仪器学报.2008年增刊:196-199页
    [104]史震,于秀萍,马澍田.无陀螺捷联式惯性导航系统.哈尔滨工程大学出版社.2007
    [105]丁明理,王祁,洪亮.GPS与无陀螺微惯性测量组合导航系统设计.南京理工大学学报.2005,29(1):99-101页
    [106]刘志平.无陀螺捷联惯导系统若干关键技术研究.哈尔滨工程大学博士学位论文.2010
    [107]丁明理,王祁.模糊逻辑在NGIMU/GPS组合中的应用.哈尔滨工业大学学报.2006,38(12):2044-2048页
    [108]杨波,高社生,张震龙.无陀螺的GFSINS/GPS组合导航新方法研究.弹箭与制导学报.2005,25(2):14-17页
    [109]Mingli Ding, Qingdong Zhou, Qi Wang. The application of self-adaptive Kalman filter in NGIMU/GPS integrated navigation system. The 6th International Conference on Intelligent Systems Design and Application.2006:61-65P
    [110]丁明理,王祁,洪亮等.GPS与无陀螺微惯性测量单元组合导航系统设计.南京理工大学学报.2004,29(1):98-101页
    [111]曹娟娟,房建成,盛蔚.GFMIMU/GPS组合导航系统信息融合技术研究.系统仿真学报.2008,20(2):391-394页
    [112]丁明理,王祁,洪亮等.无陀螺微惯性测量单元的卡尔曼滤波方法研究.仪器仪表学报.2003,34(4):310-313页
    [113]付梦印,邓志红,张继伟.Kalman滤波理论及在导航系统中的应用.科学出版社,2003
    [114]张平,时和平,董长富.基于Sage-Husa自适应滤波组合导航系统的仿真分析.科技信息.2009,9:433-436页
    [115]王永刚.改进Sage_Husa滤波及在GPS/INS容错组合制导中的应用.中国惯性技术学报.2003,11(5):29-35页
    [116]吕伟,王艳东Sage_Husa自适应卡尔曼滤波算法在SINS初始对准中的应用研究.战术导弹控制技术.2005:52-55页
    [117]钱杏芳,林瑞雄,赵亚楠.导弹飞行力学.北京理工大学出版社,2000
    [118]孙静,张树侠.捷联式惯性导航系统.国防工业出版社,1992
    [119]Maybeck P.S. Stochastic models estimation and control. New York:Academic,1982
    [120]Uhlmann J.K. Algorithm for multiple target tracking. American Science. 1992,80(2):128-141 P
    [121]Julier S.J, Uhlmann J.K, Durrant-Whyten H.F. A new approach for filtering nolinear system[A]. Proc of the American Control Conf[C]. Washington:Seattle. 1995:1628-1632 P
    [122]Julier S.J, Uhlmann J.K. A general method for approximating nonlinear transformations for probability distributions[EB/OL]. http://www.robots.ox.ac.uk/-siiu/work/publications/Unscented.zip,1997-09-27.
    [123]Julier S.J, Uhlmann J.K. A consistent, debiased method for converting between polar and Cartesian coordinate systems[A]. The Proc of AeroSense:The 11th Int Symposium on Aerospace/Defense Sensing, Simulation and Controls[C]. Orlando,1997:110-121 P
    [124]Julier S.J, Uhlmann J.K, Durrant-Whyte H.F. A new approach for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans on Automatic Control,2000,45(3):477-482 P
    [125]Julier S.J, Uhlmann J.K. A new extension of the Kalman filter to nonlinear systems[A]. The Proc of AeroSense:11th Int Symposium Aerospace/Defense Sensing, Simulation and Controls[C]. Orlando,1997:54-65 P
    [126]Julier S.J, Uhlmann J.K. A General Method for Approximating Nonlinear Transformations of Probability Distributions.1996
    [127]李金金.EKF与UKF在微型直升机姿态估计中的比较.中国科技论文在线.http://www.paper.edu.cn
    [128]张天光,王秀萍,王丽霞等.捷联惯性导航技术.国防工业出版社.2010
    [129]江红,张炎华,赵忠华.捷联惯性导航系统传递对准的杆臂效应分析.中国造船.2006,47(4):71-75页
    [130]谢莉莉,邱洪波.速度匹配动基座对准杆臂效应补偿试验研究.战术导弹控制技 术.2004,No.4:36-38页
    [131]曹洁,刘光军,高伟等.捷联惯导初始对准中杆臂效应误差的补偿.中国惯性技术学报.2003,11(3):39-44页
    [132]Maybeck P.S. Stochastic models, estimation and control. Volume.1.Academic Press London,1982
    [133]Maybeck P.S. Stochastic models,estimation and control.Volume 2, Academic Press London,1982
    [134]Gelb A. Applied Optimal Estimation.MIT Press,1974
    [135]Yang C, Lin C.F. Tarrant D. Transfer alignment design and evaluation. AIAA Guidance, Navigation and Control Conference.Monterey,CA.1993:1724-1733P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700