用户名: 密码: 验证码:
三级厌氧反应器(3S-AR)设计与处理杨木P-RC APMP废水工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业装备水平的提高和工艺技术的进步,制浆造纸行业的单位产品耗水量在逐年减小,排放废水的浓度越来越高。加之国家节能减排政策的实施,和环境保护要求的不断严格,给废水处理设施的能力提出了更高的要求。当前,根据新的环保排放标准,不少制浆造纸企业,环保压力越来越大,纷纷寻求高效废水处理技术。厌氧生物处理技术具有“负荷高、投资省、能耗低、可回收利用沼气能源、产泥少”等诸多优点,适合我国制浆造纸企业污水处理的实际需求现状。厌氧生物技术在废水处理领域已经得到了广泛的应用,目前还存在投资大、运行费用较高和耐冲击负荷能力较弱等问题。研究开发和推广应用廉价易行的厌氧生物处理技术,必将为我国制浆造纸行业的清洁生产和可持续发展提供有力的支撑。
     详细比较和研究了现有反应器(如IC、EGSB、UASB等)主要优点和缺陷,吸收近年出现的分阶段多相厌氧反应器技术(SMPA)优势,在研究分析典型化学机械浆材种杨木P-RC APMP废水的污染发生量和污染特征的基础上,设计开发出新型三级厌氧反应器( 3S - AR ),使系统兼备结构紧凑、提高耐冲击能力、降低运行成本等特点。采用的设计思路为:1)较大的高径比,占地面积小,三段式设计,满足SMPA技术理念;2)水力流态上形成局部混流,整体推流的运行方式,改善废水沿流程方向泥水混合效果;3)可在整个反应器沿程方向形成不同的优势菌种,实现生物群落的分离,以适应各自不同的环境和底物。
     分析研究了目标废水的污染发生量和污染特征,并采用自行研制的3S-AR反应器(实验室规模)进行处理试验研究,同时用标准UASB反应器进行对照试验。取得的主要结果如下:
     (1)某厂杨木P-RC APMP用于生产铜版纸配抄浆种,产生的废水COD发生量238.25 kg COD/t pulp。BOD/COD值为0.43,属可生化废水,且该废水中金属微量元素的含量能满足厌氧生物处理需要。
     (2)该废水有机污染物中,各种有机酸类物质占有机物总量的95%,其中直链的脂肪酸(如乙、丙、丁酸等一元酸和草酸等二元酸)的含量约54%;含苯环类的芳香酸(如苯甲酸类和苯乙酸类等)的含量约41%;其他为一些醇、酚和酯类物质,含量为4%-5%。
     (3)在容积负荷15-25gCOD/l.d的范围内,废水经反应器后,COD去除率稳定保持在75%以上,当容积负荷在25-28gCOD/l.d时,COD去除率仍能保持在70%以上;水力停留时间是3S-AR反应器的COD去除率的重要影响因子之一。如当HRT≥7.42h,VLR<25 g COD/l.d时,COD去除率可保持在75%以上。
     (4)回流比、上升流速的影响。当容积负荷VLR≥15 gCOD/l.d时,上升流速适宜控制在1.33 m/h - 2.07 m/h。容积负荷VLR=25 gCOD/l.d,上升流速适宜控制在1.68 m/h。
     (5)不同反应器处理能力对比。在容积负荷段在20 gCOD/l.d -28gCOD/l.d范围运行时,3S-AR反应器COD去除率保持在70%以上,当容积负荷为28gCOD/l.d时,UASB反应器的COD去除率仅为52.44%,低于3S-AR反应器72.91%的去除率。
     (6)进水pH的影响。在进水pH 6-8范围内,3S-AR反应器的COD去除率均能保持在75%以上,UASB反应器的COD去除率在56-68%。3S-AR反应器具有良好的pH缓冲能力。
     (7)运行温度的影响。当反应温度从20℃到40℃变化时,3S-AR反应器和UASB反应器的COD去除率均随温度的上升而提高,反应器应尽量保持温度在35-38℃之间。
     (8)适宜的运行工艺条件:容积负荷VLR:20-28gCOD/l.d,HRT≥7.42h,回流比13-20,上升流速控制在1.33-2.07m/h,进水pH 6-8,反应温度:35-38℃。
     (9)杨木P-RC APMP废水中主要有机物通过分子链断裂或苯环开环等方式,实现大分子向小分子的过渡变化,最终形成可被产甲烷菌能直接利用的小分子酸类物质如乙酸,经3S-AR反应器处理出水以含苯类有机物和长链酯类物质为主。
     (10)反应器三个处理单元内中部污泥平均粒径分别为611um、462um和为676um;反应器三单元平均污泥浓度为32.87g/l、43.37g/l和33.67g/l。
     (11) 3S-AR反应器处理具有明显的相分离特性,各级反应器表现出各自不同的运行性能,一级具有水解酸化的作用,二级主要存在有机物的降解和转化过程,三级主要进行了产甲烷过程。
     (12) 3S-AR反应器水力流态介于CSTR和PRF之间,当上升流速Vup≤1.33m/h时,随着上升流速的提高,反应器流态逐步接近于推流,当上升流速Vup>1.33m/h时,随着上升流速的提高,反应器流态逐步趋向于全混流流态。上升流速从0.95m/h提高到2.45m/h时,反应器死区容积率从12.30%逐步下降到1.06%。
With the development of technology of equipment and national energy-saving and emission reduction policies, the unit water consumption in pulp and paper industry is decreasing year by year, wastewater discharge concentration is getting higher and higher, on the other hand, discharge concentration required according to Wastewater Discharge Standard is become more and more stringent, which advance wastewater treatment facilities to a higher demand. Anaerobic biological treatment technology has many adventages of "higher loading, lower investment, lower energy consumption, recyclable use of biogas energy etc.and which is extraordinary suitable for the current situation in China, technology of anaerobic biological , high-efficiency low-cost ,should be strongly advocated and promotion, research and development and promote technology of anaerobic biological treatment has become one of focus and hot research in China's environmental protection field.
     With pulping and paper-making facility modernization and its process technology development, The water consumption in whole process of pulp and paper-making are significantly decreased, on other hand, the pollutant concentration of effluent increased as well. Since the rapid development of economic conditions and requirement of eco-environment protection, the government of China had issued series of regulations to control the air-emission, solid waste and effluent discharges. Recently, the nation start up an action plan, namely“Energy-Saving & Pollutant-Reducing”, therefore, pulp and paper-making mills in China have been being faced upon very strict regulations for environment-protection. With accordance to newly issued waste-water discharge standard GB3544-2008, most of pulp and papermaking enterprises in China have to be seeking some new and efficient effluent treatment technologies to update their current effluent-treatment plants. It has been proven that, Anaerobic biological process had more advantages comparing with aerobic process, such as good ability of endurance of high pollutant load, less energy consumption, energy recovery (nature gas generation) ,less sludge production and so on. Anaerobic biological treatment has been widely applied, at the mean time, some disadvantage points occur, for instance, intensive capital investment, high operation cost, low capacity resisting impact of pollutant load and so on. The development and application of low cost anaerobic biological treatment have been becoming one of reasonable options applied to effluent treatment for clean production and sustainable development of pulp and papermaking industry.
     For the literature study, several typical anaerobic reactors, i.e. IC, EGSB, UASB etc., were compared carefully in aspects of their structures, efficiencies , and advantages……, with combination of the advantages of the Staged Multi-phase Anaerobic Reactor (SMPA). Therefore, the goals of this study can be described as follows: to design three-stage Anaerobic Reactor(3S-AR); characterization of the wastewater from poplar P-RC APMP pulping line; to evaluate the efficiencies of pollutant removal for treatment of such kind effluent using the designed reactor.
     The followed design concepts were considered for these targets as, to compact the system structure, to enhance the capacity of resisting impact, to decrease operation cost:
     (1) Using large ratio of height to diameter of reactor to minimize the occupation area and three-section-connection design to follow the SMPA concept;
     (2) To form regional reverse-flow in the hydraulic flow-regime, with movement pattern of plug-flow; to improve mixing effect of waste-water with granulated sludge along the flow direction;
     (3) To localize different dominant bacteria along the flow direction in the reactor, so the separation of biology community can be carried out to adapt to the different locations and substrates.
     There are several results have been obtained and illustrated as follows, by characterizing the target wastewater and the treatment experimental trials using a self-developed 3S-AR reactor and UASB reactor as contrast:
     (1) COD production of the wastewater from Poplar P-RC APMP line is 238.25kg COD/t pulp, used as furnish for copper paper, the rate of BOD/COD 0.43, which indicates that this type effluent is biodegradable. With containing of trace metals in this effluent, it could be self-sufficient for the demand of salt nutrients for anaerobic treatment process.
     (2) Among all organic pollutants, 95% portion are contributed by various organic acids, of which, 54% from fatty acid (monoacid such as acetic acid, mono-prop acid and butyric acid etc. ; dicarboxylic acid such as oxalic acid etc. ), 41% from aromatic acids and 4%-5% from other substances as alcohol ,phenol and lipid.
     (3) Operation trials of effluent treatment using 3S-AR reactor were carried. The results show that, COD removal is above 75% with changeable volume loads at the range of 15g COD/l. d to 25g COD/l. d, and COD removal above 70% at the range of 25g COD/l.d to 28g COD/l.d. HRT is one of the affective factors on COD removal, in this study, 75% COD removal can be achieved while HRT > 7.42h and VLR < 25 g COD/l.d.
     (4) The effects of reflux ratio, as the formula: (volume of inlet flow - volume of outlet flow)/ volume of inlet flow, and velocity of fluid in reactor: it was suggested to control the velocity within a range of 1.33 m/h to 2.07 m/h while volume loads of greater than 15gCOD/ l.d.
     (5) The effectivities of different type reactors were compared, the results show that: 3S-AR reactor could provide the treated effluent with a COD removal above 72.91% while volume load of 28g COD/l.d , as a contrast, UASB does with a COD removal only around 52.44% at the same volume load; While volume loads between a range of 20 g COD/l.d to 28g COD/ l.d COD, 3S-AR reactor could provide the treated effluent with an average COD removal above 70%;
     (6) The effect of effluent PH of inlet have been investigated: With variety of pH range of 6 to 8, COD removals of 3S-AR reactor are kept above 75%; if COD removal kept below 68%, the 3S-AR reactor could self buffer variety of effluent pH.
     (7) The effect of operation temperature were evaluated: COD removals of both 3S-AR and UASB reactors were increased with increment of operation temperature from 20oC to 40 oC, and the optimized temperature was proposed at the range of 35 oC to 38 oC to support both reactors with excellent COD removals.
     (8) The operation parameters of effluent treatment process using 3S-AR reactor were optimized, reasonable operation process conditions were proposed as: VLR 20~28gCOD/l.d,HRT≥7.42h,reflux ratio 13~20, velocity 1.33~2.07m/h, influent pH 6~8, temperature 35 oC~38 oC.
     (9) Most of organic substances in the effluent are able to be decomposed into low molecular acids, for example, acetic acid, used directly by methanogen to form nature gas. The mechanism of degradation might be explained as bond breaking of molecules or opening of benzene-rings. After reaction in 3S-AR reactor, the main organic substances in effluent can be classified as phenyl organics and long chain ester by GC-MS determination.
     (10) The average size of sludge grains in each unit of the reactor varied from 611um, 462um and 676um, and the average sludge consistency did from 32.87g/l、43.37g/l and 33.67g/l respectively.
     (11) Easy phase disengagement of different micro-organisms in different section of this reactor should be emphasized in this paper, and each section could play its own roles, as hydrolytic acidification reaction occurs in the first phase, the decomposition and conversion of organic substances happened in the second phase, and the methanogenesising reaction in the third phase.
     (12) Hydraulic flow regime of 3S-AR reactor performs both plug-flow and reflux flow which consist of flow performances of CSTR reactor (idol model for fully reflux flow) and PFR reactor (idol model for typical plug-flow). With a maximum up-flow velocity of 1.33m/h, the flow regime in the reactor is approaching to fully plug-flow; while a minimum up-flow velocity of 1.33m/h, the flow regime in the reactor is changing forward to fully reflux-flow. With increment of flow velocity from 0.95m/h to 2.45m/h, the dead-zone volume rate decreased from 12.30% to 1.06% gradually.
引文
[1] Gujer.w.nad ZehnderA.J.B., Conversion Proeesses in anaerobic digestion. Water Seience Tecbnology, 1983,15(8/9):127-167.
    [2]MeCarty.P.L.and D.P. Smith. Anaerobic wastewater treatment. Environxnental ScienceTeehnology,1986,20(12):1200-1206.
    [3] Zakkour P.D.,Gaterell M.R., Griffin.P..Anaerobic treatment of domestic wastewater in temperate climate treatment Plant modeling with economic considerations.Water Research,2001,35(17):137-282.
    [4]钱易.城镇污水厌氧生物处理的研究与实践.中国给水排水,1993,9(1),2730
    [5]贺延龄.废水的厌氧生物处理.北京:中国轻工业出版社,1998
    [6]R.E.斯皮思著.工业废水的厌氧生物技术.北京:中国建筑工业出版社,2001, 7-18;97-98
    [7]Mergaert K.,Vanderhaegen B. and VerstraeteW.Applicability and trends of anaerobic Per-treatment of municipal wastewater.Water Research,1992,26(8):1025-1033
    [8]Lettinga G.,Field J.,and van Lier J., et al.. Advnaced anaerobic wasterwater treatment in the near future .Water Seience and Technology, 1997,35(10):5-12
    [9] van Haandel A.,Frassinetti C.C. and Lettinga G.. The UASB reactor for indusrtial and domestic wastewater treatment .In Environmentalwaste Management:A Euorpean Perspective edit N.Horna,Wiley,Chichester,1996,l-31
    [10] Henze, M. and P. Harremoes.Review paper: Anaerobic treatment of wastewater in fixed film reactors.Water Seience and Technology,1982,15 (8/9):1-94
    [11] Yuji Sekiguchi,Yoichi Kamagata,Hideki Harada. Recent advances in methane fermentation technology. Biotechnology,2001,12(3):277-282
    [12] Gossett, J.and R.L.Belser. Anaeorbic digestion of waste activated sludge. Journal of the Environmental Engineering Division,1982,108(6):1101-1120
    [13]Habets L.H.A.and Knelissen J.N.. Anaerobic Pretreatment reduces mill costs, improves effluence quality. Pulp and Paper,1985,59(4):66-69
    [14]Speece R.E.. Anaerobic biotechnology for industrial wastewatesr. Archae Perss,Nashville,Tennesee,1996,3-257
    [15]Totzke D.E.. Anaerobic treatment technology. 1994 update,Proceedeing 1994 Food Industry Environmental Conference,Ga.Technology Reseacrh Institute,1994,2l
    [16] Nozhevnikova A.N.,Holliger C.,and Ammann A.,et al.. Psychrophilic methanogenesis in sediments of deep lakes. Water SieneceTechnology,1997,36(6-7):57-64
    [17]张自杰主编.废水处理理论与设计.北京:中国建筑工业出版社,2003,830-905
    [18]Lettinga G.,Rebac S.,and Zeeman G.. Challenge of psychrophilic anaerobic Wastewater treatment. TRENDS in Biotechnology,2001,19(9):363-370
    [19]Rebac S., Gerbes S., and Lens. P.,et al.. Kinetics of fatty acid degration by psychrophilically grown anaerobic granular sludge. Bioresource Technology,1999,69(3):241-248
    [20]Stover,E.L.,S. Brooks and K.. Munirathinam,Control of biogas H2S concentrations during anaerobic treatment. AICHE Symposium Series,1994,190-300
    [21]贺延龄.废水的厌氧生物处理.北京:中国轻工业出版社,1999,42-47
    [22]唐受印,戴友芝,等.水处理工程师手册.北京:化学工业出版社,2000,215-403
    [23]陈振民.提高厌氧处理甲烷生成量方法的初步探讨.环境污染治理技术与设备,2004,5(5):43-47
    [24]Sehmidt Jens E.,et al.Granular Sludge Formation in upflow Anaerobic Sludge Blanket(UASB)Reactors.Biotechno1.Bioeng.1996.49:229-246.
    [25]Ren Hongqiang, Chen Jian, et a1.Study On the characteristics of granular sludge bed in Expended Granular Sludge Blanket (EGSB) reactor.The First China/Japan Chemical Engineering Conference. 2000.64-67.
    [26]Lettinga G., et al.Anaerobic waste water treatment as an appropriate technology for developing countries.Trib.Cebedeau,1997, 40(19):21-32.
    [27]陈威,朱雷,梁华杰.废水厌氧生物处理的研究与进展.国外建材科技,2006,27(1):51-53.
    [28]胡纪萃等.废水厌氧生物处理理论与技术.第一版.北京:中国建筑工业出版社,2003.1-186
    [29]Sehmidt Jens E., et al.Granular Sludge Formation in upflow Anaerobic Sludge Blanket (UASB) Reactors.Biotechno1.Bioeng.1996.49:229-246.
    [30]Lettinga G., et al.Anaerobic waste water treatment as an appropriate technology for developing countries.Trib.Cebedeau,1997, 40(19) :21-32.
    [31]Lettinga G, Field J, Van J. Advanced anaerobic wastewater treatment in the near future. Water Science Technology, 1997, 35(10):5-12.
    [32] Lettinga G,Roersma R,Grin P.Anaerobic Treatment of Raw Domestic Sewage At Ambient Temperature Using a Granular Bed UASB Reactor.Biotech Bioeng,1983,25(7):1701-1723 124
    [33] Youssouf Kalogo,Willy Verstraete.Developme~nt of anaerobic sludge bed (ASB) reactor technologies for domestic waste water treatment:motives and perspective.World Journal of Microbiology&Biotechnology,1999,15:523-524
    [34] Agdag O N,Sponza D Anaerobic/aerobic treatment of municipal landfill leachate in sequential two-stage up-flow sludgeblanket reactor(UASB)/completely stirred tank reactor(CSTR)system.Process Biochemistry,2005,40(2):895-902
    [35]匡武,殷福才,孙世群等. UASB工艺在啤酒废水处理中的应用中国给水排水,2006,22(16):62-66
    [36] Vander Last A R M., Lettinga G. Anaerobic treatment of domestic sewage under moderate climatic (Dutch) conditions using upflow reactors at increased superficial level cities.Wat.Sci.Tech,1992,25(7):167-178.
    [37]Auster-mann Haun U, et al.Full scale experiences with anaerobic treatment plants in the food and beverage industry. Wat.Sci.tech,1999,40(1):305-312.
    [38]Zoutberg G R, et al.Anaerobic treatment of potato processing wastewater. Wat. Sci. Tech. 1999,40(1):297-304.
    [39]Dries J,et al.High rate biological treatment of sulfate-rich wastewater in an acetate-fed EGSB reactor. Biodegradation, 1998,9:103-111.
    [40]De Smul, et al.High rates of microbial sulphate reduction in mesophilic ethanol-fed expanded granular sludge blanket reactor. Microbial Biotechnol,1997,48:297-303.
    [41]Hwu C S,et al.Physical chemical and biological performance of expanded granular sludge bed reactors treating long-chain fatty acids. Process Biochemistry,1998,33(1):75-81.
    [42]Rillzema A.Anaerobic digestion of Long-chain fatty acids in UASB and Expanded Granular Sludge Bed Reactors. Process Biochemistry,1993,28:527-537.
    [43]Zoutberg G R,Franking R.Anaerobic treatment of chemical and brewery waste water with a new type of anaerobic reactor:the Biobed or EGSB reactor.Wat.Sci.Tech,1996,34(5-6):375-381.
    [44]左剑恶等.EGSB反应器的启动运行研究.给水排水,2001.27(3):25-31.
    [45]任洪强,陈坚等.EGSB反应器中颗粒污泥床工作状况及污泥性质研究.环境科学研究,2001,14(3):33-38.
    [46] Nieolella,.etal.(2000)Wastewater treatment with Partieulate biofilm reactors. Journal of Biotechnology. 80(2000):l-33
    [47] Jules B,van Lier,et al.Anaerobic Treatment of Partly Acidified Water in Two-stage Expanded Granular Sludge Bed(EGSB) System at 8℃[A].Proc. 8th international Conf.on anaerobic Digestion. 1997.(2):86-90.
    [48]李平,徐文英.厌氧(IC反应器)/好氧联用处理淀粉生产废水.中国给水排水,2009,25(2):52-54.
    [49]王白杨,王正辉,张卓等.UASB/曝气沉淀/IC反应器处理高浓度硫酸盐有机废水.中国给水排水, 2008,24(20):54-57.
    [50]刘建飞.用IC厌氧反应器处理酒精废水.江西化工,2007,25 (6):775-776.
    [51]沈耀良,王宝贞.废水厌氧生物处理新技术理论与应用北京:中国环境科学出版社,1999.
    [52] Driessen,W.J.B.M.etal,Anaerobie treatment of recycled PaPer mill effluent with the Internal circulation reactor,6th IAWQ SymPosium on Forest Industry Wastewater,1999,6-10
    [53]杨晓峰,曹利江,寿越穗等.厌氧好氧串联法处理啤酒废水.工业用水与废水, 2007,38(2):79-81
    [54]周蔚然.啤酒废水处理站的工程设计.环境保护科学, 2007, 33(4):58-60
    [55]王凯军,胡超,林秀军.新型高效生物反应器类型及应用.环境污染治理技术与设备, 2006,7(3):120-123.
    [56] Liang Wei Deng,Ping Zheng,Zi Ai Chen.Anaerobic digestion and post-treatment of swine wastewater using IC-·SBR process with bypass of raw wastewater.Process Biochemistry,2006,41:965-969.
    [57]张忠波. IC反应器技术的发展.环境污染与防治,2000,22(3):39-41
    [58] Pereboom J H F. Methanogenic Granule debelopment in full scale internal circulation reactor. Water Science and Technology ,1994,30(8):9-21.
    [59]王江全.柠檬酸废水处理工艺---IC厌氧反应器和好氧生化技术.江苏环境科技,2000,13(2):21-23.
    [60]戚恺.IC反应器在造纸行业的应用.国际造纸,2000,20(3):58-59.
    [61]党朝华,张四维. IC反应器处理APMP制浆高浓废水的设计与运行.中国造纸.2004,24(10):35-38.
    [62] Pereboom J. H. F. Size dletribution model for methanogenic granules from full scale UASB and IC reactors. Water Science and Technology.1994,30(12):211-221 .
    [63]张自杰.环境工程手册-水污染防治卷.北京:高等教育出版社,1996:659-661.
    [64]邓良伟.IC工艺处理猪场废水试验研究,中国沼气,2001,19(2):12-l6.
    [65]党朝华,张四维. IC反应器处理APMP制浆高浓废水的设计与运行.中国造纸.2004,24(10):35-38.
    [66]E.Gracia—Calvo, et al.A fluid dynamic model for three-phase airlift reactors. Chemical Engineering Science,1999.54(17):2359-2350.
    [67]J.H.F.Pereboom.Methanogenic granular development in full scale internal circulation reactors.Wat.Sci.Tech, 1994,30(8):9-21.
    [68] Willianm P. Barber; David C. Stuckey.The use of the anaerobic baffled reactor(ABR) for wastewater treatment a review. Water Research ,1999, 33(7): 1559-1578
    [69]William P Barber,David C Stuckey. Startup strategies for anaerobic baffled reactors treating a synthetic sucrose feed [C]. Proc 8th International Conf on Anaerobic Digestion, 1997.
    [70] Krishna, G. V. T. Gopala; Kumar, Pramod; Kumar, Pradeep .Treatment of low-strength soluble wastewater using an anaerobic baffled reactor (ABR). Journal of Environmental Management,2009,90(1):167-177.
    [71]沈耀良,黄勇,赵丹,等.固定化微生物污水处理技术.北京:化学工业出版社,2002.278
    [72]Lettinga G,Field J,Van J.Advanced anaerobic wastewater treatment in the near future.Water Sci&Tech,1997,35(10):5-12.
    [73] Zhu, GF; Li, JZ; Wu, P etc.The performance and phase separated characteristics of an anaerobic baffled reactor treating soybean protein processing wastewater. Bioresource Technology,2008,99(17): 8027-8033
    [74] Saritpongteeraka, K; Chaiprapat, S.Effects of pH adjustment by parawood ash and effluent recycle ratio on the performance of anaerobic baffled reactors treating high sulfate wastewater. Bioresource Technology ,2008,99(18): 8987-8994
    [75] Kevin Kennedy,Micha Barriault.Treatment kinetics of aircraft deicing fluid in an anaerobic baffled reactor. Journal of Environmental Engineering and Science.2007, 6(1): 11-17
    [76]Barber W P,Stuckey D C.The use of anaerobic baffled reactor(ABR)for wastewater treatment:a review[J].Wat Res,1999,33(7):1559-1578.
    [77] LIU Xiao-lei; REN Nan-qi; WAN Chun-li. Hydrodynamic characteristics of a four-compartment periodic anaerobic baffled reactor . Journal of Environmental Sciences,2007, 19(10): 1159-1165
    [78]武桐,等.ABR-SBR法处理草浆造纸中段废水试验研究.环境污染治理技术与设备,2004,5(1):73.
    [79] Oezlem Selcuk Kuscu; Delia Teresa Sponza. Treatment efficiencies of a sequential anaerobic baffled reactor (ABR)/ completely stirred tank reactor (CSTR) system at increasing p-nitrophenol and COD loading rates .Process Biochemistry, 2006 , 41(7): 1484-1492
    [80] Lalbahadur, T; Pillay, S; Rodda, N; Smith, M etc. Microbiological studies of an anaerobic baffled reactor: microbial community characterisation and deactivation of health-related indicator bacteria. Water Science and Technology ,2005,51(10): 155-162
    [81] Ozlem Selcuk Kuscu; Delia Teresa Sponza. Performance of anaerobic baffled reactor(ABR)treating synthetic wastewater containing p-nitrophenol .Enzyme and Microbial Technology, 2005,36(7): 888-895
    [82]吴慧芳,王世和.折流式水解-复合膜生物法处理印染废水的特性环境工程学报2008,2(6):776-779
    [83]杨学朝,郑重.厌氧折流板反应器-接触氧化工艺处理果汁废水环境污染与防治,2008, 30(9):90-92
    [84]陈道彰.马尾松BCTMP生产实践和体会中华纸业,2000,21(11):22-25.
    [85]高扬,许玮等.针叶木与阔叶木CTMP废液的污染特性及其生化处理华南理工大学学报:自然科学版,2001,29(4):26-29
    [86]丁来保,施英乔,房桂干等.UNITANK工艺处理杉木BCTMP废水.中国造纸,2008,27(5):45-48
    [87]武书彬编.造纸工业水污染控制与治理技术.北京:化学工业出版社,2001,70-100.
    [88] Vladimir Sklyar,Andrey Epov,Marina Gladchenko etc. Combined biologic (anaerobic-aerobic) and chemical treatment of starch industry wastewater Applied Biochemistry and Biotechnology, 2003,109, (1-3):253-262.
    [89] R.A. Wahaab, M.H. El-Awady, Anaerobic/aerobic treatment of meat processing wastewater, Environmentalist 1999, 19: 61-65
    [90] Pichon.M.,Naean,H, and Rouger., The 4th int.syprn. on wood and pulping Chemistry,185,Paris, 1987:27-30
    [91] Zhongda Xu, George Nakhla. Prefermentation to overcome nutrient limitations in food processing wastewater: Comparison of pilot- and bench-scale systems Biochemical Engineering Journal , 2007, 33 (1) : 16-25
    [92] wilson ,R.W., Mruphy. K.L. , Frenette. E.G., Aerobic and anaerobic treatment of. NSSC and CTMP effluent, pulp paper Can., 1987,88(1):4-8
    [93] welder. T., Andersson. P.E..Water Science Technology. 1985,17:103
    [94] Servizi.A.,Gordon. R. W., Detoxification of TMP and CTMP Effluents Alternating in a. Pilot Scale Aerated Lagoon,Pulp and Paper Can. 1986,87(11):404-409
    [95]任南琪,高郁,冯旻.两相厌氧-好氧工艺处理中药生产废水中国给水排水2003, 19(6):72-73
    [96] Walden. C.C. , Howard. T.E., Toxicity of pulp and paper mill effluents-a review. Pulp and Paper Can., 1981,82(4):143-146
    [97] Rinzema, A. , G. Lettinga. Anaerobic Treatment of Sulfate Containing Wastewater. In:D. L. Wise (ed). Biotreatment System. Vol.3. Boca Raton, USA:CRC Press Inc., 1988:65-109
    [98] S. F. Liver, E. R. Hall .Interactions of resin acids with aerobic and anaerobic biomass-I.Degradation by non-acclimated inocula Water Research, Volume 30, Issue 3, March 1996, 30(3):663-671
    [99] Muna Ali, T.R. Sreekrishnan.Aquatic toxicity from pulp and paper mill effluents: a review Advances in Environmental Research,2001,5( 2):175-196
    [100] R. Sierra-Alvarez, M. Kato,G. Lettinga. The anaerobic biodegradability of paper mill wastewater constituents Environmental Technology, 1990, 11( 10): 891 - 898
    [101].L.H.A. Habets et a1.,Anaerobic treatment of bleached TMP and CTMP effluent in the biopaq UASB system. Wat. Sci. Tech., 1991,24 (3/4) :331
    [102]. Lettinga.G. Advanced anaerobic wastewater treatment in near future .Water Seience Technology,1997,35(10):5-12
    [103]缪应祺主编.水污染控制工程.南京:东南大学出版社,2002, 247-258
    [104]Jansen A J H,Sleyster R,Jochensen A ,et a1.Biological sulfate OXidation in a fed batch reactor.Biotechno1.Bioeng.,1995,47(3):327-333
    [105]任南琪,王爱杰,甄卫东.厌氧处理构筑物中SRB的生态学哈尔滨建筑大学学报,2001,34(1):39-44
    [106]李新荣,沈德中.硫酸盐还原菌的生态特性及其应用应用与环境生物学报,1999,(5):10-13.
    [107]买文宁.生物化工废水处理技术及工程实例化学工业出版社,2002,65-68
    [108]周少奇.环境生物技术科学出版社,2003,156-157
    [109]罗志腾主编,水污染控制工程微生物学科学技术出版社, 1988, 260-265
    [110] Lettinga G.,Rebac S.,and Zeeman G..Challenge of psychrophilic anaerobic Wastewater treatment. TRENDS in Biotechnology,2001,19(9):363-370
    [111]Ghosh S.,Pohland A.. Tow-phase anaerobic digestion of high-metal-conetnt municipal-indusrtial sludge. Biomass,1986,10(l):97-107
    [112] Aivasidis, A., K.H.Bastin, and C.Wandrey.”Optimization of Selection Stress in a Chmostat,”Anaerobic Digestion., IAWPRC, ,1988: 35-46.
    [113]Jurgen OLES,Norbert DICHIL, HansHermann NIEHOFF.Full Sale Experience of Two Stage Themophilie/Mesophilic Sludge Digestion[A]. Proc. 8th international Conf.on anaerobic Digestion.1997,(2):224-231.
    [114]Jules B,van Lier,et al.Anaerobic Treatment of Partly Acidified Water in Two-stage Expanded Granular Sludge Bed(EGSB) System at 8℃[A].Proc. 8th international Conf.on anaerobic Digestion. 1997.(2):86-90.
    [115]严月根等.啤酒废水常温一级两相厌氧颗粒污泥床处理的对照研究.中国环境科学,1990,(8):304-308.
    [116]王子波,杨玉杰.两相厌氧工艺处理草浆黑液甲烷动力学模型.环境科学研究,1999,12(4):27-29.
    [117]凡广生,李多松.两相厌氧消化工艺的研究进展及其应用.能源环境保护, 2006, 20(1):10-13.
    [118]任南琪,王爱杰.厌氧生物技术原理与应用.化学工业出版社,2004,27-28
    [119]沈耀良.厌氧折流板反应器(ABR)的水力流态及其处理高浓度有机废水效能的研究.河海大学博士后研究工作报告,2001,3-131
    [120]罗固源,吉芳英,豆俊峰等.污水处理上升螺旋流生物反应器及所组成的处理系统,中国:03117335.7[P]. 2003-11-12.
    [121]刘俊新,谢珊,李琳.处理高浓度难降解废水的复合生物反应器,中国:200510126231.8[P]. 2007-06-13.
    [122]孙德智,陈胜,郑钟植.一种用于处理高浓度有机废水的高效复合式厌氧反应器,中国:200610150904.8[P]. 2006-10-16.
    [123]陈振民,谢薇.一种柱式厌氧反应器,中国:CN200610118705.9[P]. 2006-11-23.
    [124]郑正,杨世关,李继红等.一种处理木质素纤维原料的厌氧反应器,中国:200710019846.X[P]. 2007-08-08.
    [125]贺延龄.废水的厌氧生物处理.北京:中国轻工业出版社1999,53-54,503-543.
    [126]周琪,胡纪萃,顾夏声等.升流式厌氧污泥层反应器水力混合特性研究.环境科学学报, 1995,15(2):170-177.
    [127]李德华.化学工程基础.化学工业出版社,2000:206-240
    [128] W. L Bolle , J. van Breugel , G. C. van Eybergen etc.Modeling the liquid flow in up-flow anaerobic sludge blanket reactors,1986,28(11):1615-1620

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700