用户名: 密码: 验证码:
金鸡纳碱类催化剂催化的几种不对称加成反应的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着具有高效和高选择性的有机催化剂的不断研发,其中金鸡纳碱类催化剂催化不对称加成反应在有机催化化学中发挥着至关重要的作用。在本文中,我们采用了密度泛函理论(DFT)计算和从头算(ab initio)方法详细的研究了金鸡纳碱催化的这几个不对称加成反应。我们详细的讨论了这几个催化剂的活化机制,有助于了解催化反应的反应机理。预测了可能的产物及其立体选择性,依据相应的连接关系,给出了可能的反应通道。同时现有的实验结果为进一步的实验研究提供了理论依据。我们的主要研究内容如下:
     1.金鸡纳碱衍生伯胺催化β-硝基苯乙烯与异丁醛的不对称Michael加成反应
     目前,金鸡纳碱衍生伯胺作为催化剂,苯甲酸作为辅助催化剂,硝基苯乙烯和异丁醛的Michael加成已经被广泛研究,然而我们对这个机理的理解还远远不够。金鸡纳碱衍生伯胺催化β-硝基苯乙烯与异丁醛的不对称Michael加成机理的理论研究中,我们采用了密度泛函理论及从头算方法并得出了一个详细的机理。计算表明这个过程包括了四部分(1)亚胺离子中间体的形成;(2)亚胺离子与β-硝基苯乙烯的加成;(3)质子迁移;和(4)水解及催化剂的还原。这个反应的速率决速步骤和产物的立体选择性都被控制在第二个质子转移阶段。计算结果提供了大致的理论模型来解释了标题反应机理以及产物的立体选择性。
     2.金鸡纳碱催化二甲基丙二酸酯与β-硝基苯乙烯的不对称加成反应
     我们采用密度泛函理论及从头算方法来研究金鸡纳碱QD-4作为有机催化剂催化二甲基丙二酸酯与β-硝基苯乙烯的不对称加成反应机理。这个反应有六个不同的反应路径分别对应于反应物β-硝基苯乙烯对二甲基丙二酸酯不同的进攻模式。计算表明反应过程是一个双官能团的催化机理,其中催化剂上的叔胺氮作为布朗斯特碱激活了反应物二甲基丙二酸酯,同时催化剂中的羟基基团作为布朗斯特酸激活了反应物β-硝基苯乙烯。这个反应的决速步骤是从催化剂的叔胺氮到β-硝基苯乙烯的α碳的质子迁移过程。对比这六条反应路径的能量和机理使我们了解到在这个体系中催化剂QD-4表现出了很好的催化活性,计算结果也说明了QD-4上的C9-OH基团在这个体系中不涉及任何激活作用,而且所得到的产物的立体选择性也符合实验上观察到的结果。
     3.9-氨基奎宁催化剂催化1-溴代硝基甲烷与亚苄基丙酮的共轭加成反应
     由金鸡纳碱类催化剂9-氨基奎宁作为有机催化剂和苯甲酸作为辅助催化剂催化1-溴代硝基甲烷与亚苄基丙酮的不对称共轭加成反应已经被广泛研究。然而,具体的反应机理我们还不够了解。通过密度泛函理论B3LYP和M062X和从头算MP2方法计算,我们给出了详细的标题反应机理。这个反应过程包括三个主要阶段:(I)亚胺离子中间体的形成;(II)亚胺离子与1-溴代硝基甲烷的亲核加成;以及(III)水解并伴随催化剂的还原。计算结果不仅解释了苯甲酸加合物在亚胺离子形成过程中所起的重要作用,而且提供了一般反应模型去帮助理解这个共轭加成反应的反应机理和对映选择性。我们认为反应结果会对类似的共轭加成反应的机理研究有所帮助。
Recently, the organocatalysts have been developed with high efficiency and highselectivity. Among them, the asymmetry reactions catalyzed by the cinchona alkaloidcatalyst play an important role in organocatalysis chemistry. In this paper, the reactionmechanisms of several asymmetry addition reactions catalyzed by cinchona alkaloidcatalyst have been investigated using density functional theory and ab initiocalculations. The investigation on the activation of different organocatalysts couldfacilitate understanding of catalytic reaction mechanism, some important informationsuch as geometries and energies of the reactant, intermediates, transition states andproducts are obtained. On the basis of the relation of the reactant, intermediates,transition states and products, the possible reaction channels as well as theenantioselectivity also were provided. All the results obtained in this paper can shedsome light on the future experimental investigations of these kinds of reactions. Themain results are summarized as follows:
     1. Asymmetric Michael addition of trans-1-nitro-2-phenylethylene to2-methylpropionaldehyde catalyzed by a Cinchona Alkaloid Derived Primary Amine.At present,using cinchona alkaloid-derived primary amine as catalyst and benzoicacid as co-catalyst, Michael-type addition reactions between enolizable carbonylcompounds and nitroalkenes have been extensively studied, however, ourunderstanding of the mechanism is far from complete. A theoretical study is presentedfor the Michael addition reaction between trans-1-nitro-2-phenylethylene and2-methylpropionaldehyde catalyzed by9-epi-QDA and benzoic acid. By performingDFT and ab initio calculations, we have identified a detailed mechanism. Thecalculations indicated that four continuous steps are involved in the overall reaction:1)the formation of an iminium intermediate,2) an addition reaction between theiminium and trans-1-nitro-2-phenylethylene,3) the proton transfer process, and4)hydrolysis and regeneration of the catalyst. The rate determining step is the proton transfer from the amine group to β-carbon of trans-1-nitro-2-phenylethylene, and theenantioselectivity is also controlled by this step. The calculated results provide ageneral model that explains the mechanism and enantioselectivity of the title reaction.
     2. Theoretical Study on Mechanism of Cinchona alkaloids catalyzed asymmetricconjugate addition of dimethyl malonate to β-nitrostyrene. The mechanism andenantioselectivity of the asymmetric conjugate addition of dimethyl malonate toβ-nitrostyrene catalyzed by cinchona alkaloid QD-4as organic catalyst areinvestigated using DFT and ab initio methods. Six different reaction pathways,corresponding to the different approach modes of β-nitrostyrene to dimethyl malonateare considered. Calculations indicate that the reaction process through a dualactivation mechanism, in which the tertiary amine of cinchona alkaloid QD-4firstworks as a Br nsted base to promote the activation of the dimethyl malonate bydeprotonation, and then the hydroxyl group of QD-4acts as Br nsted acid to activatethe β-nitrostyrene. The rate determining step is the proton transfer process from thetertiary amine of QD-4to α-carbon of β-nitrostyrene. The comparison of themechanisms and energies of the six reaction channels enable us to learn the fact thatQD-4has good catalytic activities for the system, and implies C9-OH in QD-4maynot be involved in the activation. These calculation results accounts well for theobservations in experiments.
     3. The conjugate addition of1-bromonitromethane to benzylidene acetonecatalyzed by9-amino-9-deoxyepiquinine. Asymmetric conjugate addition of1-bromonitromethane to benzylidene acetone catalyzed by9-amino-9-deoxyepiquinine as organic catalyst and benzoic acid as co-catalyst has beenextensively studied. However, in-depth understanding of the detailed mechanism is farfrom complete. By performing density functional theory (B3LYP and M062X) and abinitio calculations (MP2), we have identified a detailed mechanism of the title reaction.The reaction process includes three major stages:(I) the formation of an iminium ionintermediate;(II) the nucleophilic addition between the iminium and1-bromonitromethane; and (III) hydrolysis and recovery of catalyst. The calculatedresults not only explain benzoic acid as acidic additive plays an important role in the formation of the key reaction iminium intermediate, but also provide a general modelto help explain the mechanism and enantioselectivity of the conjugate additionreaction.
引文
[1] AHRENDT K A, BORTHS C J, MACMILLAN, DWC, New Strategies forOrganic Catalysis: The First Highly Enantioselective Organocatalytic Diels-AlderReaction. J. Am. Chem. Soc.2000,122,4243-4244.
    [2] LIST B, YANG J W. The organic approach to asymmetric catalysis [J]. Science,2006,313,1584-1586.
    [3] LIST B, LERNER R A, BARBAS Ш, C F, Proline-Catalyzed Direct AsymmetricAldol Reactions [J]. J. Am. Chem. Soc.2000,122,2395-2396.
    [4] LIST B, Asymmetric Amino catalysis [J]. Synlett2001,2001,1675-1686.
    [5] ALLEMANN C, GORDILLO R, CLEMENTE F R, CHEONG P H Y, HOUK K N.Theory of Asymmetric Organocatalysis of Aldol and Related Reactions:Rationalizations and Predictions [J]. Acc. Chem. Res.2004,37,8:558-569.
    [6] BAHMANYAR S, HOUK K N, MARTIN H J, LIST B, Quantum MechanicalPredictions of the Stereoselectivities of Proline-Catalyzed AsymmetricIntermolecular Aldol Reactions [J]. J. Am. Chem. Soc.2003,125,9:2475-2479.
    [7] AHRENT K A, BORTHS C J, MACMILLAN D W C. New strategies for organiccatalysis: The first highly enantioselective organocatalytic Diels-Alder reaction [J].J. Am. Chem. Soc.,2000,122,17:4243-4244.
    [8] TAGGI A E, HAFEZ A M, WACK H, Catalytic, asymmetric synthesis ofbeta-lactams [J]. J. Am. Chem. Soc.,2000,122,32:7831-7832.
    [9] JEN W S, WIENER J J M, MACMILLAN D W C. New strategies for organiccatalysis: The first enantioselective organocatalytic1,3-dipolar cycloaddition [J].J. Am. Chem. Soc.,2000,122,40:9874-9875.
    [10] MACMILLAN D W C, BORTHS C J, JEN W S, Enantioselectiveorganocatalysis: A new and broadly useful strategy for enantioselective synthesisusing organic catalysts [J]. Abstracts of Papers of the American Chemical Society,2000,220: U122-U122.
    [11] PELLISSIER H. Asymmetric organocatalysis [J]. Tetrahedron,2007,63,38:9267-9331.
    [12] ERKKIL A A, MAJANDER I, PIHKO P M. Iminium catalysis [J]. ChemicalReviews,2007,107,12:5416-5470.
    [13] PENG F, SHAO Z. Advances in asymmetric organocatalytic reactions catalyzedby chiral primary amines [J]. J. Mol. Catal. A. Chem.,2008,285,1-2:1-13.
    [14] PENG F Z, SHAO Z H, FAN B M, Organocatalytic enantioselective Michaeladdition of2,4-pentandione to nitroalkenes promoted by bifunctional thioureaswith central and axial chiral elements [J]. J. Org. Chem.,2008,73,13:5202-5205.
    [15] TANG Z, JIANG F, YU L Y, CUI X, GONG L Z, MI A Q, JIANG Y Z, NovelSmall Organic Molecules for a Highly Enantioselective Direct Aldol Reaction. J.Am. Chem. Soc.2003,125,5262-5263.
    [16] LUO S, MI X, ZHANG L, LIU S, XU H, CHENG J P, Functionalized chiralionic liquids as highly efficient asymmetric organocatalysts for Michael additionto nitroolefins [J]. Angew. Chem. Int. Ed.2006,45,3093-3097.
    [17] XIE J W, CHEN W, LI R, ZENG M, DU W, YUE L, CHEN Y C, WU Y, ZHU J,DENG J G, Xie, Highly Asymmetric Michael Addition to α, β-UnsaturatedKetones Catalyzed by9-Amino-9-deoxyepiquinine [J]. Angew. Chem. Int.Ed.2007,46,389-392.
    [18] LUO S, XU H, LI J, ZHANG L, CHENG J P, A simple primary-tertiarydiamine-Br nsted acid catalyst for asymmetric direct aldol reactions of linearaliphatic ketones [J]. J. Am. Chem. Soc.2007,129,3074-3075.
    [19] LIU X H, QIN B, ZHOU X, HE B, FENG X M, Catalytic asymmetriccyanosilylation of ketones by a chiral amino acid salt [J]. J. Am. Chem.Soc.2005,127,12224-12225.
    [20] AKIYAMA T, Stronger Br nsted acids [J]. Chem. Rev.2007,107,5744-5758.
    [21] CHEN X H, XU X Y, LIU H, CUN L F, GONG L Z, Highly enantioselectiveorganocatalytic Biginelli reaction [J]. J. Am. Chem. Soc.2006,128,14802-14803.
    [22] KANG Q, ZHAO Z A, YOU S L, Highly enantioselective Friedel-Crafts reactionof indoles with imines by a chiral phosphoric acid [J]. J. Am. Chem.Soc.2007,129,6:1484-1485.
    [23] GUO Q S, DU D M, XU J, The development of double axially chiral phosphoricacids and their catalytic transfer hydrogenation of quinolones [J]. Angew. Chem.Int. Ed.2008,47,4:759-762.
    [24] HUANG X L, HE L, SHAO P L, YE S,[4+2] Cycloaddition of Ketenes withN-Benzoyldiazenes Catalyzed by N‐Heterocyclic Carbenes [J]. Angew. Chem.Int. Ed.2009,48,192-195.
    [25] HAYASHI Y, TSUBOI W, ASHIMINE I, URUSHIMA T, SHOJI M, SAKAI K,The Direct and Enantioselective, One-Pot, Three-Component, Cross-MannichReaction of Aldehydes., Angew. Chem. Int. Ed.,2003,42,31:3677-3680.
    [26] POISSON T, DALLA V, MARSAIS F, LEVACHER V, Organocatalyticenantioselective protonation of silyl enolates mediated by cinchona alkaloids anda latent source of HF, Angew. Chem. Int. Ed.,2007,46,37:7090.
    [27] SHINICHI O, NORIO S, JUNJI I, SHUICHI N, TAKESHI T, MOTOO S,Cinchona Alkaloid-Catalyzed Enantioselective Direct Aldol-Type Reaction ofOxindoles with Ethyl Trifluoropyruvate, Angew. Chem. Int. Ed.,2007,46,45:8666-8669.
    [28] LOU S, TAOKA B M, TING A, SCHAUS S E, Asymmetric Mannich Reactionsof B-Keto Esters with Acyl Imines Catalyzed by Cinchona Alkaloids, J. Am.Chem. Soc.,2005,127:11256-1125.
    [29] LOU S, DAI P, SCHAUS S E, Asymmetric Mannich reaction of dicarbonylcompounds with alpha-amido Sulfones catalyzed by cinchona alkaloids andsynthesis of chiral dihydropyrimidones, J. Org. Chem.,2007,72,26:9998-10008.
    [30] SINGH R P, BARTELSON K, WANG Y, SU H, LU X, EnantioselectiveDiels-Alder reaction of simple α, β-unsaturated ketones with a cinchona alkaloidcatalyst [J]. J. Am. Chem. Soc.,2008,130,8:2422-2423.
    [31] BOECKMAN R K, CLARK T J, SHOOK B C, A Practical EnantioselectiveTotal Synthesis of the Bengamides B, E, and Z, Org. Lett.,2002,4:2109-2112.
    [32] LIU T Y, CUI H L, ZHANG Y, JIANG Y, JIANG Y, JIANG K, DU W, HE Z Q,CHEN Y C, Organocatalyticand Highly Enantioselective DirectA-Aminationof Aromatic Ketones, Org. Lett.,2007,9,18:3671-3674.
    [33] XU X Y, Highly effective and enantioselective phospho-aldol reaction ofdiphenyl phosphite with N-alkylated isatins catalyzed by quinine [J]. TetrahedronLetters,2011,52:1157-1160.
    [34] FEIST F, Studies in the furfuran and pyrrole groups. Chem.Ber,1902,35:1537-1544.
    [35] BENARY E, Synthesis of Pyridine Derivatives from Dichloroether andβ-Aminocrotonic Ester Chem.Ber,1911,44:489-492.
    [36] DUNLOP A P, HURD C D, Base-catalyzed condensation of A-halogenatedketoned ketones withB-ketoesters, J. Org. Chem.,1950,15:1160-1164.
    [37] WILSON E B. Fifty Years of Quantum Chemistry [J]. Pure and AppliedChemistry,1976,47:41-47.
    [38] HARTREE D R, DOUGLAS R. The calculation of atomic structure [M]., J.Wiley,1957.
    [39] PAULING L, WILSON E B. Introduction to quantum mechanics: withapplications to chemistry [M]. Dover Pubns,1985.
    [40]和田昭允.生命の分子物理的背景--近代的“生命論”の始動[J].日本物理學會誌,1996,51:83-90.
    [41] EYRING H, WALTER J, KIMBALL G E. Quantum chemistry [M]. Wiley NewYork,1944.
    [42] GLASSTONE S, LAIDLER K J, EYRING H. The theory of rate processes: thekinetics of chemical reactions, viscosity, diffusion and electrochemicalphenomena [M]. Nueva York, EUA: McGraw-Hill,1941.
    [43] HERZBERG G. Spectra of diatomic molecules [M]. Van Nostrand,1950.
    [44] WILSON E B, DECIUS J C, CROSS P C. Molecular vibrations: the theory ofinfrared and Raman vibrational spectra [M]. Dover Pubns,1955.
    [45] HIRSCHFELDER J O, CURTISS C F, BIRD R B, et al. Molecular theory ofgases and liquids[M]. Wiley New York,1954.
    [46]曹阳.量子化学引论[M].人民出版社,1980.
    [47] HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Physical Review,1964,136: B864-B871.
    [48] KOHN W, SHAM L J, Self-consistent equations including exchange andcorrelation effects [J]. Physical Review,1965,140: A1133-A1138.
    [49] SLATER J C. Quantum Theory of Molecular and Solids. Vol.4: TheSelf-Consistent Field for Molecular and Solids McGraw-Hill: New York,1974.
    [50] SALAHUB D R, ZERNER M C, eds., The Challenge of d and f Electrons ACS:Washington, D.C.1989.
    [51] PARR R G, YANG W. Density-functional theory of atoms and molecules OxfordUniv. Press: Oxford,1989.
    [52] POPLE J A, GILL P M W, JOHNSON B G. Kohn—Sham density-functionaltheory within a finite basis set [J], Chemical Physics Letters,1992,199:557-560.
    [53] JOHNSON B G, FRISCH M J, An implementation of analytic second derivativesof the gradient-corrected density functional energy [J]. Journal of ChemicalPhysics,1994,100:7429-7442.
    [54] LABANOWSKI J K, ANDZELM J W, eds., Density Functional Methods inChemistry [M], Springer-Verlag: New York,1991.
    [55] HOHENBERG P, KOHN W, Inhomogeneous Electron Gas. Phys. Rev,1964,136,(3B):864-871.
    [56] LE C, YANG W, PARR R G, Development of theColle-Salvetticorrelation-energy formula into a functional of the electron density.[J]. Phys. Rev. B.,1988,37:785-789.
    [57] Foresman J. B.; Frisch E. Exploring chemistry with electronic structure methods[J]. Second Edition. Pittsburgh: Gaussian, Inc.,1996,272-275.
    [58] BECKE A D, A new mixing of Hartree-Fock and local density-functional theories[J]. J. Chem.Phys.,1993,98:1372-1377.
    [59] BECKE A D, Density-functional exchange-energy approximation with correctasymptotic behavior [J]. Phys. Rev. A.,1988,38:3098-3100.
    [60] FRISCH E, FRISCH M J, TRUSKS G W, Guassian03user's reference. Carnegie:Gaussian,2003:73-78.
    [61] PERDUE J P, Density-functional approximation for the correlation energy of theinhomogeneouselectron gas [J]. Phys. Rev. B.,1986,33:8822-8824.
    [62] LOWDIN PERO. Correlation problem in many electron quantum mechanicsI.Review of different approaches and discussion of some currtent ideas [J].Advances in Chemical Physics,2009,2:207.
    [63] POPLE J, SEEGER R, KRISHNAN R. Variational configuration interactionmethods and comparison with perturbation theory [J]. International journal ofquantum chemistry,1977,12:149-163.
    [64] FORESMAN J B, HEAD-GORDON M, POPLE J A, et al. Toward a systematicmolecular orbital theory for excited states [J].The Journal of Physical Chemistry,1992,96:135-149.
    [65] KRISHNAN R, SCHLEGEL H, POPLE J. Derivative studies in configurationinteraction theory [J].The Journal of Chemical Physics,1980,72:4654.
    [66] BROOKS B R, LAIDIG W D, SAXE P, et al. Analytic gradients from correlatedwave functions via the two-particle density matrix and the unitary groupapproach [J]. Journal of Chemical Physics,1980,72:4652-4653.
    [67] SALTER E, TRUCKS G W, BARTLETT R J. Analytic energy derivatives inmany-body methods. I. First derivatives [J]. The Journal of Chemical Physics,1989,90:1752.
    [68] RAGHAVACHARI K, POPLE J. Specificity and molecular mechanism ofabortificient action of prostaglandins. Int. J. Quantum Chem,1981,20:167-178.
    [69] POPLE J A, HEAD-GORDON M, RAGHAVACHARI K. Quadraticconfiguration interaction. A general technique for determining electroncorrelation energies [J]. methods,1987,14:5.
    [70] CIOSLOWSKI J, NANAYAKKARA A. A new robust algorithm for fullyautomated determination of attractor interaction lines in molecules [J].Chemical Physics Letters,1994,219:151-154.
    [71] HEGARTY D, ROBB M A. Application of unitary group methods toconfiguration interaction calculations [J]. Molecular Physics,1979,38:1795-1812.
    [72] ERES D, GOEHEGAN D, LOWNDES D, et al. Appl. Surf. Sci,1980,36:70.
    [73] SCHLEGEL H B, ROBB M A. MC SCF gradient optimization of theH2CO→H2+CO transition structure [J]. Chemical Physics Letters,1982,93:43-46.
    [74] BERNARDI F, BOTTONI A, MCDOUALL J J W et al. MCSCF gradientcalculation of transition structures in organic reactions [J].The Royal Society ofChemistry,1984,19:137-147.
    [75] YAMAMOTO N, VREVEN T, ROBB M A, et al. A direct derivative MC-SCFprocedure [J].Chemical Physics Letters,1996,250:373-378.
    [76] FRISCH M, RAGAZOS I N, ROBB M A, et al. An evaluation of three directMC-SCF procedures [J]. Chemical Physics Letters,1992,189:524-528.
    [77] POPLE J, KRISHNAN R, SCHLEGEL H, Electron correlation theories and theirapplication to the study of simple reaction potential surfaces [J]. Internationaljournal of quantum chemistry,1978,14:545-560.
    [78] BARTLETT R, PURVIS G. Int. J. Quantum Chem,1978,14:516.
    [79] SCUSERIA G E, SCHAEFER III H F. Is coupled cluster singles and doubles(CCSD) more computationally intensive than quadratic configuration interaction(QCISD)[J]. The Journal of Chemical Physics,1989,90:3700.
    [80] PURVIS III G D, BARTLETT R J. A full coupled‐cluster singles anddoublesmodel: The inclusion of disconnected triples [J]. The Journal of ChemicalPhysics,1982,76:1910.
    [81] SCUSERIA G E, JANSSEN C L, SCHAEFER III H F. An efficient reformulationof the closed-shell coupled cluster single and double excitation (CCSD)equations [J]. The Journal of Chemical Physics,1988,89:7382.
    [82] SCUSERIA G E, SCHAEFER III H F. Is coupled cluster singles and doubles(CCSD) more computationally intensive than quadratic configuration interaction(QCISD)[J]. The Journal of Chemical Physics,1989,90:3700.
    [83] M LLER C, PLESSET M S. Note on an Approximation Treatment forMany-Electron Systems [J]. Physical Review,1934,46:618-622.
    [84] HEAD-GORDON M, POPLE J A, FRISCH M J. MP2energy evaluation bydirect methods [J]. Chemical Physics Letters,1988,153:503-506.
    [85] POPLE J A, BINKLEY J S, Theoretical models incorporating electroncorrelation [J]. International journal of quantum chemistry,1976,10:1-19.
    [86] KRISHNAN R, POPLE J. Approximate fourth-order perturbation theory of theelectron correlation energy [J]. International journal of quantum chemistry,1978,14:91-100.
    [87] RAGHAVACHARI K, POPLE J A, REPLOGLE E S, Fifth order Moeller-Plessetperturbation theory: comparison of existing correlation methods andimplementation of new methods correct to fifth order [J]. Journal of physicalchemistry,1990,94:5579-5586.
    [88] PERLMUTTER P, Conjugate Addition Reaction in Organic Synthesis. PergamonPress, Oxford,1992.
    [89] BERNER OM, TEDESCHI L, ENDERS D, Asymmetric Michael additions tonitroalkenes [J]. Eur. J. Org. Chem.,2002,2002,12:1877-1894.
    [90] OKINO T, HOASHI Y, FURUKAWA T, XU X, TAKEMOTO Y, Enantio-anddiastereoselective Michael reaction of1,3-dicarbonyl compounds to nitroolefinscatalyzed by a bifunctional thiourea [J]. J. Am. Chem. Soc.,2005,127,1:119-125.
    [91] HALLAND N, ABUREL PS, Highly Enantioselective Organocatalytic ConjugateAddition of Malonates to Acyclic α, β-Unsaturated Enones. Angew. Chem.,2003,115,6:685-689.
    [92] LI H, WANG Y, TANG T, DENG L, Highly enantioselective conjugate additionof malonate and β-ketoester to nitroalkenes: Asymmetric CC bond formationwith new bifunctional organic catalysts based on cinchona alkaloids [J]. J. Am.Chem. Soc.,2004,126,32:9906-9907.
    [93] MCCOOEY SH, CONNON SJ, Urea-and Thiourea-Substituted CinchonaAlkaloid Derivatives as Highly Efficient Bifunctional Organocatalysts for theAsymmetric Addition of Malonate to Nitroalkenes: Inversion of Configuration atC9Dramatically Improves Catalyst Performance [J]. Angew. Chem.,2005,117,39:6525-6528.
    [94] YE J, DIXON DJ, HYNES PS, Enantioselective organocatalytic Michaeladdition of malonate esters to nitro olefins using bifunctional cinchoninederivatives. Chem. Commun.,2005,41,35:4481-4483.
    [95] OOI T, OHARA D, FUKUMOTO K, MARUMOTO K, Importance of ChiralPhase-Transfer Catalysts with Dual Functions in Obtaining HighEnantioselectivity in the Michael Reaction of Malonates and ChalconeDerivatives. Org. Lett.,2005,7,15:3195-3197.
    [96] KNUDSEN KR, MITCHELL CET, LEY SV, Asymmetric organocatalyticconjugate addition of malonates to enones using a proline tetrazole catalyst.Chem. Commun.,2006,42,1:66-68.
    [97] ANDRES JM, MANZANO R, PEDROSA R, Novel Bifunctional Chiral Ureaand Thiourea Derivatives as Organocatalysts: Enantioselective Nitro-MichaelReaction of Malonates and Diketones, Chem. Eur. J.,2008,14,17:5116-5119.
    [98] WANG J, LI H, DUAN W, ZU L, WANG W, Organocatalytic asymmetricMichael addition of2,4-pentandione to nitroolefins [J]. Org. Lett.,2005,7,21:4713-4716.
    [99] TERADA M, UBE H, YAGUCHI Y, Axially chiral guanidine as enantioselectivebase catalyst for1,4-addition reaction of1,3-dicarbonyl compounds withconjugated nitroalkenes [J]. J. Am. Chem. Soc.,2006,128,5:1454-1455.
    [100] EVANS DA, MITO S, SEIDEL D, Scope and mechanism of enantioselectiveMichael additions of1,3-dicarbonyl compounds to nitroalkenes catalyzed bynickel (II)-diamine complexes [J]. J. Am. Chem. Soc.,2007,129,37:11583-11592.
    [101] MALERICH JP, HAGIHARA K, RAWAL VH, Chiral squaramide derivativesare excellent hydrogen bond donor catalysts [J]. J. Am. Chem. Soc.,2008,130,44:14416-14417.
    [102] TERADA M, UBE H, YAGUCHI Y, Axially chiral guanidine asenantioselective base catalyst for1,4-addition reaction of1,3-dicarbonylcompounds with conjugated nitroalkenes [J]. J. Am. Chem. Soc.,2006,128,5:1454-1455.
    [103] MALERICH JP, HAGIHARA K, RAWAL VH, Chiral squaramide derivativesare excellent hydrogen bond donor catalysts [J]. J. Am. Chem. Soc.,2008,130,44:14416-14417.
    [104] EVANS DA, SEIDEL D, Ni (II)-Bis [(R, R)-N, N'-dibenzylcyclohexane-1,2-diamine] Br2Catalyzed Enantioselective Michael Additions of1,3-Dicarbonyl Compounds to Conjugated Nitroalkenes [J]. J. Am. Chem. Soc.,2005,127,28:9958-9959.
    [105] WU F, LI H, HONG R, DENG L, Construction of Quaternary Stereocenters byEfficient and Practical Conjugate Additions to α, β-Unsaturated Ketones with aChiral Organic Catalyst [J]. Angew. Chem.,2006,118,6:961-964.
    [106] HANESSIAN S, PHAM V, Catalytic asymmetric conjugate addition ofnitroalkanes to cycloalkenones [J]. Org. Lett.,2000,2,19:2975-2978.
    [107] COREY EJ, ZHANG FY, Enantioselective Michael addition of nitromethane toα, β-enones catalyzed by chiral quaternary ammonium salts. A simple synthesisof (R)-baclofen [J]. Org. Lett.,2000,2,26:4257-4259.
    [108] HALLAND N, HAZELL RG, JORGENSEN KA, Organocatalytic asymmetricconjugate addition of nitroalkanes to α, β-unsaturated enones using novelimidazoline catalysts [J]. J. Org. Chem.,2002,67,24:8331-8338.
    [109] OOI T, FUJIOKA S, MARUOKA K, Highly enantioselective conjugate additionof nitroalkanes to alkylidenemalonates using efficient phase-transfer catalysisof N-spiro chiral ammonium bromides [J]. J. Am. Chem. Soc.,2004,126,38:11790-11791.
    [110] VAKULYA B, VARGA A, Highly enantioselective conjugate addition ofnitromethane to chalcones using bifunctional cinchona organocatalysts [J]. Org.Lett,2005,7,10:1967-1969.
    [111] PRIET A, HALLAND N, JORGENSEN KA, Novel imidazolidine-tetrazoleorganocatalyst for asymmetric conjugate addition of nitroalkanes [J]. Org. Lett.,2005,7,18:3897-3900.
    [112] TSOGOEVA SB, WEI S, Highly enantioselective addition of ketones tonitroolefins catalyzed by new thiourea–amine bifunctional organocatalysts.Chem. Commun,2006,42,13:1451-1453.
    [113] HUANG H, JACOBSEN EN, Highly enantioselective direct conjugate additionof ketones to nitroalkenes promoted by a chiral primary amine-thiourea catalyst[J]. J. Am. Chem. Soc.,2006,128,22:7170-7171.
    [114] YALONDE MP, CHEN Y, JACOBSEN EN, A Chiral Primary Amine ThioureaCatalyst for the Highly Enantioselective Direct Conjugate Addition of α,α-Disubstituted Aldehydes to Nitroalkenes. Angew. Chem. Int. Ed.,2006,45,38:6366-6370.
    [115] XU Y, ZOU W, IBRAHEM I, Small Peptide-Catalyzed EnantioselectiveAddition of Ketones to Nitroolefins [J]. Adv. Synth. Catal,2006,348,4:418-424.
    [116] XU Y, CORDOVA A, Simple highly modular acyclic amine-catalyzed directenantioselective addition of ketones to nitro-olefins. Chem. Commun,2006,42,4,4:460-462.
    [117] LIST B, POJARLIEV P, MARTIN H, Efficient proline-catalyzed Michaeladditions of unmodified ketones to nitro olefins [J]. J. Org. Lett.,2001,31,6:2423-2425.
    [118] ZU L, WANG J, LI H, WANG W, A recyclable fluorous (S)-pyrrolidinesulfonamide promoted direct, highly enantioselective Michael addition ofketones and aldehydes to nitroolefins in water [J]. Org. Lett.,2006,8,14:3077-3079.
    [119] ALEXAKIS A, Organocatalyzed asymmetric reactions via microwave activation[J]. Org. Lett.,2006,8,16:3577-3580.
    [120] LUO S, MI X, ZHANG L, LIU S, XU H, CHENG JP, Functionalized chiralionic liquids as highly efficient asymmetric organocatalysts for Michaeladdition to nitroolefins [J]. Angew. Chem. Int. Ed.,2006,45,19:3093-3097.
    [121] LUO S, MI X, ZHANG L, LIU S, XU H, CHENG JP, Surfactant-typeasymmetric organocatalyst: organocatalytic asymmetric Michael addition tonitrostyrenes in water [J]. Chem. Commun.,2006,42,35:3687-3689.
    [122] LI Y, LIU XY, ZHAO G, Effective and recyclable dendritic catalysts for thedirect asymmetric Michael addition of aldehydes to nitrostyrenes [J].Tetrahedron-Asymmetry,2006,17,13:2034-2039.
    [123] ZHU MK, CUN LF, MI AQ, JIANG YZ, GONG LZ, A highly enantioselectiveorganocatalyst for the Michael addition of cyclic ketones to nitroolefins[J].Tetrahedron-Asymmetry,2006,17,4:491-493.
    [124] CAO CL, YE MC, SUN XL, TANG Y, Pyrrolidine-thiourea as a bifunctionalorganocatalyst: highly enantioselective Michael addition of cyclohexanone tonitroolefins [J]. Org. Lett.,2006,8,14:2901-2904.
    [125] PALOMO C, VERA S, MIELGO A, Highly Efficient Asymmetric MichaelAddition of Aldehydes to Nitroalkenes Catalyzed by a Simpletrans-4-Hydroxyprolylamide [J]. Angew. Chem. Int. Ed.,2006,45,36:5984-5987.
    [126] PANSARE SV, PANDYA K, Simple diamine-and triamine-protonic acidcatalysts for the enantioselective Michael addition of cyclic ketones tonitroalkenes [J]. J. Am. Chem. Soc.,2006,128,30:9624-9625.
    [127] MOSSé S, LAARS M, KRIIS K, KANGER T, ALEXAKIS A,3,3'-bimorpholine derivatives as a new class of organocatalysts for asymmetricMichael addition [J]. Org. Lett.,2006,8,12:2559-2562.
    [128] WANG J, LI H, LOU B, ZU L, GUO H, WANG W, Enantio-andDiastereoselective Michael Addition Reactions of Unmodified Aldehydes andKetones with Nitroolefins Catalyzed by a Pyrrolidine Sulfonamide [J]. Chem.Eur. J.,2006,12,16:4321-4332.
    [129] TSOGOEVA SB, WEI S, Highly enantioselective addition of ketones tonitroolefins catalyzed by new thiourea–amine bifunctional organocatalysts [J].Chem. Commun,2006,42,13:1451-1453.
    [130] HUANG H, JACOBSEN EN, Highly enantioselective direct conjugate additionof ketones to nitroalkenes promoted by a chiral primary amine-thiourea catalyst[J]. J. Am. Chem. Soc.,2006,128,22:7170-7171.
    [131] YALONDE MP, CHEN Y, JACOBSEN EN, A Chiral Primary Amine ThioureaCatalyst for the Highly Enantioselective Direct Conjugate Addition of α,α-Disubstituted Aldehydes to Nitroalkenes. Angew. Chem. Int. Ed.,2006,45,38:6366-6370.
    [132] XU Y, ZOU W, SUNDéN H, IBRAHEM I, Small Peptide-CatalyzedEnantioselective Addition of Ketones to Nitroolefins [J]. Adv. Synth. Catal,2006,348,4:418-424.
    [133] JIANG L, CHEN YC, Recent advances in asymmetric catalysis with cinchonaalkaloid-based primary amines [J]. Catal. Sci. Technol.,2011,1,3:354–365.
    [134] HANSEN HM, LONGBOTTOM DA, LEY SV, A new asymmetricorganocatalytic nitrocyclopropanation reaction. Chem. Commun.,2006,42,46:4838-4840.
    [135] WASCHOLOWSKI V, HANSEN HM, LONGBOTTOM DA, LEY SV, AGeneral Organocatalytic Enantioselective Nitrocyclopropanation Reaction [J].Synthesis,2008,2008,8:1269-1275.
    [136] VESELY J, ZHAO GL, BARTOSZEWICZ A, CORDOVA A, Organocatalyticasymmetric nitrocyclopropanation of α, β-unsaturated aldehydes [J].Tetrahedron. Lett.,2008,49,27:4209-4212.
    [137] XIE JW, CHEN W, LI R, ZENG M, DU W, YUE L, CHEN YC, WU Y, ZHU J,DENG JG, Highly Asymmetric Michael Addition to α, β‐Unsaturated KetonesCatalyzed by9-Amino-9-deoxyepiquinine [J]. Angew. Chem. Int. Ed.,2007,46,3:389–392.
    [138] LI XF, CUN LF, LIAN CX, ZHONG L, CHEN YC, LIAO J, ZHU J, DENG JG,Highly enantioselective Michael addition of malononitrile to α,β-unsaturatedketones. Org. Biomol. Chem.,2008,6,2:349–353.
    [139] LI XM, WANG B, ZHANG JM, YAN M, Asymmetric OrganocatalyticDouble-Conjugate Addition of Malononitrile to Dienones: Efficient Synthesisof Optically Active Cyclohexanones. Org. Lett.,2011,13,3:374–377.
    [140] YUE L, DU W, LIU YK, CHEN YC, Organocatalytic asymmetric directMichael addition of aromatic ketones to alkylidenemalononitriles[J].Tetrahedron. Lett,2008,49,24:3881–3884.
    [141] LU X, DENG L, Asymmetric Aza-Michael Reactions of α, β-UnsaturatedKetones with Bifunctional Organic Catalysts. Angew. Chem.,2008,120,40:7824-7827.
    [142] MCCOOEY SH, CONNON SJ, Readily accessible9-epi-amino cinchonaalkaloid derivatives promote efficient, highly enantioselective additions ofaldehydes and ketones to nitroolefins [J]. Org. Lett.,2007,9,4:599-602.
    [143] RODRIGO E, MORALES S, DUCE S, RUANO JLG, CID MB,Enantioselective organocatalytic formal allylation of α-branched aldehydes [J].Chem. Commun.2011,47,40:11267-11269.
    [144] GONZALEZ C, SCHLEGEL HB, An improved algorithm for reaction pathfollowing [J]. J. Chem. Phys.,1989,90,4:2154-2161.
    [145] GONZALEZ C, SCHLEGEL HB, Reaction path following in mass-weightedinternal coordinates [J]. J. Phys. Chem.,1990,94,14:5523-5527.
    [146] REED AE, CURTISS LA, WEINHOLD F, Intermolecular interactions from anatural bond orbital, donor-acceptor viewpoint [J]. Chem. Rev.,1988,88,6:899-926.
    [147] REED AE, WEINSTOCK RB, WEINHOLD F, Natural population analysis [J].J. Chem. Phys.,1985,83,2:735-746.
    [148] FRISCH MJ, TRUCKS GW, SCHLEGEL HB, Gaussian03, revision B05Gaussian: Pittsburgh PA,2003.
    [149] FRISCH MJ, TRUCKS GW, SCHLEGEL HB, SCUSERIA GE, Gaussian09,revision A.1, Gaussian Inc: Wallingford CT,2009.
    [150] FUKUI K, FUJIMOTO H, Frontier Orbitals and Reaction Paths: SelectedPapers of Kenichi Fukui. World Scientific, Singapore,1997.
    [151] HOFFMANN R, A Chemical and Theoretical Way to Look at Bonding onSurfaces. Rev. Mod. Phys.,1988,60,3:601-628.
    [152] SIBI M, MANYEM S, Enantioselective Conjugate Additions. Tetrahedron,2000,56,41:8033-8061.
    [153] KRAUSE N, Recent Advances in Catalytic Enantioselective Michael Additions.Synthesis,2001,2001,2:171-196.
    [154] HOASHI Y, OKINO T, TAKEMOTO Y, Enantioselective Michael Addition to α,β-Unsaturated Imides Catalyzed by a Bifunctional Organocatalyst [J]. Angew.Chem. Int. Ed.,2005,44,26:4032-4035.
    [155] ENDERS D, SAINT-DIZIER A, LANNOU MI, LENZEN A, ThePhospha-Michael Addition in Organic Synthesis [J]. Eur. J. Org. Chem.2006,2006,1:29-49.
    [156] ENDERS D, NARINE AA, Asymmetric sulfa-Michael additions [J]. Synthesis,2007,2007,7:959-980.
    [157] LATTANZI A, Bifunctional Organocatalysts for Asymmetric Synthesis [J].Chem. Commun.,2009,45,12:1452-1463.
    [158] ROCA-LOPEZ D, SABABA D, HERRERA RP, TEJERO T, MERINO P,Asymmetric organocatalytic synthesis of γ-nitrocarbonyl compounds throughMichael and Domino reactions. Tetrahedron-Asymmetry,2010,21,21:2561-2601.
    [159] KOBAYASHI S, YAMASHITA Y, Alkaline Earth metal catalysts forasymmetric reactions [J]. Acc. Chem. Res.,2011,44,1:58-71.
    [160] XIAO Q, ZHANG Y, WANG J, Diazo Compounds and N-Tosylhydrazones:Novel Cross-Coupling Partners in Transition-Metal-Catalyzed Reactions. Acc.Chem. Res.,2013,46,2:236-247.
    [161] BERNER OM, TEDESCHI L, ENDERS D, Asymmetric Michael additions tonitroalkenes [J]. Eur. J. Org. Chem.,2002,2002,12:1877-1894.
    [162] OKINO T, HOASHI Y, FURUKAWA T, XU X, TAKEMOTO Y, Enantio-anddiastereoselective Michael reaction of1,3-dicarbonyl compounds tonitroolefins catalyzed by a bifunctional thiourea [J]. J. Am. Chem. Soc.,2005,127,1:119-125.
    [163] LI HM, WANG Y, TANG L, DENG L, Highly Enantioselective ConjugateAddition of Malonate and β-Ketoester to Nitroalkenes: Asymmetric C CBond Formation with New Bifunctional Organic Catalysts Based on CinchonaAlkaloids. J. Am. Chem. Soc.,2004,126,32:9906-9907.
    [164] WU F, LI H, HONG R, DENG L, Construction of Quaternary Stereocenters byEfficient and Practical Conjugate Additions to α, β-Unsaturated Ketones with aChiral Organic Catalyst., Angew. Chem. Int. Ed.,2006,45,6:947-950.
    [165] LI XF, CUN LF, LIAN CX, ZHONG L, CHEN YC, LIAO J, ZHU J, DENG JG,Highly enantioselective Michael addition of malononitrile to α,β-unsaturatedketones. Org. Biomol. Chem.,2008,6,2:349-353.
    [166] RUSSO A, PERFETTO A, LATTANZI A, Back to Natural Cinchona Alkaloids:Highly Enantioselective Michael Addition of Malononitrile to Enones. Adv.Synth. Catal,2009,351,18:3067-3071.
    [167] SU Z, LEE HW, KIM CK, Theoretical investigation on mechanism ofasymmetric Michael addition of malononitrile to chalcones catalyzed byCinchona alkaloid aluminium (III) complex [J]. Org. Biomol. Chem.,2011,9,18:6402-6409.
    [168] HIEMSTRA H, WYNBERG H, A mechanistic study of homogeneous catalyticasymmetric synthesis [J]. J. Am. Chem. Soc.,1981,103,2:417-430.
    [169] WYNBERG H, Catalyzed enantioselective aldol additions of latent enolateequivalents [J]. Top. Stereochem.1986,16:87-130.
    [170] KAWAHARA S, NAKANO A, ESUMI T, IWABUCHI Y, HATAKEYAMA S,β-isocupreidine-catalyzed asymmetric Baylis-Hillman reaction of imines [J].Org. Lett.,2003,5,17:3103-3105.
    [171] IWABUCHI Y, NAKATANI M, YOKOYAMA N, HATAKEYAMA S, Chiralamine-catalyzed asymmetric Baylis-Hillman reaction: A reliable route to highlyenantiomerically enriched (α-methylene-β-hydroxy) esters [J]. J. Am. Chem.Soc.,1999,121,43:10219-10220.
    [172] KAWAHARA S, NAKANO A, ESUMI T, IWABUCHI Y, HATAKEYAMA S,β-isocupreidine-catalyzed asymmetric Baylis-Hillman reaction of imines [J].Org. Lett.,2003,5,17:3103-3105.
    [173] CHEN Y, MCDAID P, DENG L, Asymmetric alcoholysis of cyclic anhydrides[J]. Chem. Rev.,2003,103,8:2965-2983.
    [174] TIAN SK, CHEN Y, HANG J, TANG L, MCDAID P, DENG L, Asymmetricorganic catalysis with modified cinchona alkaloids [J]. Acc. Chem. Res.,2004,37,8:621-631.
    [175] FRANCE S, GUERIN DJ, MILLER SJ, LECTKA T, Nucleophilic chiralamines as catalysts in asymmetric synthesis [J]. Chem. Rev.,2003,103,8:2985-3012.
    [176] TANG L, DENG L, Asymmetric synthesis of α-hydroxy carboxylic acids [J]. J.Am. Chem. Soc.,2002,124,12:2870-2871.
    [177] TIAN SK, HONG R, DENG L, Catalytic asymmetric cyanosilylation of ketoneswith chiral Lewis base [J]. J. Am. Chem. Soc.,2003,125,33:9900-9901.
    [178] CORTEZ GS, OH SH, ROMO D, Effect of the C9-substituent onenantioselectivity and catalyst conformation [J]. Synthesis,2001,2001,11:1731-1736.
    [179] MARCELLI T, HIEMSTRA H, An emerging class of bifunctional cinchonaorganocatalysts [J]. Angew. Chem. Int. Ed.,2006,45,45:7496-7504.
    [180] REED AE, CURTISS LA, WEINHOLD F, Intermolecular interactions from anatural bond orbital, donor-acceptor viewpoint [J]. Chem. Rev.,1988,88,6:899-926.
    [181] REED AE, WEINSTOCK RB, WEINHOLD FJ, Transferability of natural bondorbitals [J]. J. Chem. Phys.,1985,83,2:735-746.
    [182] COSSI M, SCALMANI G, REGA N, BARONE V, New developments in thepolarizable continuum model for quantum mechanical and classical calculationson molecules in solution [J]. J. Chem. Phys.,2002,117,1:43-54.
    [183] FRISCH MJ, TRUCKS GW, SCHLEGEL HB, Gaussian03, revision B05Gaussian: Pittsburgh PA,2003.
    [184] FRISCH MJ, TRUCKS GW, SCHLEGEL HB, SCUSERIA GE, Gaussian09,revision A.1, Gaussian Inc: Wallingford CT,2009.
    [185] FUKUI K, FUJIMOTO H, Frontier Orbitals and Reaction Paths: SelectedPapers of Kenichi Fukui; World Scientific: Singapore,1997.
    [186] HOFFMANN R, Rev. Mod. Phys.,1988,60,3:601-628.
    [187] KOZUCH S, SHAIK S, How to conceptualize catalytic cycles? The energeticspan model [J]. Acc. Chem. Res.,2011,44,2:101-110.
    [188] DALKO PI, MOISAN L, In the golden age of organocatalysis [J]. Angew.Chem. Int. Ed.,2004,43,39:5138-5175.
    [189] SEAYAD J, LIST B, Asymmetric organocatalysis [J]. Org. Biomol. Chem.,2005,3,5:719-724.
    [190]张庆友,张丹丹,索净洁,李静亚,龙海林,许禄.不对称反应的对映体过量值预测[J].高等学校化学学报,2012,33,7:1413-1419.
    [191]裴文. α'-苯磺酰基-α, β-不饱和酮与环戊二烯的不对称催化Diels-Alder反应[J].高等学校化学学报,1998,19,3:402-405.
    [192] ADAMS JP, Nitro and related groups [J]. J. Chem. Soc. Perkin Trans.1,2002,2002,24:2586-2597.
    [193] LIST B, Asymmetric aminocatalysis [J]. Synlett.,2001,2001,11:1675-1686.
    [194] LIST B, Proline-catalyzed asymmetric reactions [J]. Tetrahedron,2002,58,28:5573-5590.
    [195] LIST B, The ying and yang of asymmetric aminocatalysis [J]. Chem.Commun.,2006,42,8,819-824.
    [196] MARIGO M, Organocatalytic direct asymmetric α-heteroatom functionalizationof aldehydes and ketones [J]. Chem.Commun.2006,42,19,2001-2011.
    [197] GUILLENA G, RAMON DJ, Enantioselective α-heterofunctionalisation ofcarbonyl compounds: organocatalysis is the simplest approach [J].Tetrahedron-Asymmetry.,2006,17,10:1465-1492.
    [198] COBB AJA, SHAW DM, GOLD JB, LEY SV, Organocatalysis with prolinederivatives: improved catalysts for the asymmetric Mannich, nitro-Michael andaldol reactions [J]. Org. Biomol. Chem.,2005,3,1:84-96.
    [199] PALOMO C, MIELGO A, Diarylprolinolether: Erweiterung des Potenzials fürdie Enamin-Iminiumionkatalyse [J]. Angew. Chem.,2006,118,47:8042-8046.
    [200] LELAIS G, MACMILLAN DWC, Modern strategies in organic catalysis: theadvent and development of iminium activation [J]. Aldrichimica Acta,2006,39,3:79-87.
    [201] MUKHERJEE S, YANG JW, HOFFMANN S, LIST B, Asymmetric enaminecatalysis [J]. Chem. Rev.,2007,107,12:5471-5569.
    [202] ERKKILA A, MAJANDER I, PIHKO PM, Iminium catalysis [J]. Chem. Rev.,2007,107,12:5416-5470.
    [203] MELCHIORRE P, MARIGO M, CARLONE A, BARTOLI G, Dieasymmetrische Aminokatalyse–Goldrausch in der organischen Chemie [J].Angew. Chem.,2008,120,33:6232-6265.
    [204] ZHANG JM, HU ZP, ZHAO SQ, YAN M, Organocatalytic conjugate additionof1-bromonitroalkanes to α, β-unsaturated aldehydes: synthesis ofnitrocyclopropanes. Tetrahedron,2009,65,4:802-806.
    [205] HANSEN HM, LONGBOTTOM DA, LEY SV, A new asymmetricorganocatalytic nitrocyclopropanation reaction. Chem. Commun.,2006,42,46:4838-4840.
    [206] WASCHOLOWSKI V, HANSEN HM, LONGBOTTOM DA, LEY SV, AGeneral Organocatalytic Enantioselective Nitrocyclopropanation Reaction [J].Synthesis,2008,2008,8:1269-1275.
    [207] VESELY J, ZHAO GL, BARTOSZEWICZ A, CORDOVA A, Organocatalyticasymmetric nitrocyclopropanation of α, β-unsaturated aldehydes [J].Tetrahedron Lett.2008,49,27:4209-4212.
    [208] XIE JW, CHEN W, LI R, ZENG M, DU W, YUE L, CHEN YC, WU Y, ZHU J,DENG JG, Highly Asymmetric Michael Addition to α, β-Unsaturated KetonesCatalyzed by9-Amino-9-deoxyepiquinine [J]. Angew. Chem. Int. Ed.,2007,46,3:389-392.
    [209] LIST B, The ying and yang of asymmetric aminocatalysis [J]. Chem. Commun.,2006,42,8:819-824.
    [210] LI XF, CUN LF, LIAN CX, ZHONG L, CHEN YC, LIAO J, ZHU J, DENG JG,Asymmetric organocatalytic double-conjugate addition of malononitrile todienones: efficient synthesis of optically active cyclohexanones [J]. Org.Biomol. Chem.,2008,6,2:349-353.
    [211] XU LW, LUO J, LU YX, Highly fluorinated phosphonium ionic liquids. Chem.Commun.,2009,45,14:1807-1821.
    [212] XIE JW, CHEN W, LI R, ZENG M, DU W, YUE L, CHEN YC, WU Y, DENGJG, Highly Asymmetric Michael Addition to α, β-Unsaturated Ketones Catalyzedby9-Amino-9-deoxyepiquinine. Angew. Chem.,2007,119,3:393-396.
    [213] MARTIN NJA, LIST B, Highly Enantioselective Transfer Hydrogenation of α,β-Unsaturated Ketones. J.Am. Chem. Soc.,2006,128,41:13368-13369.
    [214] DONG LT, LU RJ, DU QS, ZHANG JM, XUAN YN, YAN M, Highlyenantioselective conjugate addition of1-bromonitroalkanes to α, β-unsaturatedketones catalyzed by9-amino-9-deoxyepiquinine. Tetrahedron,2009,65,21:4124-4129.
    [215] FRISCH MJ, TRUCKS GW, SCHLEGEL HB, Gaussian03, revision B05Gaussian: Pittsburgh PA,2003.
    [216] GONZALEZ C, SCHLEGEL HB, An improved algorithm for reaction pathfollowing [J]. J. Chem. Phys.,1989,90,4:2154-2161.
    [217] GONZALEZ C, SCHLEGEL HB, Reaction path following in mass-weightedinternal coordinates [J]. J. Phys. Chem.,1990,94,14:5523-5527.
    [218] REED AE, CURTISS LA, WEINHOLD F, Intermolecular interactions from anatural bond orbital, donor-acceptor viewpoint [J]. Chem. Rev.,1988,88,6:899-926.
    [219] REED AE, WEINSTOCK RB, WEINHOLD F, Natural population analysis [J].J. Chem. Phys.,1985,83,2:735-746.
    [220] JONES GO, LI X, HAYDEN AE, HOUK KN, DANISHEFSKY SJ, Thecoupling of isonitriles and carboxylic acids occurring by sequential concertedrearrangement mechanisms [J]. Org. Lett.,2008,10,18:4093-4096.
    [221] PELES DN, THOBURN JD, Multidimensional tunneling in the [1,5] shift in(Z)-1,3-pentadiene: how useful are Swain-Schaad exponents at detectingtunneling [J]. J. Org. Chem.,2008,73,8:3135-3144.
    [222] REHBEIN J, HIERSEMANN M, DFT study of substituent rate effects [J]. J.Org. Chem.,2009,74,11:4336-4342.
    [223] FRISCH MJ, TRUCKS GW, SCHLEGEL HB, SCUSERIA GE, Gaussian09,revision A.1, Gaussian Inc: Wallingford CT,2009.
    [224] OLIVA CG, SILVA AMS, RESENDE DISP, RESENDE DISP, PAZ FAA,CAVALEIRO JAS, Highly Enantioselective1,4-Michael Additions ofNucleophiles to Unsaturated Aryl Ketones with Organocatalysis byBifunctional Cinchona Alkaloids [J]. Eur. J. Org. Chem.,2010,2010,18:3449-3458.
    [225] TSOGOEVA SB, WEI S, Highly enantioselective addition of ketones tonitroolefins catalyzed by new thiourea–amine bifunctional organocatalysts [J].Chem. Commun,2006,42,13:1451-1453.
    [226] YALALOV DA, TSOGOEVA SB, SCHMATZ S, Chiral Thiourea-BasedBifunctional Organocatalysts in the Asymmetric Nitro-Michael Addition: AJoint Experimental-Theoretical Study [J]. Adv. Synth. Catal.,2006,348,7:826-832.
    [227] HUANG H, JACOBSEN EN, Highly enantioselective direct conjugate additionof ketones to nitroalkenes promoted by a chiral primary amine-thiourea catalyst[J]. J. Am. Chem. Soc.,2006,128,22:7170-7171.
    [228] WEI S, YALAVOV DA, TSOGOEVA SB, SCHMATZ S, New highlyenantioselective thiourea-based bifunctional organocatalysts for nitro-Michaeladdition reactions. Catal. Today.,2007,121,2:151-157.
    [229] PENG F, SHAO Z, An evaluation of the Noyori systemin reverse:Thermodynamic and kinetic parameters of secondary alcohol transferdehydrogenation catalyzed by. J. Mol. Catal. A.,2008,285,1:1-14.
    [230] XU LW, LUO J, LU YX, Asymmetric catalysis with chiral primary amine-basedorganocatalysts. Chem. Commun.,2009,45,14:1807-1821.
    [231] JIANG L, CHEN YC, Recent advances in asymmetric catalysis with cinchonaalkaloid-based primary amines [J]. Catal. Sci. Technol.,2011,1,3:354-365.
    [232] SU Z, LEE HW, KIM CK, Asymmetric1,4-Michael Addition ReactionsCatalyzed by a Cinchona Alkaloid Derived Primary Amine: A TheoreticalInvestigation of the Reaction Mechanism and Enantioselectivity [J]. Eur. J. Org.Chem.,2013,2013,9:1706-1715.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700