用户名: 密码: 验证码:
微电子器件界面结构传热与力学行为多尺度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,微电子元器件已被广泛地应用在航空航天、军事及民用电子产品中。随着微电子设计制造技术的发展,微电子器件不断地向高密度、微型化、功能化方向发展,器件内部的结构也越来越复杂,界面结构及非连续性结构也越来越多。大量的研究表明界面结构是影响器件乃至整个系统正常工作的关键结构之一,超过90%的破坏和缺陷都首先出现在界面处。因此,对界面结构的传热及力学特性进行研究将具有重要意义,但是随着制造工艺的发展,由界面结构的纳米级尺寸使得传统的建模及分析手段已经不再适应,如何兼顾不同尺度下不同分析方法的优势,构建一种多尺度分析方法对界面结构的微尺度传热及界面力学特性进行研究是解决此问题的有效途径之一。
     本文针对微电子制造过程中的界面结构的微尺度传热及力学特性进行了多尺度研究。一方面,从不同尺度下的分析方法入手,构建了基于分子动力学(Molecular Dynamic, MD)-界面元(Interface Stress Element, ISE)-有限元(Finite Element, FE)的多尺度模型及分析方法,并对一维力学及传热进行数值分析;另一方面,利用实验手段对界面结构的传热及力学特性进行研究。首先,利用磁控溅射技术制备不同材料构成的界面结构,分析制备工艺参数及制备方法对薄膜生长速率的影响;然后,基于瞬态热反射法及纳米压痕技术分别对界面结构的热特性及力学特性进行系统的研究。
     首先,设计不同尺度下的耦合握手区(Handshake, HS),将不同尺度下的分析方法进行耦合,构建界面结构的MD-ISE-FE多尺度分析模型,提出了一种基于MD-ISE-FE的微观-宏观多尺度分析方法。在原子与微观尺度,通过设计MD-ISE握手区,将该区域的原子与界面元耦合在一起;同时在微观与宏观尺度下,通过本构方程将界面元与有限元直接耦合在一起。基于该模型对不同材料界面结构进行了一维传热及力学特性的数值研究,研究结果表明:由相同材料或者热力学特性相近材料构成的界面结构具有更好的界面传热及力学特性。
     其次,针对扩散界面结构,在不同温度下研究了其微尺度传热及力学特性。一方面,在微观尺度下,界面的扩散厚度随温度的增加而逐渐增加(温度为300K时,界面的扩散厚度占界面厚度的5.19%)。根据现有结论可知:随着温度的增加,界面热导率会由于声子散射加剧而降低;但是本文研究结果发现:随着温度的增加,界面声子散射越来越严重,界面声子匹配度及声子传热速率降低;而界面热导率却呈现出先增加后减小去趋势。分别利用MD及MD-TTM (Two-Temperature Model)模型从声子及电子的角度对界面热导率进行了研究。研究发现:随着温度的增加(≤界面材料的再结晶温度),界面电子传热提高了界面结构的热导率。研究证明了金属界面结构微尺度传热是由声子及电子共同耦合作用的结果,且发现界面电子传热相对于界面声子占主导地位。另一方面,对不同材料界面结构的力学特性进行研究,通过对材料界面结构微观拉伸实验,研究了其应力应变特性。研究结果发现:扩散界面的应力应变曲线比理想不同材料界面的更加平缓;由相同材料构成的界面结合力及结合特性高于由不同材料构成的界面;界面金属扩散对界面结合力有一定的削弱作用,主要由于不同材料界面中产生金属间化合物的脆性所致,这也是引起界面处裂纹萌生及扩散的主要原因之一。
     最后,利用磁控溅射技术、瞬态热反射法及纳米压痕技术,从实验的角度对界面结构的制备、传热及力学特性进行了研究。一方面,研究了不同功率及不同制备方法下的直流溅射速率。研究发现:直流溅射时薄膜的生长速率为射频溅射薄膜生长速率的近10倍,界面热导率随着厚度的增加而增加。另一方面,利用3ω瞬态热反射法对薄膜界面的传热参数进行提取及表征;同时利纳米压痕技术对界面结构的力学特性进行实验表征。研究发现:随界面结构厚度的增加热导率增加;随着压入深度的增加,界面的弹性模量与硬度基本呈现出下降的趋势。这与样品在制备过程的生长机理有关,在磁控溅射生长薄膜时,是从无到有,从薄到厚,先进行随机堆积,然后再进行有序成核生长并形成晶体结构。最开始生长的薄膜中间晶核及晶体结构较少、材料缺陷率大以及密度低等原因,从而导致了界面热导率随厚度增加而增加;弹性模量及硬度随着压入深度的增加而降低的现象。
     以上研究不仅对多尺度计算方法进行了系统的研究,同时,对界面结构的界面传热及力学特性进行了系统的数值及实验研究,为进一步弄清不同材料界面的传热机制提供了基础,同时为微/纳电子器件设计制造提供了理论基础和设计手段。
Nowadays, the electronic devices are widely used in the fields of aerospace, military, civil and other electronic products. Coincident with the advancement of micro/nano design and manufacturing technologies, the micro-devices become more and more high density, microminiaturization and functional systemic. The interfacial strutures consist of different materials and some discontinuous structures become more complex, which is widely used in IC/MEMS devices. A lot of experiments show that the reliability of interfacial structures is one of the most important strutures which affect the performance of the whole device or system. Almost all of the deformations and defects always appear in the interface. Hence, the investigation of the interfical heat transfer and mechanical properties of interface structure is very useful for the designing and manufacturing of microelectronic. The size of the interfacial structures is in the nanoscale due to the development of manufacturing process. The size effect of the interface becomes more and more obvious. At this moment, the traditional modeling and analysis methods are not suitable any more in this nanoscale situation. The investigation on the heat transfer mechanism in the interfacial structure has been a main difficulty for microelectronic densign and manufacturing. It is a potential method to analyze the interfacial problems that how to build a multiscle analysis method by considering the advantages of different methods under different scales.
     The interfacial heat transfer mechanism and mechanical properties of the interface sturctures in the mciro/nano electronic manufacturing are investigated based on the numerical and experimental methods in this paper. On the one hand, the multiscale model and analysis method is put forward based on the molecular dynamic, interface stress element and finite element methods in this paper. And it is used to analyze the mechanical and heat transfer of interfacial structure in one dimensional. On the other hand, the different interface samples are prepared by the magnetron sputtering method. And then, the thermal porperties and mechanical charateristics of the interface structure are investigated based on the experimental methods (3co transient heat reflection method and nanoindentation). The main research and results in this paper are included as follows,
     Firstly, a multiscale method based on MD-ISE-FE is put forword to investigate the charateristics from the nanoscal to macroscale in this paper, which is built by the design of different handshake regions conneced the different methods in different scales. In the handshake regions of ISE and FE, the stiffness matrixs and load matrixs of ISE and FE are coupled dicretly; meanwhile, the mapping operator methods and interpolation algorithm are used to connect the atoms and the interfacial element in the MD and ISE handshake regio. The Hamiltonian is used to describe the engery of the handshake regions. The multiscale model is solved based on the sequence coupling method. The one dimensional heat transfer and tensile are calclulated based on the multiscale model and the sequence coupling method. Comparing with some references, the results prove that the MD-ISE-FE multiscale modeling and analysis method is feasible and useful for understanding the interfacial reliability. The mechanical and heat transfer of interfacial structure in one dimensional have been investigated based on MD-ISE-FE multiscale method, the results show that the charateristics of heat transfer and mechanical of interface structure consisting of the same materials or similar materials are better than that of interface structure consisting of dissimilar mateirals.
     Secondly, the thermal performances of the interface structure are investigated under differernt temperatures. The interfacial diffusion thickness of interface structure increases with the temperature increasing in nanoscale (Especially, the percentage of the interfacial diffusion thickness in the whole interface thickness is about5.19%when the tempartue is300K.). It indicates that the phonon scattering becomes more and more serious with the temeperature increasing, which also reduces the phonon coincident degree in the interfacial heat transfer. All these fators of phonon would reduce the interfacial thermal conductivity. But the results in this paper show that the phonon coincident degree decreases with the temperature increasing, while, the change of the thermal conductivity increases firstly and then to decrease. The interfacial heat transfer mechanism of the interface is explained from the coupling of the phonon and electron. It is found that the effciency of eletron heat transfer is enhanced with the termperature increasing (lower than the recrystallization temperature). The results prove that the micro/nanocscale heat transfer mechanism of the interface structure is the coupling results of phonon and eletron. And it is found that the electron is the main fator in the interfacial heat transfer compared with Phonon.
     Finally, the thermal properties (thermal resistance and thermal conductivity) and mechanical charateristcs (Elastic modulus and Hardness) of the interface structures are investigated based on the magnetron sputtering, transient heat reflection method and nanoindentation technology. On the one hand, the mechanical charateristics (Elastic modulus and Hardness) of the interface are studied in this paper. Some different interface structures (Cu/Cu and Cu/Al) are built for investigation. The stress-strain relationships of different interfaces are systemically investigated based on the tensile test simulation of the interface. It is found that the stress-strain curve of the diffusion interface is much smoother than that of the ideal interface structure consisting of different materials. The adhension force of the interface reduces in the metallic interface which maybe be caused by the brittleness of the intermetallic compound (IMC) generated in the diffusion interface. The IMC is also one of the most important reasons caused the crack in the interface. On the other hand, the sputtering rate is studied under different powers and different magnetron sputtering methods. The results show that the sputtering rate in the DC (Direct Current) magnetron sputtering is about ten times faster than that in the RF (Radio Frequecny) magnetron sputtering. The heat transfer parameters (thermal conductivity) of the interface samples are tested by using the3ω transient heat reflection method, the thermal conductivity increases with the thickness increasing. Meanwhile, the mechanical charateristics of the interface structure are tested based on the nanoindentation technology. It is foud that the elastic modulus and hardness of the interface reduce with the increase of the indentation depth. This phenomenon is caused by the growing mechanism in the sputtering process. In the films magnetron sputtering process, the film always start from scratch, and from thin to thick. In other words, the random accumulation is always in the begining, after that, the orderly nucleating growth and formation of crystal structure start in the next. There are lots of defects in the random accumulation step, which reduces the density in the beginning. It explains the phenomenon that the elastic modulus and hardness reduce with the increase of the indentation depth in the nanoindentation experiment.
     The aboved investigations not only systemically studied on the multiscale numerical calculation, but also investigated the interfacial heat transfer and mechanical characteristic of the interface structure on numerical and experimental methods, which is useful for understanding the heat transfer mechanism in the dissimilar materials interface structure. And also implies a potential multiscale method for analyzing the interface performance and designing the interface in the micro/nano manufacturing.
引文
[1]R.R. Tummala, V. Sundaram. High density packaging in 2010 and beyond [J]. Electronic Materials and Packaging,2002:30-36.
    [2]N. Kumbhat, R.P. Markodeya, R.V. Pucha. Next generation of package/board materials technology for ultra-high density wiring and fine-pitch reliable inter--connection assembly [J]. Electronic Components and Technology,2004,2:1843-1850.
    [3]谢斌.高密度芯片封装中界面分层的数值模拟研究及其应用[D].上海:上海交通大学博士论文,2007.
    [4]Z.W. Zhong. Overview of wire bonding using copper wire or insulated wire [J]. Micro-electronics Reliability,2011,51:4-12.
    [5]C.T. Su, C.J. Yeh. Optimization of the Cu wire bonding process for IC assembly using taguchi methods [J]. Microelectronics Reliability,2011,51:53-59.
    [6]H. Xu, C. Liu, V.V. Silberschmidt, Z. Chen, V.L. Acoff. Effect of ultrasonic energy on nanoscale interfacial structure in copper wire bonding on aluminum pads[J]. Journal of Physics D:Applied Physics,2011,44:145301.
    [7]中国电子学会生产技术学分会丛书编委会.微电子封装技术[M].合肥:中国科学技术大学出版社,2003.
    [8]T.Y. Tee, H.S. Ng, D. Yap, X. Baraton Z.W. Zhong. Board-level solder joint reliability modeling of telecommunication applications [J]. Microelectronics Reliability,2003,43(7):1117-1123.
    [9]谭光斌,杨平,陈子夏.田口实验法在PBGA焊点可靠性中的应用[J].焊接学报,2008,29(12):97-100.
    [10]Y.S. Lai, T.H. Wang, C.C. Lee. Thermal-mechanical coupling analysis for coupled power and thermal cycling reliability of chip-scale packages [C].6th Int. Cons. on Thermal, Mechanical and Multiphysics Simulation and merimnts in Micro-Electronics and Micro-System, EuroSimE,2005,539-544.
    [11]C. Basaran, H. Tang, S. Nie. Experimental damage mechanics of microelectronic solder joints under fatigue loading [J]. Mechanics of Materials,2004,36(11): 1111-1112.
    [12]王谦,S.W.R. Lee,汪刚强.电子封装中的焊点及其可靠性[J].电子元件与材料,2000,19(2):24-26.
    [13]陈国海,马莒生.热循环过程中焊点残余应变的研究[J].电子元件与材料,2004,23(11):37-39.
    [14]周德俭,刘常康.PBGA焊点的热疲劳寿命分析[J].机械强度,1999,21(3):212-214.
    [15]黄春跃,吴兆华,周德俭.热冲击条件下1.27mm引脚间距塑封球栅阵列器件焊点可靠性测试与分析[J].焊接学报,2005,26(9):31-34.
    [16]黄春跃,吴兆华,周德俭.基于正交试验设计的塑封球栅阵列器件焊点工艺参数与可靠性关系研究[J].电子学报,2005,(5):788-792.
    [17]张礼季,王莉,高霞,谢晓明.塑料封装球栅阵列器件焊点的可靠性[J].中国有色金属学报,2002,12(1):227-231.
    [18]褚卫华,陈循,陶俊勇,王考.焊点热应力应变分析与HALT热循环温度剖面图优化[J].焊接学报.2003,24(6):37-42.
    [19]Y.J. Lin, S.J. Hwang, H.H. Lee, D.Y. Huang. Board level reliability of chip scale package under cyclic thermomechanical loading [J]. ChipMOS Technical Sym-posium,2000.
    [20]D. Li, C. Liu, P. P. Conway. Characteristics of Intermetallics and Micro-mechanical Properties during thermal aging of Sn-Ag-Cu Flip-chip solder inter-connect [J]. Materials Science & Engineering A,2005,391(1-2):95-103.
    [21]R. Ghaffarian. Accelerated thermal cycling and failure mechanisms for BGA and CSP assemblies [J]. Journal of Electronic Packaging,2000,122(4):335-340.
    [22]I. Shohji, H. Mori, Y. Orii. Solder joint reliability evaluation of chip scale package using a modified Coffin-Manson equation [J]. Microelectronics Reli-ability,2004,44(2):269-274.
    [23]X.S. Zhang, W.R. Lee, Y.H. Pao. A damage evolution model for thermal fatigue analysis of solder joints [J]. Journal of Electronic Packaging,2000,112(3):200-206.
    [24]L. Zhang, R. Sitaraman, V. Patwardhan, L. Nguyen, N. Kekar. Solder Joint Reliability Model with Modified Darveaux's Equations for the micro SMD Wafer Level-Chip Scale Package Family [J]. IEEE Electronic Components and Technology Conference,2003,572-577.
    [25]X. Zhang, E.H. Wong, C. Lee, T.C. Chai, Y.Y. Ma, P.S. Teo, D. Pinjala, S. Sampath. Thermo-mechanical finite element analysis in a multichip build up substrate based package design [J]. Microelectronics Reliability,2004,44(4): 611-619.
    [26]P. Towashiraporn, K. Gall, G. Subbarayan, B. McIlvanie, B. C. Hunter, D. Love, B. Sullivan. Powers cycling thermal fatigue of Sn-Pb solder joints on a chip scale package [J]. International Journal of Fatigue.2004,26(5):497-510.
    [27]Z. Johnson, N. Schneck, A. Thoreson, J. Stone. Thermo-mechanical simulation of stack chip scale package with moire interferometry validation [J].10th Inter-society Conference,2006,1120-1125.
    [28]S.H. Choi, S. Maruyama. Thermal boundary resistance at an epitaxially perfect interface of thin films [J]. International Journal of Thermal Sciences,2005,44(6): 547-558.
    [29]范镜泓.材料变形与破坏的多尺度分析[M].北京:科学出版社,2008.
    [30]廖宁波.不同材料界面传热的多尺度建模及物理机制研究[D].镇江:江苏大学博士论文,2009.
    [31]冯晓利.纳米薄膜晶格热导率的分子动力学模拟[D].北京:清华大学博士论文,2001.
    [32]杨决宽.微尺度热传导的分子动力学仿真与实验研究[D].南京:东南大学博士论文,2004.
    [33]黄正兴.薄膜热导率的测试与分子动力学模拟研究[D].大连:大连理工大学 博士论文,2006.
    [34]宋青林.薄膜热学特性研究[D].北京:中国科学院电子学研究所博士论文,2004.
    [35]刘静.微米/纳米尺度传热学[M].北京:科学出版社,2001.
    [36]余雷.电子薄膜传热特性实验与分析研究[D].北京:北京航空航天大学,2004.
    [37]余隽.微量热计的研制及微纳米薄膜比热容测试与分析[D].大连:大连理工大学,2005.
    [38]M. Grujicic, C.L. Zhao, E.C. Dusel. The effect of thermal contact resistance on heat management in the electronic packaging [J]. Applied Surface Science,2005, 246(1-3):290-302.
    [39]S. Moghaddam, M. Rada, A. Shooshtar, M. Ohadi, Y. Joshi. Evaluation of analytical models for thermal analysis and design of electronic packages [J]. Microelectronics Journal,2003,34(3):223-230.
    [40]D.H. Warner, F. Sansoz, J.F. Molinari. Atomistic based continuum investigation of plastic deformation in nanocrystalline copper [J]. International Journal of Plasticity,2006,22(4):754-774.
    [41]R.J. Stevens, L.V. Zhigilei, P.M. Norris. Effects of temperature and disorder on thermal boundary conductance at solid-solid interfaces:Nonequilibrium molecular dynamics simulations [J]. International Journal of Heat and Mass Transfer,2007,50(19-20):3977-3989.
    [42]N. Liao, P. Yang. Atomic simulation for adhesion problem on surfaces of micro gears [J]. International Journal of Materials and Product Technology,2009,34(3): 264-272.
    [43]N. Liao, P. Yang. Characterizations of interfacial heat transfer for electronic packages by multiscale modeling [J]. Journal of thermophysics and heat transfer, 2008,22(4):581-586.
    [44]N. Liao, P. Yang. VRcollaborative and interactive design over the web:a MEMS case study [J]. International journal of materials & product technology,2008, 31(2-4):259-268.
    [45]N. Liao, P. Yang. Effect of temperature on nano-scale adhesion for MEMS [J]. International journal of materials & product technology,2008,31(4):354-364.
    [46]P. Yang, N. Liao, D. Yang. Property Simulation for nano-scale interfacial friction between two kinds of material in mems based on an atomistic simplified model [J]. International Journal of Modern Physics B,2007,12(20):3581-3590.
    [47]N. Liao, P. Yang. Characterizations of friction force and sliding velocity in nano-scale interfacial friction [J]. International Journal of Materials and Structural Integrity,2007,1(1/2/3):190-200.
    [48]P. Yang, N. Liao, B. Yang, J.N. Ding J.C. Yang. A mixed isomorphism approach for kinematic structure enumeration graphs based on intelligent design and manufacturing [J]. International Journal of Advanced Manufacturing Technology, 2007,31(9-10):841-845.
    [49]P. Yang, N. Liao. Surface sliding simulation in micro gear train for adhesion problem and tribology design by using molecular dynamics model [J]. Compu-tational Materials Science,2007,38(4):678-684.
    [50]P. Yang, N. Liao, D. Yang, L.J. Ernst. Sliding simulation for adhesion problems in micro gear trains based on an atomistic simplified model [J]. Microsystem Technologies,2006,12(12):1125-1131.
    [51]P. Yang, N. Liao. Physical mechanism of interfacial thermal resistance in electronic packaging based on a mixed MD/FE model [J]. IEEE transactions on advanced packaging,2008,31(3):496-501.
    [52]P. Yang, N.B. Liao. A novel MD/FE coupled model for numerical investigation of interfacial thermal resistance in MEMS/NEMS packaging [J]. Composite Interfaces,2008,15(6):561-575.
    [53]N.B. Liao, P. Yang. Characterizations of interfacial heat Transfer for electroni packages by multiscale modeling [J]. Journal of Thermophysics and Heat Trans- fer,2008,22(4):581-586.
    [54]P. Yang, N.B. Liao, C. Li, S.H. Shang. Multiscale modeling and numerical analysis of thermal behavior of Cu-Al interface structure in micro/nano manu-facturing [J]. International Journal of Nonlinear Science & Numerical Simulation, 2009,10(4):483-491.
    [55]P. Yang, N.B. Liao. Research on characteristics of interfacial heat transport between two kinds of materials using a mixed MD-FE model [J]. Applied Physics A,2008,92:329-335.
    [56]G. Anciaux, S.B. Ramisetti, J.F. Molinari. A finite temperature briding domain method for MD-FE coupling and application to a contact problem [J]. Computer Methods in Applied Mechanics and Engineering,2012,205-208:204-212.
    [57]W.A. Curtin, R.E. Miller. Atomistic/continuum coupling in computational materials science [J]. Modeling and Simulation in Materials Science and Engineering,2003,11:33-68.
    [58]M. Fermeglia, S. Pricl. Multiscale modeling for polymer systems of industrial interest [J]. Progress in Orgainc Coatings,2007,58:187-199.
    [59]W.Z. Shan, U. Nackenhorst. An adaptive FE-MD model coupling approach [J]. Computational Mechanics,2010,46:577-596.
    [60]C.T. Wang, S.R. Jian, J.S.C. Jang, Y.S. Lai, P.F. Yang. Multiscale simulation of nanoindentation on Ni (100) thin film [J]. Applied Surface Scienc,2008,255: 3240-3250.
    [61]P.K. Schelling, S.R Phillpot. Multiscale simulation of phonon transport in superlattices [J]. Journal of Applied Physics,2003,93(9):5377-5387.
    [62]J. Chen, Y. Xu, D.Q. Chen, J.S. Sun. Multiscale method study of nano-void under the shock wave [J]. Applied Physics A,2009,94:987-993.
    [63]S. Pannala, R.F. Wood. Multiscale simulation of Carbon nanotube nucleation and growth:mesoscopic continuum calculations [J]. Journal of Nanoscience and Nanotechonolgy,2004,4(4):463-470.
    [64]J.A. Zimmerman, R.E. Jones, J.A. Templeton. A material frame approach for evaluation continuum variables in atomistic simulations [J]. Journal of Computa-tional Physics,2010,229:2364-2389.
    [65]Z.H. Zhu, B.H. Pour. A nodal position finite element method for plane elastic problems [J]. Finite Element in Analysis and Design,2011,47:73-77.
    [66]S.J. Ogata, E. Lidorikis, F. Shimojo, A. Nakano, P. Vashishta, R.K. Kalia. Hybrid finite-element/molecular-dynamics/electronic-density-functional approach to materials simulations on parallel computers [J]. Computer Physics Communica-tions,2001,138:143-154.
    [67]K. Fackeldey, R. Krause. Multiscale coupling in function space-weak coupling between molecular dynamics and continuum mechanics [J]. International Journal for Numerical Methods in Engineering,2009,79(12):1517-1535.
    [68]B.I. Yakobson, C.J. Barbec, J. Bernholc. Nanomechanics of carbon tubes: instablilities beyond linear respone [J]. Physcial Review Letters,1996,76:2511.
    [69]C.Y. Wang, L.C. Zhang. A critical assessment of the elastic properties and effective wall thickness of single-walled carbon nanotubes [J]. Nano techno logy, 2008,19:075705.1-075705.4.
    [70]R Chowdhury, C.Y. Wang, S. Adhikari, F. Scarpa. Vibration and symmetry-breaking of borbon nitride nanotubes [J]. Nanotechnology,2010,21:365702.1-365702.8.
    [71]V.P. Nguyen, M. Stroeven, L.J. Sluys. Multiscale failure modeling of concrete: micromechanical modeling discontinuous homogenization and parallel computations [J]. Computer Methods in Applied Mechanics and Engineering, 2012,201-204:139-156.
    [72]M. Nitka, G. Combe, C. Dascalu, J. Desrues. Twe-scale modeling of granular materials:a DEM-FEM approach [J]. Granular Matter,2011,13(3):277-281.
    [73]F.F. Abraham, J.Q. Broughton, N. Bernstein, E. Kaxiras. Spanning the length scales in dynamic simulation [J]. Computers in Physics,1998,12(6):538-546.
    [74]J.Q. Broughton, F.F. Abraham, N. Bernstein, E. Kaxiras. Concurrent coupling of length scales:methodology and application [J]. Physical Review B,1999,60(4): 2391-2403.
    [75]H. Huang, G.H. Gilmer, T.D. de la Rubia. An atomistic simulator for thin film deposition in three dimensions [J]. Journal of Applied Physics,1998,84(7):3636-3649.
    [76]H. Jonsson. Theoretical studies of atomic scale processes relevant to crystal growth [J]. Annual Review of Physical Chemistry,2000,51:623-53.
    [77]F. Grosse, W. Barvosa-Carter, J. Zinck, M. Wheeler, M.F. Gyure. Arsenic flux dependence of island nucleation on InAs (001) [J]. Physics Review Letters,2002, 89(11):102-116.
    [78]B.I. Yakobson, C.J. Brabec, J. Bernholc. Nanomechanics of carbon tubes: Instabilities beyond linear response [J]. Physics Review Letters,1996,76(14): 2511-2514.
    [79]G.S. Ayton, W.G. Noid, G.A. Voth. Multiscale modeling of bio molecular systems: in serial and in parallerl [J]. Current Opinion in Structural Biology,2007,17: 192-198.
    [80]H. Lee, R.G. Larson. Multiscale Modeling of Dendrimers and their interactions with bilayers and polyelectrolytes [J]. Molecules,2009,14:423-438.
    [81]A.J. Engler, P.O. Humbert, W.H. Bernhard, V.M. Weaver. Multiscale modeling of form and function [J]. Sicence,2009,324:208-212.
    [82]杨平,廖宁波.微纳电子器件结构的多物理场界面多尺度设计方法:中国,200910024717[P],2009-08-26.
    [83]L.Q. Zhang, P. Yang, F.W. Xie, T. Xi, X.G. Yu, X.F. Song. MD-ISE-FE multiscale modeling and numerical simulation of thermal conductivity of Cu films interface structure [J]. Advanced Materials Research,2012,382:242-246.
    [84]L.Q. Zhang, P. Yang, M.Chen, N.B. Liao. Numerical investigation on thermal properties at Cu-Al interface in micro/nano manufacturing [J]. Applied Surface Science,2012,258:3975-3979.
    [85]L.Q. Zhang, P. Yang, S.H. Shang, C.Q. Li, X.F. Song. Nanoindentation experimental approach and numerical simulation of Al/Cr bilayer films [J]. Composite Interfaces,2011,18:615-626.
    [86]P. Yang, H.F. Xu, L.Q. Zhang, F.W. Xie, J.M. Yang. Numerical evaluation on heat transport characteristics between Al2O3 and ZnO materials in nanoscale situation [J]. ACS Applied Materials & Interfaces,2012,4:158-162.
    [87]杨平,吴勇胜,许海峰,许鲜欣,张立强,李培TiO/ZnO纳米薄膜界面热导率的分子动力学模拟[J].物理学报,2011,60(6):066601.
    [88]P. Yang, P. Li, L.Q. Zhang, X.L. Wang, H. Wang, X.F. Song, F.W. Xie. Uniaxial stress influence on lattice, band gap and optical properties of n-type ZnO: first-principles calculations [J]. Chinese Physics B,2012,21(1):016803.
    [89]杨平,张立强,谢方伟,李培,宋喜福,席涛,于新刚,王晓亮,王欢.微/纳/光电子器件界面结构的多尺度设计方法:中国,201110164391[P],2011-10-19.
    [90]唐大亮,王照亮.微纳米材料和结构热物理特性表征[M].北京:科学出版社,2010.
    [91]I.M. Khalatnikov, I.N. Adamenko. Theory of the Kapitza temperature discon-tinuity at a solid body-liquid helium boundary [J]. Soviet Physics JETP,1973, 36(3):391-387.
    [92]W.A. Little. The transport of heat between dissimilar solids at low temperatures [J]. Canadian Journal of Physics,1959,37(3):334-349.
    [93]E.T. Swartz, R.O. Pohl. Thermal resistance at interfaces [J]. Applied Physics Letters,1987,51(26):2200-2202.
    [94]E.T. Swartz, R.O. Pohl. Thermal boundary resistance [J]. Reviews of Modern Physics,1989,61(3):605-668.
    [95]W.E. Pickett, J.L. Feldman, J. Deppe. Thermal transport across boundaries in diamond structure materials [J]. Modelling Simulation in Materials Science and Engineering,1996,4:409-419.
    [96]A. Maiti, G.D. Mahan, S.T. Pantelides. Dynamical simulations of nonequilibrium processes-heat flow and the Kapitza resistance across grain boundaries [J]. Solid State Communications,1997,102(7):517-521.
    [97]D.S. Ivanov, L.V. Zhigilei. Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films [J]. Physical Review B,2003, 68:64-114.
    [98]D.D. Vvedensky. Multiscale modelling of nanostructures [J]. Journal of Physics Condensed Matter,2004,16:1537-1576.
    [99]W. K. Liu, E. G. Karpov, S. Zhang, H. S. Park. An introduction to computational nanomechanics and materials [J]. Computer Methods in Applied Mechanics and Engineering,2004,193(17-20):1529-1578.
    [100]刘更,刘天祥,张征,沈允文.宏观—微观多尺度数值计算方法研究进展[J].中国机械工程,2005,16(16):1493-1499.
    [101]E.B. Tadmor, M. Ortiz, R. Phillips. Quasicontinuum analysis of defects in solids [J]. Philosophical Magazine A,1996,73(6):1529-1563.
    [102]R.E. Miller, E.B. Tadmor. The quasicontinuum method:overview, applications and current directions [J]. Journal of Computer-Aided Materials,2002,9(3):203-239.
    [103]C.Y. Wang, L.J. Li. Single walled carbon nanotube for sensing small molecules [J]. Procedia Engineering,2011,25:284-287.
    [104]W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity [J]. Journal of Applied Physics,1961,32:1679-1684.
    [105]I. Hatta, R. Kato. Thermal diffusvity measurement of thin films by means of an ac calorimetric method [J]. Review of Scientific Instruments,1985,56:1643-1647.
    [106]T.S. Parndall. Photoacoustic determination of thin-film thermal properties [J]. Applied Physics Letters,1983,42:955-957.
    [107]O.W. Kading, H. Skurk, K.E. Goodson. Thermal conduction in metallized silicon dioxide layers on silicon [J]. Applied Physics Letters,1994,65:1629-1631.
    [108]W.B. Jackson, N.C. Boccara. Photothermal deflection spectroscopya and detection [J]. Applied Optics,1981,20:1333-1344.
    [109]S.M. Lee, D.G. Cahill. Heat transport in thin dielectric films [J]. Journal of Applied Physics,1997,81:2590-2595.
    [110]王照亮.微纳米尺度材料热物性表征与热输运机理研究[D].北京:中国科学院博士论文,2007.
    [111]Z.L. Wang, D.W. Tang, X.H. Zheng. Simulations determination of thermal conductvities of coating film and substrate by extending 3ω-method to wide-frequency range [J]. Applied Surface Science,2007,253:9024-9029.
    [112]Z.L. Wang, D.W. Tang, W.G. Zhang. Simulationeous measurements of the thermal conducitivity, thermal capacitiy and thermal diffusivity of an individual carbon fiber [J]. Journal of Phsics D:Applied Physices,2007,40(15):4686-4690.
    [113]Z.L. Wang, D.W. Tang, W.G. Zhang, X.B. Li, X.H. Zheng, W.G. Zhang, L.X. Zheng, Y.T. Zhu, A.Z. Jin, H.F. Yang, C.Z. Gu. Length-dependent thermal conductivity of an individual single-wall carbon nanotube [J]. Applied Physics Letters,2007,91(2):119-123.
    [114]Z.L. Wang, D.W. Tang, N. Araki. Thermal properties measurements of nano-fluids by 3ω method and prediction analysis [J]. International Journal of Thermophysics,2007,28(4):1255-1268.
    [115]Stevens, J. Robert. Thermal transport at room temperature solid-solid interfaces [J]. University of Virginia,2005,164(31):89-91.
    [116]O.W. Kading, H. Skurk, K.E. Goodson. Thermal conduction in metallized silicon-dioxide layers on silicon [J]. Applied Physics Letters,1994,65(13):1629-1631.
    [117]T. Azumi, Y. Takahashi. Novel finite pulse-width correction in flash thermal diffusivity measurement [J]. Review of Scienctific Instruments,1981,52:1411-1415.
    [118]D.W. Tang, N. Araki. Some approaches for obtaining better data for thermal diffusivities of thin materials measured by the laser-flash method [J]. High Temperature and High Pressures,2000,32:693-700.
    [119]葛继平.镀膜结合强度测试技术的研究进展[J].中国表面工程,1995,2:42-48.
    [120]苟立,潘利,朱纪磊,冉均国.梯度硬质合金上金刚石涂层的附着性能评价[J].四川大学学报(工程科学版),2005,37(3):82-85.
    [121]王必本,王万录.SiC在异质衬底生长金刚石膜的作用分析[J].真空科学与技术学报,2000,20(3):187-189.
    [122]Y. Zhang, H.S. Zhu, X.W. Yang, N. Yang. Epitaxy of Thin Diamond Film with Large-area Monocrystalline [J]. Journal of Synthetic Crystals,2000,3:250-252.
    [123]L. Liu, G.P. Ling, T. Liu, J. Li Erosion behavior and mechanism of boronised steels [J]. Journal of Zhejiang University Science,2002,3:278-282.
    [124]S.S. Chiang, D.B. Marshall, A.G. Evans. Simple methed for adhesion measure-ments [J]. Materials Science Research,1981,14:603-617.
    [125]P.C. Jindal, D.T. Quinto, G.J. Wolfe. Adhesion measurements of chemically deposited and physically vapor deposited head coatings on WC Co substrates [J]. Thin Solid Films,1987,154(122):361-375.
    [126]J.L. Loubet, W.C. Oliver, B.N. Lucas. Measurement of the loss tangent of low density polyethylene with a nano-indentation technique [J]. Journal of Materials Research,2000,15(5):1195-1198.
    [127]严学俭,I. Hermann.应用纳米压痕法测试类金刚石薄膜力学性能的研究[J].真空电子技术,2003,3:22-25.
    [128]T.H. Fang, W.J. Chang. Nanomechanical properties of copper thin films on different substrate using the naonoindentation technique [J]. Microelectronic Engineering,2003,65:231-238.
    [129]D.L. Fazio, S. Syngellak, R. J. K. Wood, F. M. Fugiuele, G. Sciume. Nano indentation of CVD diamond:comparison of an FE model and analytical and experimental data [J]. Diamond and Related Materials,2001,10(3-7):765-769.
    [130]S. Ranjana, D.N. William. Effect of substrate on the determination of thin film mechanical properties by nanoindentation [J]. Acta Materialia,2002,50:23-28.
    [131]Shou-Yi Chang, Hung-Chun Tsai, Jien-Yi Chang, Su-Jien Lin, Yee-Shyi Chang. Analyses of Interface Adhesion between Porous SiOCH Low-k Film and SiCN Layers by Nanoindentation and Nanoscratch Tests [J]. Thin Solid Films,2008, 516(16):5334-5338.
    [132]X. Cai, J.F. Wang, P.N. Zhou, X.H. Liu, Z.H. Zhen. Ultra micro hardness measurement of silicon nitride films [J]. Key Engineering Materials,1994: 542-552.
    [133]石零,余新明,王惠龄,吴学军.固-固接触界面热传输研究[J].低温与超导,2008,36(10):19-22.
    [134]S.H. Ju, X.G. Liang, S.C. Wang. Investigation of interfacial thermal resistance of bi-layer nanofilms by nonequilibrium molecular dynamics [J]. Journal of Physics D:Applied Physics 2010,43(8):085407.
    [135]Z.X. Huang, Z.N. Tang, J. Yu, S.Y. Bai. Thermal conductivity of amorphous and crystalline thin films by molecular dynamics simulation [J]. Physica B: Condensed Matter,2009,404(12,13):1790-1793.
    [136]Y.F. Xu, H.C. Liao. Molecular dynamics simulation of thermal conductivity of nano-films in the direction along the planes [J]. Chinese Journal of Sensors and Actuators,2006,19(5):1671-1673.
    [137]文玉华,朱如曾,周富信,王崇愚.分子动力学模拟的主要技术[J].力学进展,2003,33(1):65-72.
    [138]Daw, S. Murray, M. Baskes. Embedded-atom method:Derivation and application to impurities, surfaces, and other defects in metals [J]. Physical Review B,1984, 29(12):6443-6453.
    [139]叶杰成,申爽,唐祯安.均匀非平衡态分子动力学模拟铜薄膜的热导率[J].大连理工学报,2002,42(3):17-421.
    [140]B. Li, P.C. Clapp, J.A. Rifkin, X.M. Zhang. Molecular dynamics calculation of heat dissipation during sliding fraction [J]. International Journal of Heat and Mass Transfer,2003,46:37-43.
    [141]L. Verlet. Computer experiments on classical fluids:thermodynamical properties of Lennard-Jones molecules [J]. Physical Review,1967,159:98-103.
    [142]W.C. Swope, H.C. Anderson, P.H. Berens, K.R. Wilson. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecues:application to small water cluster [J]. Journal of Chemical Physics,1982,76(1):637-649.
    [143]S. Maruyama. Molecular Dynamics Method for Microscale Heat Transfer [J]. Advances in Numerical Heat Transfer,2000,2(6):189-226.
    [144]P.J. Hegedus, A.R Abramson. A molecular dynamics study of interfacial thermal transport in heterogeneous systems [J]. International Journal of Heat and Mass Transfer,2006,49(25-26):4921-4931.
    [145]章青,卓家寿.三峡船闸高边坡稳定分析的界面元法与评判准则[J].岩石力学与工程学报,2000,19(3):285-288.
    [146]王勖成.有限元法[M].北京:清华大学出版社,2011,5.
    [147]王成恩.面向科学计算的网格划分与可视化技术[M].北京:科学出版社,2011,9.
    [148]黄晓东,丁问司,杜群贵.基于波前法的参数曲面有限元网格生成算法[M].计算机辅助设计与图形学报,2010,22(1):51-59.
    [149]D. Qian, G. J. Wagner, W. K. Liu. A multiscale projection method for the analysis of carbon nanotubes [J]. Computer Methods in Applied Mechanics and Engineering,2004,19(17-20):1603-1632.
    [150]章青,周资斌,卓家寿.分区界面元-有限元-无限元混合模型[J].计算力学学报,2005,22(1):8-12.
    [151]R.A. Johnson. Alloy models with the embedded-atom method [J]. Physical Review B,1989,39(17):12254-12559.
    [152]D. Ward, W. Curtin, Y. Qi Aluminum-silicon interfaces and nanocomposites:A molecular dynamics study [J]. Composites science and technology,2006,66(9): 1151-1161.
    [153]J. Mei, J.W. Davenport, G.W. Fernando. Molecular-Dynamics Simulation of Statistical Mechanical Systems [J]. Physical Review B,1991,43(6):46-53.
    [154]X.G. Liang, Z. Y. Guo. The scaling effect on the thermal processes at mini/microscale [J]. Heat Transfer Engineering,2006,27(4):30-40.
    [155]B.C. Gundrum, D.G. Cahill, R.S. Averback. Thermal conductance of metal-metal interfaces [J]. Physical Review B,2005,72(24):245-426.
    [156]J. Cai, Y.Y. Ye. Simple analytical embendded-atom-potential model including a long-range force for fcc metals and their alloys [J]. Physical B,1996,54:8398-8410.
    [157]F. Apostol, Y. Mishin. Interatomic potential for the Al-Cu system [J]. Physical B, 2011,83:054116.
    [158]J.R Lukes, D.Y. Li, X.G. Liang, C.L. Tien. Molecular dynamics study of solid thin film thermal conductivity [J]. ASME J. Heat Transfer,2000,122:536-543.
    [159]S.D. Kang, S.C. Lim, E.S. Lee, Y.W. Cho, Y.H. Kim, H.K. Lyeo, Y.H. Lee. Interfacial thermal conductance observed to be higher in semiconducting than metallic carbon nanotubes [J]. ACS Nano,2012,6:3853-3860.
    [160]J.M. Dickey, A. Paskin. Computer simulation of the lattice dynamics of solids [J]. Physics Review B,1969,188:1407-1418.
    [161]N. Wei, L. Xu, H.Q. Wang, J.C. Zheng. Strain engineering of thermal conduc-tivity in graphene sheets and nanoribbons:a demonstration of magic flexibility [J]. Nanotechnology,2011,22:105705.
    [162]Z.P. Xu, M.J. Buehler. Nanoengineering heat transfer performance at carbon nanotubes interfaces [J]. ACS Nano,2009,3:2767-2775.
    [163]B.W. Li, J.H. Lan, L. Wang. Interface thermal resistance between dissimilar an-harmoinc lattices [J]. Physics Revewer Letter,2005,95:104304.
    [164]C. Fabrizio. Representation of mechanical loads in molecular dynamics simula- tion [J]. Physical Review B,2001,65(1):14-107.
    [165]B. Chylak. Development in finite pitch copper wire bonding production [C].2009 1 lth Electronics Packaging Technology Conference (EPTC'09), Singapore,2009: 1-6.
    [166]Z.X. Huang, Z.A. Tang, J. Yu, S.Y. Bai. Thermal conducativity of nanoscale polycrystalline ZnO thin film [J]. Physica B-Condensed Matter,2011,406:818-823.
    [167]S.Y. Bai, Z.A. Tang, Z.X. Huang, J. Yu. Thermal conducativity measurement of submicron-thick aluminum oxide thin films by a transient thermo-reflectance technique [J]. Chinese Physics Letter,2008,25(2):593-596.
    [168]郝正同,谢泉,杨子义.磁控溅射法中影响薄膜生长的因素及作用机理研究[J].贵州大学学报(自然科学版),2010,27(1):62-66.
    [169]曾春来,唐东升,刘星辉,海阔,羊亿,袁华军,解思深.化学气相沉积法中Sn02一维纳米结构的控制生长[J].物理学报,2007,56(11):6531-6536.
    [170]黄传真,艾兴,侯志刚.溶胶-凝胶法的研究和应用现状[J].材料导报,1997,11(3):8-10.
    [171]童杏林,罗梦泽,姜德生,刘忠明.GaN薄膜制备及脉冲激光沉积法的研究进展[J].激光杂志,2006,27(1):5-7.
    [172]罗嘉.溅射法制备纳米薄膜材料及其进展[J].半导体技术,2004,29(7):70-73.
    [173]陈瑞芳,高丽,花银群,颜红.磁控溅射工艺参数对Cu薄膜组织结构的影响[J].江苏大学学报(自然科学版),2009,30(30):483-486.
    [174]布文峰,唐大伟,周乐平,王照亮,贾涛.传输线理论求解层状物体的热传导问题[J].工程热物理学报,2007,28(2):1-4.
    [175]D. Beegan, S. Chowahury, M.T. Laugier. A nanoindentation study of copper films on oxidized silicon substrates [J]. Surface and Coatings Technology,2003, 176(1):124-130.
    [176]石宗利,黄元林,王彦平,李重庵Ag2CuTi纳米双层膜结合强度测试方法研究[J].实验力学,2002,17(2):170-176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700