用户名: 密码: 验证码:
单站无源定位与跟踪关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以质点运动学原理为基础,本文研究了利用角度、角度变化率以及多普勒频率变化率进行单站无源定位中的参数估计和非线性滤波等问题,主要内容如下:
     (1)介绍了利用切向运动和径向运动进行无源测距的原理,对两种无源测距方法做了误差分析,为工程实现指明了系统对各参数精度的要求。
     (2)研究了基于相位干涉仪阵列的波达角估计方法。先在无模糊范围内确定各双基线干涉仪的所有相位模糊数解,然后利用公共基线的解逐步缩小范围,最后确定各基线的唯一解以实现解相位模糊。对宽带信号,先作FFT变换,选取信号在6dB带宽内的谱线,每根谱线看作个单频信号,采用窄带鉴相方法对各单频信号分别鉴相并估计该频率点上的延时,最后对各延时估计值进行加权平均。证明了信号在各频率点上的能量与频率平方的乘积是最佳加权系数。
     (3)研究了相参脉冲串频率估计算法。提出了适用于单一重复频率和重频参差相参脉冲串信号的频率估计算法,通过脉内相关积累,提高了信噪比,利用实现相参频率估计的条件推导了信噪比门限的解析表达式,给出了单一重频脉冲串频率估计信噪比门限与信号样本总数、占空比之间的关系。对于重频参差相参脉冲串信号,在脉内相关积累之后,对新序列的相位差按参差重数抽样平均,再利用重频参差比解相位模糊,扩大了频偏允许范围,降低了算法的信噪比门限。给出了重频参差脉冲串频率估计信噪比门限与信号样本总数、参差重数、参差比之间的关系。
     (4)研究了直接利用相参脉冲串进行多普勒频率变化率估计的算法,选取准最佳算法估计频率,对各脉冲进行脉内相关积累,将相参脉冲串变换成一个调频斜率是多普勒频率变化率的线性调频信号序列,解调该线性调频信号就能获得多普勒频率变化率的估计值。
     (5)研究了适用于单站无源定位与跟踪的非线性滤波算法。提出了一种新的迭代滤波算法,以加快算法的收敛速度和提高滤波的估计精度。通过反向预测与更新提高了上一时刻状态估计的精度,减小了当前时刻的状态预测误差。利用更准确的初始条件经过正向预测与更新,能得到当前状态更精确的估计值。
Based on the particle kinematics theory, the dissertation studies the key technologies of single observer passive location via direction of arrival (DOA), rate of bearing and Doppler frequency rate-of-change and nonlinear filter. The principal contributions are summarized as follows:
     Firstly, the principles of tangential and radial movement measureing distance were introduced, and the error analysis of the passive ranging was performed.
     Secondly, the method of estimating the direction of arrival was proposed. The phase ambiguity numbers were obtained within the unambiguous scope of each double-baseline direction finding system and the unique set of phase ambiguity number could be acquired through the commnon baselines between those double-baseline interferometers. A method of wideband signal's DOA estimation was addressed. The wideband signal was decomposed into multiple single-tone signals through FFT. The spectrums of FFT within 6dB bandwidth were used to estimate the time-delays individually, and then the accurate time-delay estimate was given by weighting these estimates. The optimal weighting coefficients were given.
     Thirdly, the estimation algorithms for frequency of coherent pulse train were addressed. High accurate frequency estimation algorithms of coherent pulse train with single and staggered pulse repetition frequency (PRF) were presented. The output signal-to-noise ratio (SNR) was enhanced through intrapulse correlation accumulation. The requirement for coherent frequency estimation was analyzed and the close-form of the input SNR threshold was derived. The relationship of the SNR threshold, the total number of samples and the duty cycle was given for single PRF coherent pulse train. As far as staggered PRF coherent pulse train was concerned, resampling and averaging the phase difference of the sequence according to the number of stagger ratio of the coherent pulse train could reduce the equivalent phase noise. Resolving phase ambiguity through the stagger ratio could enlarge the scope of the frequency difference and decrease the SNR threshold. The relationship of the SNR threshold, the total number of samples, the number of stagger ratio and the stagger ratio was presented.
     Fourthly, an alternative Doppler frequency rate-of-change estimation algorithm for coherent pulse train was proposed. A suboptimal frequency estimation method was applied to estimate the frequency and the error of frequency estimation was reduced. A new chirp signal was obtained after intrapulse correlation accumulation of the coherent pulse train, of which the frequency rate is the Doppler frequency rate-of-change. Accordingly, it is possible to estimate the Doppler frequency rate-of-change precisely under lower SNR.
     Fifthly, a novel nonlinear filter was proposed to improve convergence speed and estimation accuracy. The backward prediction and the state update procedure improve the estimation accuracy of the last state estimate and reduce the current state prediction error. A more accurate current state estimate could be gotten with more precise initial condition. Simulation results show that the performance of the proposed algorithm outperforms that of the conventional IUKF in both convergence speed and estimation accuracy.
引文
[1]Gershanff H. Experimental passive range and AOA systems shows promise[J].Journal of Electronic Defense, Dec.,1992:31-33.
    [2]Lum Z. Killing EW on the Offensive[J]. Journal of Electronic Defense,1997,7:37-39.
    [3]Wilson Jon. Precision location and identification:A revolution in threat warning and situational awareness[J].Journal of Electronic Defense,1999,22(11):43-48.
    [4]Rivers, Brendan P. PLAID Contract Award Nears[J].Journal of Electronic Defense,2001,24(9):35.
    [5]Litton develops phased interferometers for passive, accurate target fixing [J]. Aviation Week and Space Techology,1990,133(16):73-74.
    [6]Experimental passive range and AOA system shows promise[J]. Journal of Electronic Defense,1992,12:31-32.
    [7]Nativi A.Quiet Progress [J]. Aviation Week & Space Technology,2006,164(2):24-27.
    [8]A COTS solution for single platform passive targeting[J]. Journal of Electronic Defense,1996, 19(7):42.
    [9]孙仲康.基于运动学原理的无源定位技术[J].制导与引信,2001,22(1):40-44.
    [10]孙仲康.基于运动学原理的无源定位技术[C].雷达无源定位跟踪技术研讨会论文集,北京,2001,1-8.
    [11]许耀伟.一种快速高精度无源定位方法的研究[D],长沙:国防科技大学研究生院,1998.
    [12]许耀伟,孙仲康.利用相位差变化率对固定辐射源的无源被动定位[J].系统工程与电子技术,1999,21(3):3437.
    [13]邓新蒲.运动单观测器无源定位与跟踪方法研究[D],长沙,国防科技大学研究生院,2000.
    [14]邓新蒲,祁颖松,卢启中.相位差变化率的测量方法及其测量精度分析[J].系统工程与电子技术,2001,23(1):20-23.
    [15]安玮,孙仲康.利用多普勒变化率的单站无源定位测距技术[C].雷达无源定位跟踪技术研讨会论文集,北京,2001(3):41-45.
    [16]单月晖,孙仲康,皇甫堪.基于相位差变化率方法的单站无源定位技术[J].国防科技大学学报,2001,23(6):74-77.
    [17]郭福成.基于运动学原理的单站无源定位与跟踪关键技术研究[D],长沙:国防科技大学研究生院,2002.
    [18]冯道旺.利用径向加速度信息的单站无源定位技术研究[D].长沙:国防科技大学研究生院,2003.
    [19]龚享铱.利用频率变化率和波达角变化率单站无源定位与跟踪的关键技术研究[D],长沙:国防科技大学研究生院,2004.
    [20]周亚强.基于视在加速度信息的单站无源定位与跟踪关键技术研究及其试验[D],长沙:国防科技大学研究生院,2005.
    [21]周亚强,曹延伟,冯道旺.基于视在加速度与角速度信息的单站无源定位原理与目标跟踪算法[J].电子学报,2005,33(12):2120-2124.
    [22]占荣辉.基于空频域信息的单站被动目标跟踪算法研究[D],长沙,国防科学技术大学研究生院,2007.
    [23]郁春来.利用空频域信息的单站无源定位与跟踪关键技术研究[D],长沙,国防科学技术大学研究生院,2008.
    [24]郭福成,冯道旺,龚享铱.基于运动学原理的单站无源定位跟踪地面试验研究[J].航空兵器,2005(5):19-22.
    [25]郭福成,李腾,冯道旺.基于运动学原理的地对空单站被动跟踪研究及试验[J].火控雷达技术,2006,35:5-8.
    [26]Lindgren A G, Gong K F. Position and velocity estimation via bearing observations[J].IEEE Transactions on Aerospace and Electronic Systems,1978,14(4):564-577.
    [27]Mangel M. Three bearing method for passive triangulation in systems with unknown deterministic biases[J].IEEE Transactions on Aerospace and Electronic Systems,1981,17(6):814-819.
    [28]Fawcett J A. Effect of course maneuvers on bearing-only range estimation[J]. IEEE Transactions on Acoustics, Speech and Signal Processing,1988,36(8):1193-1199.
    [29]Gavish M, Weiss A J. Performance analysis of bearing-only target location algorithms[J]. IEEE Transactions on Aerospace and Electronic Systems,1992,28(3):817-827.
    [30]Swindlehurst A L, Kailath T. Azimuth/Elevation finding using regular array geometries[J].IEEE Transactions on Aerospace and Electronic Systems,1993,29(1):145-156.
    [31]Becker K. Simple linear theory approach to TMA observability[J].IEEE Transactions on Aerospace and Electronic Systems,1993,29(2):575-578.
    [32]Guerci J R, Goetz R A, Dimodica J. A method for improving extended Kalman filter performance for angle-only passive ranging[J]. IEEE Transactions on Aerospace and Electronic Systems,1994,30(4):1090-1093.
    [33]Passerieux J M, Cappel D V. Optimal observer maneuver for bearings-only tracking[J]. IEEE Transactions on Aerospace and Electronic Systems,1998,34(3):777-788.
    [34]Taff L G. Target localization from bearings-only observations[J].IEEE Transaction on Aerospace and Electronic Systems,1997,33(1):2-9.
    [35]Le Cadre J P, Tremois O. Bearings-only tracking for maneuvering sources[J].IEEE Transaction on Aerospace and Electronic Systems,1998,34(1):179-193.
    [36]Le Cadre J P, Jauffret C. On the convergence of iterative methods for bearings-only tracking [J]. IEEE Transactions on Aerospace and Electronic Systems,1999,35(3):801-818.
    [37]Oshman Y, Davidson P. Optimization of observer trajectories for bearings-only target localization [J]. IEEE Transactions on Aerospace and Electronic Systems,1999,35(3):892-902.
    [38]Kirubarajan T, Bar-Shalom Y, Lerro D. Bearings-only tracking of maneuvering targets using a batch-recursive estimator[J]. IEEE Transactions on Aerospace and Electronic Systems,2001, 37(3):770-780.
    [39]Webster R J. An exact trajectory solution from Doppler shift measurement[J].IEEE Transactions on Aerospace and Electronic Systems,1982,18(2):249-252.
    [40]Chan Y T, Towers J J. Passive localization from Doppler-shifted frequency measurements[J].IEEE Transactions on Signal Processing,1992,40(10):2594-2598.
    [41]Statman J I, Rodemich E R. Parameter estimation based on Doppler frequency shifts[J]. IEEE Transaction on Aerospace and Electronic Systems,1987,23(1):31-39.
    [42]Chan Y T, Towers J J. Sequential localization of a radiating source by Doppler-shifted frequency measurements[J].IEEE Transactions on Aerospace and Electronic Systems,1992,28(4):1084-1090
    [43]Ho K C, Chan Y T. Solution and performance analysis of geolocation by TDOA[J].IEEE Transaction on Aerospace and Electronic Systems,1993,29(4):1311-1322.
    [44]杨莘元,郑思海.基于运动辐射体TOA和DOA测量的单站被动定位算法[J].电子学报,1996,24(12):66-69.
    [45]Ho K C, Chan Y T. Geolocation of a known altitude object from TDOA and FDOA measurements[J].IEEE Transaction on Aerospace and Electronic Systems,1997,33(3):770-783.
    [46]Ray P S.A novel pulse TOA analysis technique for radar identification [J]. IEEE Transaction on Aerospace and Electronic Systems,1998,34(3):716-721.
    [47]Ho K C, Xu Wenwei. An accurate algebraic solution for moving source location using TDOA and FDOA measurements [J]. IEEE Transactions on Signal Processing,2004,52(9):2453-2463.
    [48]彭根建,周希朗.利用TDOA方法实现单站机动无源定位[J]计算机仿真,2005,22(10):20-23
    [49]Dragana Carevic. Automatic Estimation of Multiple Target Positions and Velocities Using Passive TDOA Measurements of Transients[J].IEEE Transactions on signal processing,2007,55(2):424-436.
    [50]Chan Y T, Rudnicki S W. Bearings-only and Doppler-Bearing tracking using instrumental variables[J].IEEE Transactions on Aerospace and Electronic Systems,1992,28(4):1076-1083.
    [51]Becker K. An efficient method of passive emitter location[J].IEEE Transactions on Aerospace and Electronic Systems,1992,28(4):1091-1104.
    [52]Becker K. Passive localization of frequency-agile radars from angle and frequency measurements[J].IEEE Transactions on Aerospace and Electronic Systems,1999,35(4):1129-1144.
    [53]Becker K. Three-dimensional target motion analysis using angle and frequency measurements[J].IEEE Transactions on Aerospace and Electronic Systems,2005,41(1):284-301.
    [54]王建钢,花兴来,朱元清,等.利用波达方位角及其变化率对运动辐射源的无源定位[J].现代防御技术,2008,36(5):119-124.
    [55]许耀伟,孙仲康,周一宇.利用相位变化率对运动辐射源无源定位的研究[J].系统工程与电子技术,1999,21(8):7-8.
    [56]单月晖,王展,万建伟,等.固定飞行姿态角下的相位差变化率无源定位方法研究[J].电子与信息学报,2003,25(5):577-584.
    [57]单月晖,孙仲康,皇甫堪.基于相位差变化率方法的单站无源定位技术[J].国防科技大学学报,2001,23(6):74-77.
    [58]安玮,孙仲康.利用多普勒频率变化率的单站无源测距技术[C].雷达无源定位跟踪技术研讨会论文集,北京,2001(3):41-45.
    [59]SHAN Yue-hui,AN Wei,SUN Zhong-kang.Passive Location Method Based on Phase Rate of Change[J].CHINESE JOURNAL OF AERONAUTICS,2002,15(1):49-54.
    [60]郭福成,孙仲康,安玮.利用方向角及其变化率对固定辐射源的三维单站无源定位[J].电子学报,2002,30(12):1885-1887.
    [61]单月晖,孙仲康,皇甫堪.变化姿态角下相位差变化率无源定位方法研究[J].电子学报,2002,30(12):1897-1890.
    [62]王建钢,花兴来,赵国林,等.朱元清基于相位变化率的单站EKF无源定位算法研究[J].电子信息对抗技术,2006,21(1):26-29.
    [63]郭福成,孙仲康.方向角及其变化率的单站无源定位的可观测性[J].系统工程与电子技术,2002,24(9):30-32.
    [64]McIntyre M, Ashley A. A simple fixed-lag algorithm for tracking frequency rate of change[J]. IEEE Transactions on Aerospace and Electronic Systems,1993,29(3):667-683.
    [65]Rose C M. Doppler rate and angle rate passive emitter location[P],1997:5689274.
    [66]刁鸣,王越.基于多普勒频率变化率的无源定位算法研究[J].系统工程与电子技术,2006,28(5):696-698.
    [67]杨争斌,钟丹星,郭福成,等.利用角度和多普勒变化率的有限阶运动目标可观测性分析[J].宇航学报,2007,28(5):1314-1318.
    [68]郁春来,万建伟,占荣辉.一种PCM相参脉冲序列多普勒频率变化率估计算法[J].电子与信息学报,2008,30(10):2303-2306.
    [69]Nardone S C, Aidala V J. Observability criteria for bearings-only target motion analysis[J].IEEE Transactions on Aerospace and Electronic Systems,1981,17(2):162-166.
    [70]Hammel S E, Aidala V J. Observability requirements for three-dimensional tracking via angle measurements[J].IEEE Transactions on Aerospace and Electronic Systems,1985,21(2):200-207.
    [71]Fogel E, Gavish M. Nth-order dynamics target observability from angle measurements[J].IEEE Transactions on Aerospace and Electronic Systems,1988,24(3):305-308.
    [72]Jauffret C, Pillon D. Observability in passive target motion analysis[J].IEEE Transactions on Aerospace and Electronic Systems,1996,32(4):1290-1300.
    [73]Song T L. Observability of target tracking with bearings-only measurements[J]. IEEE Transactions on Aerospace and Electronic Systems,1996,32(4):1468-1471.
    [74]Cadre Le J P, JAUFFRET C. Discrete-time observability and estimability analysis for bearings-only target motion analysis[J].IEEE Transactions on Aerospace and Electronic Systems,1997,33(1):178-201.
    [75]冯道旺,李宗华,周一宇.一种单站无源定位方法及其可观测性分析[J].国防科技大学学报,2004,26(1),68-71.
    [76]杨争斌,钟丹星,郭福成.利用角度和多普勒变化率的有限阶运动目标可观测性分析[J].宇航学报,2007,28(5):1314-1318.
    [77]邓新蒲.单站无源定位可观测性评述[J].中国工程科学,2007,9(11):54-62.
    [78]丁鹭飞,耿富录.雷达原理[M],西安:西安电子科技大学出版社,2004.
    [79]龚享铱,周良柱.一种关于相参脉冲信号频率的最优估计算法[J].电子与信息学报,2004,26(10):1594-1600.
    [80]Becker K. New algorithm for frequency estimation from short coherent pulses of a sinusoidal signal[J]. IEE Proceedings,1990,137(4):283-288.
    [81]Johnson J A, Fowler M L. Cramer-Rao lower bound on Doppler frequency of coherent pulse trains[A].2008 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP[C]. NJ, USA:Institute of Electrical and Electronics Engineers Inc.,2008.2557-2560.
    [82]Gai J, Chan F, Chan Y T. Frequency estimation of uncooperative coherent pulse radars[A]. Military Communications Conference, MILCOM 2007[C]. NJ, USA:Institute of Electrical and Electronics Engineers Inc.,2007.3323-3329.
    [83]冯道旺,周一宇,李宗华.相参脉冲序列多普勒变化率的一种快速高精度测量方法[J].信号处理,2004,20(1):40-43.
    [84]郁春来,吕韶昱,万方,等.基于小波变换的多普勒频率变化率高精度估计方法[J].电子学报,2007,35(9):1656-1659.
    [85]Aidala V J. Kalman filter behavior in bearings-only tracking applications[J]. IEEE Transactions on Aerospace and Electronic Systems,1979,15(1):29-39.
    [86]Aidala V J, Nardona S C. Biased Estimation Properties of the Pseudolinear Tracking Filter[J]. IEEE Transactions on Aerospace and Electronic Systems,1982,18(4):432-441.
    [87]Aidala V J, Hammel S. Utilization of Modified Polar Coordinates for Bearings-Only Tracking[J]. IEEE Transactions on Automatic Control,1983,AC-28(3):283-294.
    [88]Song T L, Speyer J L. A stochastic analysis of a modified gain extended Kalman filter with applications to estimation with bearings only measurements[J]. IEEE Transactions on Automatic Control,1985,30(10):940-949.
    [89]Galkowski P J, Islam M A. An alternative derivation of modified gain function of Song and Speyer[J].IEEE Transactions on Automatic Control,1991,36(11):1323-1326.
    [90]Guerci J R, Goetz R A, Dimodica J. A method for improving extended Kalman filter performance for angle-only passive ranging[J]. IEEE Transactions on Aerospace and Electronic Systems,1994,30(4):1090-1093.
    [91]Fagin S L. Comments on A method for improving extended Kalman filter performance for angle-only passive ranging[J]. IEEE Transactions on Aerospace and Electronic Systems,1995,31(3):1148-1150.
    [92]邓新蒲,周一宇,万钧力.测角目标定位的协方差矩阵旋转滤波算法[J].电子学报,2000,28(12):122-124.
    [93]Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE,2004,92(3):401-422.
    [94]Julier S J, Uhlmann J K. New extension of the Kalman filter to nonlinear systems[A]. Proceedings of SPIE-The International Society for Optical Engineering[C], Orlando, FL, USA, Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, United States.1997,182-193.
    [95]袁罡,陈鲸.基于UKF的单站无源定位与跟踪算法[J].电子与信息学报,2008, 30(9):2120-2123.
    [96]Zhan Rong-hui, Wan Jiang-wei. Iterated unscented Kalman filter for passive target tracking[J].IEEE Trans. on AES,2007,43(3).
    [97]孙仲康,郭福成,冯道旺,等.单站无源定位跟踪技术[M].北京,国防工业出版社,2008.
    [98]Kim H, Viberg M. Two Decades of Array Signal Processing Research[J].IEEE Trans. on Signal Magazine,1996,13(4):67-94.
    [99]袁孝康.相位干涉仪测向定位研究[J].上海航天,1999(3):1-7.
    [100]林以猛,刘渝.宽带信号的数字测向算法研究[J].南京航空航天大学学报,2005,37(3):335-340.
    [101]龚享铱,袁俊泉.基于参差距离的相位差变化值的解模糊方法研究[J].信号处理,2003,19(4):308-311.
    [102]龚享铱,袁俊泉.基于相位干涉仪阵列多组解模糊的波达角估计算法研究[J].电子与信息学报,2006,28(1):55-59.
    [103]周亚强,皇甫堪.噪扰条件下数字式多基线相位干涉仪解模糊问题[J].通信学报,2005,26(8):16-21.
    [104]周亚强,陈翥,皇甫堪.噪扰条件下多基线相位干涉仪解相位模糊算法[J].电子与信息学报,2005,27(2):259-261.
    [105]魏合文,王军,叶尚福.一种基于余弦函数的相位干涉仪阵列DOA估计算法[J].电子与信息学报,2007,29(11):2665-2668.
    [106]龚享铱,皇甫堪,袁俊泉.基于相位干涉仪阵列二次相位差的波达角估计算法研究[J].电子学报,2005,33(3):444-445.
    [107]赵国庆.雷达对抗原理[M].西安,西安电子科技大学出版社,1999.
    [108]Wang H, Kaveh M. Coherent Signal-Subspace Processing for the Detection and Estimation of Angle of Arrival of Multiple Wide-Band Source[J]. IEEE Trans. on Acoustics, Speech, and Signal Processing,1985,33(4):823-831.
    [109]Hung H, Kaveh M. Fosusing Matrices for Coherent Signal-Subspace Processing[J]. IEEE Trans. on Acoustics, Speech, and Signal Processing,1988,36(8):1272-1281.
    [110]Viberg M, Ottersten B,Kailath T. Detection and Estimation in Sensor Arrays Using Weighted Subspace Fitting[J]. IEEE Trans. on Signal Processing,1991,39(11):2436-2449.
    [111]Elio D, Di Claudio,Raffaele P. WAVES:Weighted Average of Signal Subspaces for Robust Wideband Direction Finding[J]. IEEE Trans. on Signal Processing,2001,49(10):2179-2191.
    [112]So H C. Time-delay Estimation for Sinusoidal Signals[J].IEE Proc.-Radar,Sonar Navig.,2001,148(6):318-324.
    [113]闵嗣鹤,严士健.初等数论[M],高等教育出版社,2003.12-25.
    [114]潘承洞,潘承彪.初等数论[M],北京大学出版社,2003.1-104.
    [115]陈景润.初等数论Ⅰ[M],科学出版社,1978.12-91.
    [116]Rife D C, Boorstyn R R. Single-tone parameter estimation from discrete-time observations[J].IEEE Transaction on Information Theory,1974,20(5):591-598.
    [117]Rife D C. Digital tone parameter estimation in the presence of Gaussian noise[D].NewYork: Polytech Inst Brooklyn,1973.
    [118]Tufts D, Francis. Estimation and tracking of parameters of narrow-band signals by iterative processing [J]. IEEE Transactions on Information Theory,1977,23(6):742-751.
    [119]Abatzoglou T J. A fast maximum likelihood algorithm for the frequency estimation of a sinusoid based on Newton's method[J]. IEEE Trans ASSP,1985,33(1):77-89.
    [120]齐国清,贾欣乐.插值FFT估计正弦信号频率的精度分析[J].电子学报,2004,32(4):625-629.
    [121]齐国清,贾欣乐.基于DFT相位的正弦波频率和初相的高精度估计方法[J].电子学报.2001,29(9):1164-1167.
    [122]刘渝.正弦波频率快速估计方法[J].数据采集与处理,1998,13(1):8-11.
    [123]刘渝.快速高精度正弦波频率估计综合算法[J].电子学报,1999,27(6):126-128.
    [124]邓振淼,刘渝.正弦波频率估计的修正Rife算法[J].数据采集与处理,2006,21(4):473-477.
    [125]邓振淼,刘渝.正弦波频率估计的牛顿迭代方法初始值研究[J].电子学报,2007,35(1):104-107.
    [126]Aboutanios E, Mulgrew B. Iterative frequency estimation by interpolation on Fourier coefficients [J]. IEEE Trans. on Signal Processing,2005,53(4):1237-1242.
    [127]Tretter S, Estimating the frequency of a noisy sinusoid by linear regression[J]. IEEE Trans. on Information Theory,1985,31(6):832-835.
    [128]Kay S M, A fast and accurate single frequency estimator[J]. IEEE Trans. on Acoustics, Speech, and Signal Processing,1989,37(12):1987-1990.
    [129]Fitz M P. Further results in the fast estimation of a single frequency[J]. IEEE Trans. Communications,1994,42:862-864.
    [130]Luise M, Reggiannini R. Carrier frequency recovery in all-digital modems for burst-mode transmissions [J]. IEEE Trans. Communications,1995,43:1169-1178.
    [131]Fowler M L, Johnson J A. Extending the threshold and frequency range for phase-based frequency estimation[J].IEEE Trans. on Signal Processing,1999,47(10):2857-2863.
    [132]Brown T, Wang M M. An iterative algorithm for single-frequency estimation[J]. IEEE Trans. on Signal Processing,2002,50(11):2671-2682.
    [133]Xiao Yang-Can, Wei Ping, Tai Heng-Ming. Autocorrelation-based algorithm for single-frequency estimation[J]. Signal Processing,2007:1224-1233.
    [134]Torrieri D J. Statistical theory of passive location system[J]. IEEE Transactions on Aerospace and Electronic Systems,1984,20(2):183-198.
    [135]Howard S D, Lavoie P. Analysis of SNR threshold for differential Doppler frequency measurement in digital receivers[A].2000 IEEE International Conference on Acoustics, Speech, and Signal Processing[C]. NJ, USA:IEEE,2000.289-292.
    [136]Skolnik M I雷达手册[M].北京:电子工业出版社,2003:603-604.
    [137]Peleg S, Porat B. Linear FM signal parameter estimation from discrete-time observations[J].IEEE Transactions on Aerospace and Electronic Systems,1991,27(4):607-616.
    [138]Djuric P M,Kay S M.Parameter estimation of chirp signals[J].IEEE Transactions on Acoustics, Speech and Signal Processing,1990,38(12):2118-2126.
    [139]Nardone S C, Lindgren Allen G, Gong K F. Fundamental properties and performance of conventional bearings-only target motion analysis[J]. IEEE Transactions on Automatic Control,1984,29(9):775-787.
    [140]Bar-shalom Y,Li X R,Kirubarajan T.Estimation with application to tracking and navigation: theory, algorithm, and software[M].New York:Wiley,2001.
    [141]郭福成,李宗华,孙仲康.无源定位跟踪中修正协方差扩展卡尔曼滤波算法[J].电子与信息学报,2004,26(6):917-922.
    [142]Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE,2004,92(3):401-422.
    [143]Julier S J, Uhlmann J K. New extension of the Kalman filter to nonlinear systems[A]. Proceedings of SPIE-The International Society for Optical Engineering[C], Orlando, FL, USA, Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, United States.1997,182-193.
    [144]Lei M, Han C. Sequential nonlinear tracking using UKF and raw range-rate measurements[J] IEEE Trans. on AES,2007,43(1):239-250.
    [145]Xiong K, Chan C W, Zhang H Y Detection of satellite attitude sensor faults using the UKF[J]. IEEE Trans. on AES,2007,43(2):480-491.
    [146]Michail N P, Emmanouil G A, Nikolaos K U. Manoeuvring target tracking using multiple bistatic range and range-rate measurements[J]. Signal Processing,2006,84(7),665-686.
    [147]李宗华,肖予钦,周一宇.利用频域和空域信息的单站无源定位跟踪算法[J].系统工程与电子技术,2004,26(5):613-616.
    [148]Julier S J. The scaled unscented transformation[A]. Proceedings of the 2002 American Control Conference[C]. Anchorage, AK, USA,2002,4555-4559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700