用户名: 密码: 验证码:
属性加权及不完备数据的模糊聚类方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模糊聚类是模式识别领域的研究热点之一,主要用于识别数据内在结构。相似性度量是模糊聚类算法中的一个关键问题,常用方法,如欧氏距离、海明距离等,隐含假定样本的属性对聚类的贡献均匀,具有一定的局限性;另外,由于获取数据的限制、随机噪音等原因,往往造成样本属性缺失,而多数聚类方法无法直接对这类数据集进行聚类分析。因此,本文研究属性加权及不完备数据的模糊聚类方法。本文的主要工作概述如下:
     1.针对属性加权模糊聚类问题,提出了基于属性权重区间监督的模糊聚类算法,解决了权重确定的合理性问题,进而提高算法聚类性能。首先,从认知和数据集信息复杂性的角度出发,提出在聚类问题中采用区间数描述属性权重,由区间层次分析法获得属性对聚类的贡献度,相对于数值型属性权重更能提高权重表示的鲁棒性;其次,通过对属性权重与隶属度、聚类中心的迭代优化进行聚类分析,提出若权重计算结果超出区间约束,将其强制为区间中心值后再参与迭代计算,并设定最大强制次数以保证算法收敛。仿真实验表明,算法能够避免迭代计算陷入不必要的局部极小解,得到了更为准确的聚类结果。
     2.针对不完备数据模糊聚类问题,提出了基于最近邻区间的不完备数据聚类算法。首先,鉴于缺失属性的不确定性,本文依据不完备样本的近邻信息提出了缺失属性的最近邻区间描述;其次,基于最近邻区间描述,提出了两种不完备数据聚类算法。第一,将不完备数据集转化为区间型数据集进行聚类分析,算法所得聚类中心为属性空间中的超凸多面体,能够在一定程度上反映数据集子类形态,有利于得到更切实际的聚类结果;第二,鉴于最近邻区间描述能够将缺失属性估算限定在合理范围内,提出了遗传算法—模糊C均值的混杂框架,利用遗传算法在区间范围内搜索缺失属性的优化估算值,进而通过模糊C均值算法对“还原”后的完整数据集进行聚类分析,该算法在合适的缺失属性估算值基础上能够获得更为满意的聚类结果。
     3.针对现有不完备数据模糊聚类算法未考虑样本各属性对聚类贡献不同的问题,提出了基于属性加权的不完备数据模糊聚类算法。首先,利用经典算法对不完备数据集进行一次聚类,得到较为准确的缺失属性估算值和样本类别;其次,利用ReliefF算法对“还原”后的完整数据集进行属性评价;最后,通过加权欧式距离将属性权重引入聚类分析,实现缺失属性及聚类结果的一体化求解。仿真实验表明,所提算法通过强调重要属性的作用能够明显提高不完备数据的聚类效果。
Fuzzy clustering is one of the research focuses in the field of pattern recognition. It is mainly used to identify the internal structure of data. Similarity metric is a key problem in fuzzy clustering. However, the existing methods for similarity metric, such as Euclidean distance and Hamming distance, have certain limitations since they assumed implicitly that each attribute of the sample has equal contribution to the clustering performance. Moreover, in most cases, attribute values of samples might be missing because of the limitations in data collection, random noise and some other reasons. But most of the existing clustering algorithms may not be directly applicable to such incomplete samples. Aiming at the aforementioned problems, this dissertation concentrates on the attribute weighted and incomplete data fuzzy clustering approaches. The main contributions of the research can be summarized as follows:
     1. For attribute weighted clustering, a fuzzy clustering algorithm with interval-supervised attribute weights is presented, which can enhance the rationality of attribute weights and improve the clustering performance. Firstly, from the viewpoint of cognition and information complexity of datasets, attribute weights are represented as intervals in clustering analysis, which can be obtained by interval analytic hierarchy process to describe the different contribution of attributes, as a result, it improves the robustness of attribute weight representation compared with numerical attribute weights; Secondly, attribute weights, memberships and cluster prototypes can be obtained by iterative optimization. If any calculated weight in certain iteration is out of its interval-constrained range, it will be forced to the corresponding interval center for further iterations. And a maximum number of iterations is set to ensure the convergence of the algorithm. Experimental results show that the proposed algorithm can avoid the local minima, and can achieve better clustering performance than the existing algorithms.
     2. For incomplete data fuzzy clustering, two algorithms are presented based on nearest-neighbor intervals. Firstly, concerning the uncertainty of missing attributes, missing attributes are represented by nearest-neighbor intervals according to the nearest-neighbor information of the incomplete sample; secondly, based on the nearest-neighbor interval representation of missing attributes, two algorithms are proposed in this dissertation. The first approach is to transform the incomplete dataset into an interval-valued one, and then to perform clustering analysis by using the existing clustering algorithms for the interval-valued dataset. Since the cluster prototypes are convex hyperpolyhedrons in the attribute space, which can present the shape of the clusters to some degree, more accurate clustering results can be achieved. Because the missing attributes can be limited to appropriate ranges by the interval representation, the second approach hybridizes fuzzy c-means and genetic algorithm to solve the incomplete data clustering problem. Genetic algorithm is involved to search for optimal imputations of missing attributes in the corresponding nearest-neighbor intervals, and then fuzzy c-means is used to obtain compact clusters on the "completed" dataset. Therefore, more satisfying clustering results can be obtained on the basis of the appropriate imputations of missing attributes.
     3. In most of the existing algorithms, they seldom concern the problem that different attributes may contribute differently to the clustering. Aiming at this disadvantage, an attribute weighted fuzzy clustering algorithm for incomplete data is proposed. Firstly, comparatively accurate imputations of missing attributes and classification labels are obtained by an existing algorithm; Secondly, each attribute of the "completed" dataset is evaluated by the ReliefF algorithm; Finally, the attribute weights are combined into fuzzy clustering by weighted Euclidean distance, so the missing attributes and clustering results can be obtained simultaneously. Experimental results of the simulation show that the algorithm can achieve better clustering performance on incomplete datasets by emphasizing the contribution of important attributes.
引文
[1]边肇祺,张学工,等.模式识别(第二版)[M].北京:清华大学出版社,2000。
    [2]杨淑莹.模式识别与智能计算——Matlab技术实现[M].北京:电子工业出版社,2008.
    [3]Leung S H, Wang S L, Lau W H. Lip image segmentation using fuzzy clustering incorporating an elliptic shape function [J]. IEEE Transactions on Image Processing.2004, 13(1):51-62.
    [4]Lu J M, Yuan X, Yahagi T. A method of face recognition based on fuzzy c-means clustering and associated sub-NNs [J]. IEEE Transactions on Neural Networks.2007,18(1):150-160.
    [5]赵峰,张军英,刘敬.基于核最优变换与聚类中心的雷达目标识别[J].控制与决策.2008,23(7):735-740.
    [6]黄旭,吕强,钱培德.一种用于蛋白质结构聚类的聚类中心选择算法[J].自动化学报.2011,37(6):682-692.
    [7]Wang Y H, Zhao H C. PolSAR image segmentation by mean shift clustering in the Tensor Space [J]. ACTA AUTOMATICA SINICA.2010,36(6):778-806.
    [8]高新波,李洁,姬红兵.基于加权模糊C均值聚类分析与统计检验指导的多阀值图像自动分割算法[J].电子学报.2004,32(4):661-664.
    [9]Hung W L, Yang M S, Chen D H. Bootstrapping approach to feature-weight selection in fuzzy c-means algorithms with an application in color image segmentation [J]. Pattern Recognition Letters.2008,29(9):1317-1325.
    [10]王爽,夏玉,焦李成.基于均值漂移的自适应纹理图像分割方法[J].软件学报.2010,21(6):1451-1461.
    [11]刘云龙,林宝军.一种人工免疫算法优化的高有效性模糊聚类图像分割[J].控制与决策.2010,25(11):1679-1683.
    [12]Maulik U, Saha I. Automatic fuzzy clustering using modified differential evolution for image classification [J]. IEEE Transactions on Geoscience and Remote Sensing.2010,48(9): 3503-3510.
    [13]Sulaiman S N, Isa A m. Adaptive fuzzy-K-means clustering algorithm for image segmentation [J]. IEEE Transactions on Consumer Electronics.2010,56(4):2661-2668.
    [14]Tung F, Wong A, Clausi D A. Enabling scalable spectral clustering for image segmentation [J]. Pattern Recognition.2010,43(12):4069-4076.
    [15]王保平,刘升虎,张家田,张艳宁,范九伦.一种基于模糊熵和FKCN的边缘检测方法[J].计算机学报.2006,29(4):664-669.
    [16]Yang S Y, Wu R X, Wang M, Jiao L C. Evolutionary clustering based vector quantization and SPIHT coding for image compression [J]. Pattern Recognition Letters.2010,31(13): 1773-1780.
    [17]粘永健,苏令华,孙蕾,万建伟.基于聚类的高光谱图像无损压缩[J].电子与信息学报.2009,31(6):1271-1274.
    [18]Wang Z M, Song Q, Soh Y C, Sim K. Robust curve clustering based on a multivariate t-distribution model [J]. IEEE Transactions on Neural Networks.2010,21(12):1976-1984.
    [19]王智灵,陈宗海,徐萧萧,吴亮.基于蛙眼视觉特性的运动目标模糊化区域理解跟踪方法[J].自动化学报.2009,35(8):1048-1054.
    [20]张恒,樊晓平,瞿志华.基于多假设跟踪的移动机器人自适应蒙特卡罗定位研究[J].自动化学报.2009,33(9):941-946.
    [21]方正,佟国峰,徐心和.一种鲁棒高效的移动机器人定位方法[J].自动化学报.2007,33(1):48-53.
    [22]Liu P X, Meng M Q H. Online data-driven fuzzy clustering with applications to real-time robotic tracking [J]. IEEE Transactions on Fuzzy Systems.2004,12(4):516-523.
    [23]吴聪,李勃,董蓉,陈启美.基于车型聚类的交通流参数视频检测[J].自动化学报.2011,37(5):569-576.
    [24]Celikyilmaz A, Turksen I B. Enhanced fuzzy system models with improved fuzzy clustering algorithm [J]. IEEE Transactions on Fuzzy Systems.2008,16(3):779-794.
    [25]潘天红,李少远.基于模糊聚类的PWA系统的模型辨识[J].自动化学报.2007,33(3):327-330.
    [26]Hyong-Euk L, Kwang-Hyun P, Bien Z Z. Iterative fuzzy clustering algorithm with supervision to construct probabilistic fuzzy rule base from numerical data [J]. IEEE Transactions on Fuzzy Systems.2008,16(1):263-277.
    [27]Everitt B. Cluster Analysis [M]. New York:John Wiley,1974.
    [28]Dubes R C, Jain A K. Algorithms for Clustering Data [M]. New Jersey:Prentice Hall,1998.
    [29]Zadeh L A. Fuzzy Sets [J]. Information and Control.1965,8(3):338-353.
    [30]Ruspini E H. A new approach to clustering [J]. Information and Control.1969,15(1):22-32.
    [31]Duda R O, Hart P E, Stork D G. Pattern Classification [M]. Beijing:China Machine Press, 2004.
    [32]王红卫,祁超,魏永长,李彬,朱松.基于数据的决策方法综述[J].自动化学报.2009(6):820-833.
    [33]高新波.模糊聚类分析及其应用[M].西安:西安电子科技大学出版社,2004.
    [34]Lee S W, Yong S K, Kwang H P. Iterative Bayesian fuzzy clustering toward flexible icon-based assistive software for the disabled [j]. Information Sciences.2010,180(3): 325-340.
    [35]Gan G, Wu J. A convergence theorem for the fuzzy subspace clustering (FSC) algorithm [J]. Pattern Recognition.2008,41(6):1939-1947.
    [36]Grira N, Crucianu M, Boujemaa N. Active semi-supervised fuzzy clustering [J]. Pattern Recognition.2008,41(5):1834-1844.
    [37]Dunn J C. A graph theoretic analysis of pattern classification via Tamura's fuzzy relation [J]. IEEE Transactions on Systems, Man, and Cybernetics.1974,4(3):310-314.
    [38]Marques J P著,吴逸飞译.模式识别——原理、方法及应用[M].北京:清华大学出版社,2002.
    [39]姜园,张朝阳,仇佩亮,周东方.用于数据挖掘的聚类算法[J].电子与信息学报.2005,27(4):655-662.
    [40]Zhang T, Ramakrishnan R, Livny M. BIRCH:An efficient data clustering method for very large databases [C]. Proceedings of the 1996 ACM-SIGMOD International Conference on Management of Data.1996,25(2):103-114.
    [41]Guha S, Rastogi R, Shim K. CURE:an efficient clustering algorithm for large databases [C]. Proceedings of the 1998 ACM-SIGMOD International Conference on Management of Data. 1998,27(2):73-84.
    [42]Sudipto G, Rastogi R, Shim K. Rock:A robust clustering algorithm for categorical attributes [J]. Information Science.2000,25(5):345-366.
    [43]Gelbard R, Goldman O, Spiegler I. Investigating diversity of clustering methods:An empirical comparison [J]. Data & Knowledge Engineering.2007,63(1):155-166.
    [44]Goldberger J, Tamir T. A hierarchical clustering algorithm based on the Hungrian method [J]. Pattern Recognition Letters.2008,29(11):1632-1638.
    [45]Arifin A Z, Akira A. Image segmentation by histogram thresholding using hierarchical clustering analysis [J]. Pattern Recognition Letters.2006,27(13):1515-1521.
    [46]Vijaya P A, Narasimha M, Subramanian D K. Efficient bottom-up hybrid hierarchical clustering techniques for protein sequence classification [J]. Pattern Recognition.2006, 39(12):2344-2355.
    [47]Krause A J, Stoye M V. Large scale hierarchical clustering of protein sequences [J]. BMC Bioinformatics.2005,6(15):1-12.
    [48]张敏,于剑.基于划分的模糊聚类算法[J].软件学报.2004,15(6):858-868.
    [49]孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报.2008,19(1):48-61.
    [50]Bezdek J C. Pattern Recognition with fuzzy object algorithms [M]. New York:Plenum Press, 1981.
    [51]雷小峰,谢昆青,林帆,夏征义.一种基于K-Means局部最优性的高效聚类算法[J].软件学报.2008,19(7):1683-1692.
    [52]Bagirov A M. Modified global k-means algorithm for minimum sum-of-squares clustering problems [J]. Pattern Recognition.2008,41(10):3192-3199.
    [53]Xiong H, Wu J, Chen J. K-means clustering versus validation measures:a data-diatribution perspective [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics. 2009,39(2):318-331.
    [54]Chung K L, Jhin S L. Faster and more robust point symmetry-based K-means algorithm [J]. Pattern Recognition.2007,40(2):410-422.
    [55]Wu F X. Genetic weighted k-means algorithm for clustering large-scale gene expreeion data [J]. BMC Bioinformatics.2008,9(6):1-10.
    [56]Ester M, Kriegel H P, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise [C]. Proceedings of the 1996 International Conference on Knowledge Discovery and Data Mining:226-231.
    [57]Ankerst M, Breunig M, Kriegel H P, Sander J. OPTICS:Ordering points to identify the clustering structure [C]. Proceedings of the 1999 ACM-SIGMOD International Conference on Management of Data,28(2):49-60.
    [58]Hinnerburg A, Keim D A. An efficient approach to clustering in large multimedia databased with noise [C]. Proceedings of the 1998 International Conference on Knowledge Discovery and Data Mining:58-65.
    [59]Wang W, Yang J, Muntz R. STING:a statistical information grid approach to spatial data mining [C]. Proceedings of the 1997 International Conference on Very Large Data Bases: 186-195.
    [60]Sheikholeslami G, Chatterjee S, Zhang A. Wave Cluster:A multi-resolution clustering approach for very large spatial database [C]. Proceedings of the 1998 International Conference on Very Large Data Bases:428-439.
    [61]Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications [C]. Proceedings of the 1998 ACM-SIGMOD International Conference on Management of Data,27(2):94-105.
    [62]Fisher D. Improving inference through conceptual clustering [C]. Proceedings of the Fifth National Conference on Artificial Intelligence,1987:461-465.
    [63]Kohonen T, Kaski S, Lagus K, Solojarvi J, Paatero A, Saarela A. Self organizing of a massive document collection [J]. IEEE Transactiosn on Neural Networks.2000,11(3): 574-585.
    [64]Lai J Z C, Liaw Y C, Liu J L. Fast k-nearest-neighbor search based on projection and triangular inequality [J]. Pattern Recognition.2007,40(2):351-359.
    [65]Staiano A, Tagliaferri R, Pedrycz W. Improving RBP networks performance in regression tasks by means of a supervised fuzzy clustering [J]. Neurocomputing.2006,69(13-15): 1570-1581.
    [66]Wu K P, Wang S D. Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space [J]. Pattern Recognition.2009,42(5):710-717.
    [67]Liu R J, Wang Y H, Baba T. SVM-based active feedback in image retrival using clustering and unlabled data [J]. Pattern Recognition.2008,41(8):2645-2655.
    [68]Ma J M, Nguyen M N, Rajapakse J C. Gene classification using codon usage and support vector machines [J]. IEEE/ACM Transactions on Computational Bioinformatics.2009,6(1): 134-143.
    [69]Biccgo M, Figueiredo M A T. Soft clustering using weighted one-class support vector machines [J]. Pattern Recognition.2009,42(1):27-32.
    [70]Camastra F, Verri A. A novel Kernel method for clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.2005,27(5):801-805.
    [71]Kim D W, Lee K Y, Lee D. A kernel-based subtractive clustering method [J]. Pattern Recognition Letters.2005,26(7):879-891.
    [72]Filippone M, Camastra F, Masulli F. A survey of kernel and spectral methods for clustering [J]. Pattern Recognition.2008,41(1):176-19.
    [73]Liao L, Lin T, Li B. MRI brain image segmentation and bias field correction based on fast spatially constrained kernel clustering approach [J]. Pattern Recognition Letters.2008, 29(10):1580-1588.
    [74]Das S, Abraham A, Konar A. Automatic kernel clustering with a multi-elitist particle swarm optimization algorithm [J]. Pattern Recognition Letters.2008,29(5):688-69.
    [75]Amadou B H, Lecoeuche S, Maouche S. SAKM:Self-adaptive kernel machine A kernel-based algorithm for online clustering [J]. Neural Networks.2008,21(9):1287-13.
    [76]Tushir M, Srivastava S. A new kernelized hybrid c-mean clustering model with optimized parameters [J]. Applied Soft Computing.2010,10(2):381-389.
    [77]Luxburg U. A tutorial on spectral clustering [J]. Statistics and Computing.2007,17(4): 395-416.
    [78]Dhillon I S, Guan Y Q, Kulis B. Weighted graph cuts without eigenvectors a multilevel approach [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.2007, 29(11):1944-1957.
    [79]Al-Harbi S H, Ray ward-Smith V J. Adapting k-means for supervised clustering [J]. Applied Intelligence.2006,24(3):219-226.
    [80]肖宇,于剑.基于最近邻传播算法的半监督聚类[J].软件学报.2008,19(11):2803-2813.
    [81]Bezdek J C, Hathaway R J, Sabin M J, Tucker W T. Convergence theory for fuzzy c-means clustering:counterexamples and repairs [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.1987,17(5):873-877.
    [82]Pal N R, Bezdek J C. On cluster validity for the fuzzy c-mean model [J]. IEEE Transactions on Fuzzy Systems.1995,3(3):370-379.
    [83]高新波,裴继红,谢维信.模糊c均值聚类算法中加权指数m的研究[J].电子学报.2000,28(4):80-83.
    [84]于剑.论模糊C均值算法的模糊指标[J].计算机学报.2003,26(8):968-973.
    [85]Yu J, Cheng Q S, Huang H K. Analysis of the weighting exponent in the FCM [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics.2004,34(1):634-639.
    [86]宫改云,高新波,伍忠东.FCM聚类算法中模糊加权指数m的优选方法[J].模糊系统与数学.2005,19(1):143-148.
    [87]朱林,王士同,邓赵红.改进模糊划分的FCM聚类算法的一般化研究[J].计算机研究与发展.2009,46(5):814-822.
    [88]肖满生,阳娣兰,张居武,唐文评.基于模糊相关度的模糊C均值聚类加权指数研究[J].计算机应用.2010,30(12):3388-3390.
    [89]Kaymak U, Setnes M. Fuzzy clustering with volume prototypes and adaptive cluster merging [J]. IEEE Transactions on Fuzzy Systems.2002,10(6):705-712.
    [90]于剑,程乾生.模糊聚类方法中的最佳聚类数的搜索范围[J].中国科学(E辑).2002,32(2):274-280.
    [91]Wang W N, Zhang Y J. On fuzzy cluster validity indices [J]. Fuzzy Stes and Systems.2007, 158(19):2095-2117.
    [92]Sledge I J, Bezdek J C, Havens T C, Keller J M. Relational generalizations of cluster validity indices [J]. IEEE Transactions on Fuzzy Systems.2010,18(4):771-786.
    [93]范九伦,裴继红,谢维信.基于可能性分布的聚类有效性[J].电子学报.1998,26(1):127-130.
    [94]Kim Y I, Kim D W, Lee D, Lee K H. A clustering validation index for GK cluster analysis based on relative degree of sharing [J]. Information Sciences.2004,168(1-4):225-242.
    [95]Wu K L, Yang M S. A cluster validity index for fuzzy clustering [J]. Pattern Recognition Letters.2005,26(9):1275-1291.
    [96]Xie X L, Beni G. A validity measure for fuzzy clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.1991,13(8):841-847.
    [97]Kim D W, Lee K H, Lee D. On cluster validity for estimation of the optimal number of fuzzy clusters [J]. Pattern Recognition.2004,37(10):2009-2025.
    [98]Pakhira M K, Bandyopadhyay S, Maulik U. Validity index for crisp and fuzzy clusters [J]. Pattern Recognition.2004,37(3):487-501.
    [99]Pakhira M K, Bandyopadhyay S, Maulik U. A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification [J]. Fuzzy Sets and Systems.2005, 155(2):191-214.
    [100]Zhang Y J, Wang W N, Zhang X N, Li Y. A cluster validity index for fuzzy clustering [J]. Information Sciences.2008,178(1-4):1255-1218.
    [101]申晓勇,雷英杰,蔡茹,姬云.直觉模糊集合数据的聚类有效性分析[J].数据采集与处理.2009,24(4):493-496.
    [102]Tong J H, Tan H Z. Clustering validity based on the improved SDBW index [J]. Journal of Electronics (China).2009,26(2):258-264.
    [103]Beni C, Liu X M. A least biased fuzzy clustering method [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.1992,16(9):954-960.
    [104]Robets S J. Parametric and non- Parametric unsupervised cluster analysis [J]. Pattern Recognition.1997,30(2):261-272.
    [105]Gurrutxaga I, Muguerza J, Arbelaitz O, Perez J M, Martin J I. Towards a standard methodology to evaluate internal cluster validity indices [J]. Pattern Recognition Letters. 2011,32(3):505-515.
    [106]潘晓英,刘芳,焦李成.密度敏感的多智能进化聚类算法[J].软件学报.2010,21(10):2420-2431.
    [107]Pedrycz W, Waletzky J. Fuzzy clustering with partial supervision [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics.1997,27(5):787-9795.
    [108]Krishnapuram R, Kim J. Clustering algorithms based on volum criteria [J]. IEEE Transactions on Fuzzy Systems.2000,8(2):228-236.
    [109]Wu K L, Yu J, Yang M S. A novol fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests [J]. Pattern Recognition Letters.2005,26(5):639-652.
    [110]De Carvalho F A T, De Souza R M C R, Chavent M, Lechevallier Y. Adaptive Hausdorff diatances and dynamic clustering of symbolic interval data [J]. Pattern Recognition Letters. 2006,27(3):167-179.
    [111]Bandyopadhyay S, Sara S. GAPS:a clustering method using a new point symmetry-based diatance meature [J]. Pattern Recognition.2007,40(12):3430-3451.
    [112]Ling H B, Jacobs D W. Shape classification using the inner-distance [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.2007,29(2):286-299.
    [113]Yu J, Amores J, Sebe N. Distance learning for similarity estimation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.2008,30(3):451-462.
    [114]McCane B, Albert M. Distance functions for categorical and mixed variables [J]. Pattern Recognition Letters.2008,29(7):986-993.
    [115]Ververidis D, Kotropoulos C. Information loss of the Mahalanobis distance in high dimensions:application to feature selection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.2009,31(12):2275-2281.
    [116]王玲,薄列峰,焦李成.密度敏感的谱聚类[J].电子学报.2007,35(8):1577-1581.
    [117]王玲,薄列峰,焦李成.密度敏感的半监督谱聚类[J].软件学报.2007,18(10):2412-2422.
    [118]Marcelloni F. Feature selection based on a modified fuzzy C-means algorithm with supervision [J]. Information Sciences.2003,151:201-226.
    [119]Wang X Z, Wang Y D, Wang L J. Improving fuzzy c-means clustering based on feature-weight learning [J]. Pattern Recognition Letters.2004,25(10):1123-1132.
    [120]王丽娟,关守义,王晓龙,王熙照.基于属性权重的Fuzzy C Means算法[J].计算机学报.2006,29(10):1797-1803.
    [121]李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报.2006,34(1):89-92.
    [122]范九伦.模糊聚类新算法和聚类有效性问题研究[D].西安:西安电子科技大学,1998.
    [123]于春海,樊治平.一种基于区间数多指标信息的FCM聚类算法[J].系统工程学报.2004,19(4):387-393.
    [124]De Carvalho F A T. Fuzzy c-means clustering methods for symbolic interval data [J]. Pattern Recognition Letters.2007,28(4):423-437.
    [125]廖志芳,罗浩,樊晓平,刘克准.一种面相混合属性数据聚类的新算法[J].控制与决策.2009,24(5):697-700.
    [126]Pierpaolo D U, Paolo G. A weighted fuzzy c-means clustering model for fuzzy data [J]. Computational Statistics & Data Analysis.2006,50(6):1496-1532.
    [127]吕泽华,金海,袁平鹏,邹德清.基于Gauss分布函数的区间值数据的模糊聚类算法[J].电子学报.2010,38(2):295-300.
    [128]Hathaway R J, Bezdek J C. Fuzzy c-means clustering of incomplete data [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics.2001,31(5):735-744.
    [129]Hathaway R J, Bezdek J C. Clustering incomplete relational data using the non-Euclidean relational fuzzy c-means algorithm [J]. Pattern Recognition Letters.2002,23(1-3):151-160.
    [130]Timm H, Doring C, Kruse R. Different approaches to fuzzy clustering of incomplete datasets [J]. International Journal of Approximate Reasoning.2004,35:239-249.
    [131]Lim C P, Leong J H, Kuan M M. A hybrid neural network systems for pattern classification tasks with missing features [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.2005,27(4):648-653.
    [132]Xu L, Krzyzak A, Oja E. Rival penalized competitive learning for clustering analysis, RBF net and curve detection [J]. IEEE Transactions on Neural Networks.1993,4(4):636-649.
    [133]Carpenter C A, Grossberg S, Markuzon N, Reynokds J H, Rosen D B. Fuzzy ARTMAP:A neural network architecture for incremental supervised learning of analog multidimensional maps [J]. IEEE Transactions on Neural Networks.1992,3(5):698-713.
    [134]周永权,焦李成.高属性维稀疏数据聚类回归逻辑神经网络模型及学习算法[J].电子学报.2004,32(8):1342-1345.
    [135]常发亮,刘静,乔谊正.基于自组织神经网络的彩色图像自适应聚类分割[J].控制与决策.2006,21(4):449-452.
    [136]Shen S, Sandham W, Malcolm M, Sterr A. MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization [J]. IEEE Transactions on Information Technology in Biomedicine.2005,9(3):459-467.
    [137]Meng K, Dong Z Y, Wang D H, Wong K P. A Self-adaptive RBF neural network classifier for transformer fauly analysis [J]. IEEE Transactions on Power Systems.2010,25(3): 1350-1360.
    [138]Maulik U, Bandyopadhyay S. Genetic algorithm-based clustering technique [J]. Pattern Recognition.2000,33(9):1455-1465.
    [139]Tseng L, Yang S. A genetic approach to the automatic clustering problem [J]. Pattern Recognition.2001,34(2):415-424.
    [140]Mukhopahyay A, Maulik U, Bandyopadhyay S. Multiobjective genetic algorithm-based fuzzy clustering of categorical attributes [J]. IEEE Transactions on Evolutionary Computation.2009,13(5):991-1005.
    [141]刘静,钟伟才.免疫进化聚类算法[J].电子学报.2001,29(12):1868-1872.
    [142]公茂果,焦李成,马文萍.基于流形距离的人工免疫无监督分类与识别算法[J].自动化学报.2008,34(3):367-375.
    [143]刘若辰,沈正春,贾建,焦李成.基于免疫优势的克隆选择聚类算法[J].电子学报.2010,38(4):960-965.
    [144]钟将,吴中福,吴开贵,欧灵.基于人工免疫网络的动态聚类算法[J].电子学报.2004,32(8):1268-1272.
    [145]Krishnapuram R, Keller J M. A possibilistic approach to clustering [J]. IEEE Transactions on Fuzzy Systems.1993,1(2):98-110.
    [146]Pal N R, Pal K, Keller J M, Bezdek J C. A possibilistic fuzzy c-means clustering algorithm [J]. IEEE Transactions on Fuzzy Systems.2005,13(4):517-530.
    [147]陈健美,陆虎,宋金庆,宋顺林,徐景,谢从华,倪巍伟.一种隶属关系不确定的可能性模糊聚类方法[J].计算机研究与发展.2008,45(9):1486-1492.
    [148]武小红,周建江.可能性模糊C均值聚类新算法[J].电子学报.2008,36(10):1 996-2000.
    [149]于龙,肖建,周聪.鲁棒区间类型2可能性C均值聚类[J].控制与决策.2009,24(4):503-507.
    [150]Filippone M, Masulli F, Rovetta S. Applying the possibilistic c-means algorithm in kernel-induced space [J]. IEEE Transactions on Fuzzy Systems.2010,18(3):572-584.
    [151]Anderson D T, Bezdek J C, Popescu M, Keller J M. Comparing fuzzy, probabilistic, and possibilistic partitions [J]. IEEE Transactions on Fuzzy Systems.2010,18(5):906-918.
    [152]Hoeppner F. Fuzzy shell clustering algorithms in image processing:fuzzy c-rectangle and 2-rectangle shells [J]. IEEE Transactions on Fuzzy Systems.1997,4(5):599-612.
    [153]魏立梅,谢维信.模糊C球壳聚类算法的研究[J].电子与信息学报.2001,23(1):37-44.
    [154]Wang T. Possibilistic shell clustering of template-based shapes [J]. IEEE Transactions on Fuzzy Systems.2009,17(4):777-793.
    [155]Xie Y, Raghavan V V, Dhatric P, Zhao X Q. A new fuzzy clustering algorithm for optimally finding granular prototypes [J]. International Journal of Approximate Reasoning. 2005,40(1-2):109-124.
    [156]Groll L, Jakel J. A new convergence proof of fuzzy c-means [J]. IEEE Transactions on Fuzzy Systems.2005,13(5):717-720.
    [157]Hoppner F, Klawonn F. A contribution to convergence theory of fuzzy c-means and derivatives [J]. IEEE Transactions on Fuzzy Systems.2003,11(5):682-694.
    [158]Kononenko I. Estimating attributes:Analysis and extensions of Relief[C]. Proceeding of the 7th European Conference on Machine Learning.1994:171-182.
    [159]李金秀,高新波,高玉娥,李庆鑫.基于特征加权的模糊聚类算法研究[J].北京电子科技学院学报.2007,15(2):74-76.
    [160]Zhang L, Zhang L Y, Chen S Y. Research on customer classification based on customer value [J]. Journal of Computational Information Systems.2007,3(5):1971-1976.
    [161]Kira K, Rendell L A. A practical approach to feature selection [C]. Proceedings of the 9th International Conference on Machine Learning.1992:249-256.
    [162]Saaty T L. The analytical hierarchy process [M]. New York:McGraw Hill,1980.
    [163]扶元广,赵定涛.区间判断矩阵权重求解的可疑点定理及应用[J].系统工程与电子技术.2007,29(1):60-63.
    [164]Hathaway R J, Bezdek J C. Optimization of clustering criteria by reformulation [J]. IEEE Transactions on Fuzzy Systems.1995,3(2):241-245.
    [165]冯向前,魏翠萍,胡刚,李宗植.区间数判断矩阵的一致性研究[J].控制与决策.2008,23(2):182-186.
    [166]Huang X, Zhu Q. A pseudo-nearest-neighbor approach for missing data recovery on Gaussian random data sets [J]. Pattern recognition letters.2002,23:1613-1622.
    [167]Miyamoto S, Takata O, Umayahara K. Handling missing values in fuzzy c-means [C]. Proceedings of the 3rd Asian Fuzzy System Symposium.1998:139-142.
    [168]Acuna E, Rodriguez C. The treatment of missing values and its effect in the classifier accuracy [J]. Classification, clustering and data mining applications.2004,3:639-648.
    [169]于春海,樊治平.一种基于区间数多指标信息的FCM聚类算法[J].系统工程学报.2004,19(4):387-393.
    [170]Liu Y G, Chen K F, Liao X F, Zhang W. A genetic clustering method for intrusion detection [J]. Pattern recognition.2004,37(5):927-942.
    [171]Mukhopadhyay A, Maulik U, Bandyopadhyay S. Multiobjective genetic algorithm-based fuzzy clustering of categorical attributes [J]. IEEE Transactions on Evolutionary Computing. 2009,13(5):991-1005.
    [172]Su J P, Lee T E, Yu K W.A combined hard and soft variable-structure control scheme for a class of nonlinear systems [J]. IEEE Transactions on Industrial Electronics.2009,56(9): 3305-3313.
    [173]任子武,伞冶.实数遗传算法的改进及性能研究[J].电子学报.2007,35(2):269-274.
    [174]Frigui H, Nasraoui O. Unsupervised learning of prototypes and attribute weights [J]. Pattern Recognition.2004,37(3):567-581.
    [175]Farhangfar A, Kurgan L A, Pedrycz W. A novel framework for imputation of missing values in databases [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans.2007,37(5):692-709.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700