用户名: 密码: 验证码:
OFDM基带系统CFOs的估计及校正
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着多媒体技术和移动通信的高速发展,人们对信息传输速率的要求日益提高,要求的码元传输速率不断的提高,现今对一路信息的传输速率要求已达若干Mb/s,并且传输信道大多数是多径衰落或有频率选择性衰落的信道。为了克服信道上的衰落,正交频分复用(OFDM, Orthogonal Frequency Division Multiplexing)技术受到了高度重视。
     OFDM是一类多(子)载波的并行调制体制。它将数据分为多路,在与子载波对应的多个载波频率上进行传送。在OFDM中各路子载波频谱是可以重叠的,提高了频率利用率,增大了数据传输速率,而且子载波之间是严格正交的,避免了重叠频谱之间的干扰或载波间干扰(ICI, Inter-Carrier Interference),同时接收端能够完全的分离各路已调制的信号。此外,每路子载波可以采用多进制调制,调制制度也可以不同,能够为适应信道的变化而自适应的改变。
     但是,如果正交性遭到破坏,载波间干扰将会引起严重的系统性能退化。因此,不同子载波之间正交性的保持是至关重要的,而载波间干扰的主要来源就是载波频率偏移(CFOs, Carrier Frequency Offsets)。
     为了保持子载波之间的正交性,避免载波间的干扰引起的系统性能退化,本文提出了基于循环前缀(CP, Cyclic Prefix)的CFOs估计的步长算法。并对步长参数的选定、校正系数的性能、变步长控制、CFOs的估计误差、算法的稳定性及典型平稳状态下的性能等进行了研究。
     首先,介绍了OFDM的基本含义、国内外发展现状及主要应用;
     其次,阐述了OFDM的原理及实现,并在平均窗口算法的基础上,引入了步长参数,推导得出了CFOs估计步长算法的数学模型;
     然后,说明了硬件设计思想及系统各部分是如何实现的,并在此基础上描述了基带操作的VHDL实现过程;
     此外,通过MATLAB仿真将步长算法与VSB和LMR估计算法进行了比较,分析了三种算法在典型平稳状态下的性能和步长算法的稳定性,验证了算法中各个系数的性能,比较了可变步长和恒定步长;
     最后,设计了步长算法的实现程序,强调了变步长控制,给出并分析了具体的实验结果。
     实验结果表明:设计的程序在电路板上能够正确执行;在±3σ估计变化区间内,移动速度为400 km/h时,CFOs估计的最大误差仅为0.00987,符合CFOs估计误差必须精确的在子载波空间1-2%范围内的衡量标准;同时减少了建立时间和稳定时间,提高了码元传输速率。此外,步长算法CP存储器资源的消耗只有其他算法的20%,减少了信息速率损失。
Along with high-speed development of multimedia technique and mobile communication,demand for information transmission velocity is increasingly increased, and required code transmitted velocity is increasingly improved. Nowadays transmission velocity of a path of information is required up to several Mb/s. Moreover, transfers channel are mostly multipath decline or frequency selectivity decline. In order to overcome channel decline, OFDM (Orthogonal Frequency Division Multiplexing) is attached importance.
     OFDM is a parallel modulation system using multicarrier, which means that the data are multiplexed onto and transmitted over multiple carrier frequencies called subcarriers. The subcarrier spectra overlap in OFDM which improve frequency availability, and the subcarriers are strictly mutually orthogonal,which make Interference among overlapping spectra, or intercarrier interference (ICI) be avoided. At the same time, receiver can completely separate every path of modulation signal. Further, any path of subcarrier could adopt M-system modulation and modulation mode may be different, which can self-adaptively alter to adapt channel variety.
     However, if orthogonality is destroyed, ICI can cause severe performance degradation. Thus, it is critical that orthogonality be maintained among the different subcarriers, and primary source for ICI is Carrier Frequency Offset (CFO).
     In order to maintain orthogonality among subcarriers, a CFOs step-size estimation model based on cyclic prefix (CP) is established to avoid severe performance degradation caused by ICI, and some are investigated that includes selection of step-size parameter, performance of correction coefficient, control of variable step-size, the error of CFOs estimation, algorithmic stability and typical steady-state performance and etc.
     First, OFDM is presented, including basic signification, development actuality and primary applications.
     Then, principle and realization of OFDM are described. After an averaging window algorithm is introduced, the mathematic model of step-size algorithm of CFOs estimation is obtained through step-size parameter.
     Third, design idea for hardware is explained, as well as various part in system and VHDL implementation process of baseband operation. Furthermore, comparing with VSB and LMR, step-size algorithm performance is under typical steady-state. Based on the results of simulation referred to MATLAB, stability, coefficients, in- and variable step-size are verified.
     Finally, executable program of step-size algorithm is designed, control for variable step-size is stressed, and experimental results are listed and discussed.
     Experimental results indicate that self-designed programs can be accurately performed on circuit board. Maximal error of CFOs estimate is 0.0987 in±3σvariance interval, when mobile velocity are 400 km/h, according with verdicted principle that in order for the ICI effects to be negligible, the error of CFOs estimation must be accurate within 1-2% of the subcarrier spacing. At the same time, setup time and steady time are decreased to improve code transmission velocity. Additionally, store resource consumed by CP is 20% of other algorithms’to reduce loss of information velocity.
引文
[1]王文博,郑侃.宽带无线通信OFDM技术[M].北京:人民邮电出版社, 2003. 12-26.
    [2]尹长川,罗涛,乐光新.多载波宽带无线通信技术[M].北京:北京邮电大学出版社, 2004. 112-154.
    [3] WANG T, PROAKIS J G, ZEIDLER J R. Interference analysis of filtered multitone modulation over time-varying frequency-selective fading channels [J]. IEEE Trans. Commun., 2008, 55: 717-727.
    [4]佟学俭,罗涛编. OFDM移动通信技术原理与应用[M].北京:人民邮电出版社, 2003. 125-142.
    [5]樊昌信.通信原理教程[M].北京:电子工业出版社, 2007. 277-282.
    [6] ROMAN T, ENESCU M, KOIVUNEN V. Joint time-domain tracking of channel and frequency offset for OFDM systems [J]. In Proc. IEEE Workshop on Signal Process. Advances in Wireless Commun., 2003, 24: 605-609.
    [7] Rappapor T S.无线通信原理与应用[M].蔡涛,李旭,杜振民译.电子工业出版社, 1999. 220-242.
    [8]段吉海,黄智伟.数字通信系统建模与设计[M].北京:电子工业出版社, 2006. 195-246.
    [9] Heiskala J, Terry J. OFDM无线局域网[M].杨晓春,何建吾等译.北京:电子工业出版社, 2003. 4-10.
    [10] TSAI P Y, KAND H Y, CHIUEH T D. Joint weighted least-squares estimation of carrier-frequency offset and timing offset for OFDM systems over multipath fading channels[J]. IEEE Trans. Veh. Technol., 2005, 54: 211-223.
    [11] ROMAN T, VISURI S, KOIVUNEN V. Blind frequency synchronization in OFDM via diagonality criterion [J]. IEEE Trans. Signal Process., 2006, 54: 3125-3135.
    [12] MOLISCH A F, TOELTSCH M, VERMANI S. Iterative methods for cancellation of intercarrier interference in OFDM systems [J]. IEEE Trans. Veh. Technol., 2007, 56: 2158-2167.
    [13] WANG T, PROAKIS J G, ZEIDLER J R. Interference analysis of filtered multitone modulation over time-varying frequency-selective fading channels [J]. IEEE Trans. Commun., 2007, 55: 717-727.
    [14] YU Q, LAMBOTHARAN S. Iterative (turbo) estimation and detection techniques for frequency-selective channels with multiple frequency offset [J]. IEEE Signal Process. Lett., 2007, 14: 236-239.
    [15] Russell M, Stiiber G L. Interchannel ingerference analysis of OFDM in a mobile environment [J]. In Proc. IEEE Veh. Technology Conf., 1995(2): 820-824.
    [16] Stantchev B, Fettweis G. Time-variant distortions in OFDM [J].IEEE Commun. Lett., 2000(4): 312-314.
    [17] Moose P H. A technique for orthogonal frequency division multiplexing frequency offset correction [J].IEEE Trans. Commun., 1994(42): 2908-2914.
    [18] Minn H, Bhargava V K, Letaief K B. A combined timing and frequency synchronization and channel estimation for OFDM [J].IEEE Trans. Commun., 2006 (54): 416-422.
    [19]束锋,罗琳,吴乐南. OFDM通信系统中的一种通用的信道估计模型[J].电路与系统学报, 2001(6): 39-43.
    [20] Chang R W, Gibby R A. A theoretical study of performance of an orthogonal multiplexing data transmission scheme [J]. IEEE Trans Commun Technol., 1996(16): 529-540.
    [21] Kaiser S. OFDM Code-Division Multiplexing in Fading Channels [J].IEEE Tran.Commun., 2002, 50 (8): 50-61.
    [22] Lei J, Ng T S. A consistent OFDM carrier frequency offset estimator based on distinctively spaced pilot tones [J]. IEEE Trans. Wireless Commun., 2004(3): 588-599.
    [23]江彬,吴大焰,高西奇.基于遗传算法的OFDM系统导频设计[J].东南大学学报(自然科学版), 2008, 38(5): 746-751.
    [24]何修富,廖桂生,何映锋.基于导频信号的OFDM通信系统信道估计与跟踪[J].电路与系统学报, 2008, 13(6): 124-127.
    [25] Tai P Y, Kang H Y, Chiueh T D. Joint weighted least-squares estimation of carrier-frequency offset and timing offset for OFDM systems over multipath fading channels [J].IEEE Trans. Veh. Technol., 2005 (54): 211-223.
    [26] Lottici V, Luise M, Marselli M, et al. Blind subcarrier frequency ambiguity resolution for OFDM signals over selective channels [J]. IEEE Trans. Commun., 2004 (52): 1532-1537.
    [27]李永波,刘晓明.基于FPGA的OFDM宽带数据通信同步系统设计与实现[J].东南大学学报(自然科学版), 2009, 39(6): 847-852.
    [28]田耘,徐文波,张延伟.无线通信FPGA设计[M].北京:电子工业出版社, 2008. 34-42.
    [29] Park B, Cheon H, KO E, et al. A blind OFDM synchronization algorithm based on cyclic correlation [J]. IEEE Signal Process. Lett., 2004(11): 83-85.
    [30] Lu T, Li H, Chen J. Joint estimation of symbol timing and carrier frequency offset of OFDM signals over fast time-varying multipath channels [J]. IEEE Trans. Signal Process., 2005(53): 4526-4535.
    [31] Hsieh M H, Wei C H. A low-complexity frame synchronization and frequency offset compensation scheme for OFDM systems over fading channels [J]. IEEE Trans. Veh. Technol., 1999(48):1596-1609.
    [32] Liu Z, Weng B, Zhu Q. Frequency offset estimation for differential OFDM [J]. IEEE Trans. Wireless Commun., 2005(4): 1737-1748.
    [33] Roman T, Visuri S, Koivunen V. Blind frequency synchronization in OFDM via diagonality criterion [J]. IEEE Trans. Signal Process., 2006(54): 3125-3135.
    [34] Oerder M, Meyr H. Digital filter and square timing recovery [J]. IEEE Trans. Commun., 1988(36): 605-612.
    [35] Weinstein S B, Ebert P M. Data transmission by frequency-division multiplexing using the discrete Fouier transform [J]. IEEE Trans.Commun.Technol., 1971(19):628-634.
    [36] Tureli U, Liu H, Zoltowski M D. OFDM blind carrier offset estimation: ESPRIT [J]. IEEE Trans. Commun., 2000(48): 1459-1461.
    [37]陈小群,郭玉春,史小卫. OFDM系统高效Doherty功率放大器设计[J].西安电予科技大学学报(自然科学版), 2008, 35(6):1020-1025.
    [38] Yang S C, Peter J V, Frank A C. ML estimation of carrier frequency offset for multicarrier signals in Rayleigh fading channels [J]. IEEE Transactions on Vehicular Technology, 2001.50 (2): 644-665.
    [39] Speth M. Optimum Receiver Design for Wireless OFDM-Based Broadband Transmission-Part II [J]. IEEE Transactions on Communications, 2001, 49(4): 1126-1132.
    [40]桑恩方,徐小卡,乔钢等. Turbo码在水声OFDM通信中的应用研究[J].哈尔滨工程大学学报, 2009, 30(1): 60-66.
    [41] Peled D, Ruiz A. Frequency domain data transmission using reduced computational complexity algorithms [J]. In Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 1980: 64-967.
    [42]胡广书.数字信号处理理论算法与实现[M].北京:清华大学出版社, 2001. 112-167.
    [43]李素芝,万建伟.离散数字信号处理[M].长沙:国防科技大学出版社, 1994. 66-79.
    [44]奥本海姆.数字信号处理[M].董士嘉译.北京:科学出版社, 1981. 59-67.
    [45] Wilkinson J E, Barton A. Block coding scheme for reduction of peak to mean envelope ratio of multicarrier transmission schemes [J]. Electron Lett., 1994, 30(25):2098-2099.
    [46] Uwe M-B.数字信号处理的FPGA实现[M].刘凌,胡永生译.北京:清华大学出版社, 2003. 224-239.
    [47]程佩青.数字信号处理教程[M].北京:清华大学出版社, 2001. 20-35.
    [48]王彦.基于FPGA的工程设计与应用[M].西安:西安电子科技大学出版社, 2007. 65-74.
    [49] Johnson H, Graham M.高速数字设计[M].沈立,朱来文,陈宏伟译.北京:电子工业出版社, 2008. 89-92.
    [50] Chang Y N, Parhi K K. An efficient pipelined FFT architecture [J]. IEEE Trans Circuits Systems II, 2003(50): 322-325.
    [51] Maharatna K, Grass E, Jagdhold U. A 64-Point Fourier Transform Chip for High-Speed Wireless LAN Application Using OFDM [J]. IEEE Journal of Solid-State Circuit, 2004, 39(3): 1127-1132.
    [52] HE S, Torkelson M. Designing Pipeline FFT Processor for OFDM Modulation [J]. ISSE’98, 1998(2): 235-236.
    [53] Truong T K, Jeng J H, Cheng T C. A New Decoding Algorithm for Correcting Both Erasures and Errors of Reed-Solomon Codes [J]. IEEE Trans. Commun., 2003(51): 381-388.
    [54] Young J, Lee M H. A minimized modified Euclid architecture [J]. Information Systems for Enhanced PublicSafety and Security, 2000: 177-178.
    [55]黄志伟,王彦. FPGA系统设计与实现[M].北京:电子工业出版社, 2005. 107-126.
    [56] Santella G. Frequency and symbol synchronization system of OFDM signals: Architecture and simulation results [J]. IEEE Transactions on Vehicula Technology, 2000, 49(1): 254-275.
    [57] Tureli U, Liu H, Zoltowski M D. OFDM blind carrier offset estimation: ESPRIT [J]. IEEE Transactions on Communications, 2000, 48(9): 1459-1461.
    [58] Bogatin E.信号完整性分析[M].李玉山,李丽平译.北京:电子工业出版社, 2008. 102-135.
    [59] Chen C, Li J D, Han G. A novel interger frequency offset estimator for OFDM [J]. IEEE Mobile and Wireless Communication, 2004: 29-32.
    [60] Liu H, Tureli U. A high-efficiency carrier estimator for OFDM communications [J]. IEEE Communications Leters, 1998, 2 (4): 104-106.
    [61]王东,栾英姿,刘媛媛. OFDM系统中一种改进的最大似然同步迭代算法[J].电子科技, 2008, 21(10): 31-34.
    [62] Steven M K.统计信号处理基础—估计与检测理论[M].北京:电子工业出版社, 2003. 156-167.
    [63] Chen B. Maximum likelihood estimation of OFDM carrier frequency offset [J]. IEEE Signal Processing Letters, 2002, 9 (4): 123-126.
    [64]奥本海姆,谢弗,巴克.离散时间信号处理(第二版)[M].刘树棠,黄建国译.西安:西安交通大学出版社, 2001. 203-231
    [65]沈凤麟,钱玉美.信号统计分析与处理[M].北京:中国科学技术大学出版社, 2001. 192-207.
    [66] Moose P H. A technique for orthogonal frequency division multiplexing frequency offset correction [J]. IEEE Transactions on Communications, 1994(42): 2908-2914.
    [67] Young S L, Lee J H. An efficient carrier frequency offset estimation scheme for an OFDM system [J]. IEEE Vehicular Technology, 2000(5): 2453-2458.
    [68] WANG W F, LI B B. A novel frequency synchronization scheme for OFDM systems [J]. Journal of Harbin Institute of Technology (New Series), 2008, 15(5): 653-656.
    [69]边东明,冉崇森.一种基于二倍时钟采样的OFDM载波偏差估计算法[J].电子学报, 2003 (10): 1473-1475.
    [70] Hou J, Siegel P, Milstein L. Performance analysis and code optimization of low density parity-check codes on Rayleigh fading channels [J]. IEEE J. Selected Areas in Comm., 2001(2): 924-934.
    [71] Wang T, Proakis J G, Zeidler J R. Interference analysis of filtered multitone modulation over time-varying frequency-selective fading channels [J]. IEEE Trans. Commun., 2007, 55(4): 717-727.
    [72] Peng F, Zhang J. On residual carrier frequency offset mitigation for IEEE 802.11n [C]. The 2007 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2007). Honolulu, Hawaii: ICASSP 2007, 2007. 257-260.
    [73] Gault S, Hachem W, Ciblat P. Joint sampling clock offset and channel estimation for OFDM signals [J]. IEEE Trans. Signal Proc., 2006, 54(5): 1875– 1885.
    [74] XILINX, Inc. Virtex-5 Family Overview [DB/OL]. http://www.xilinx.com, 6-18-2008.
    [75] Texas Instruments Inc. TMS320C6414, TMS320C6415, TMS320C6416 FIXED-POINT DIGITAL SIGNAL PROCESSORS [DB/OL]. 7-14-2005.
    [76] Micron Technology, Inc. DDR2 SDRAM MT47H32M16– 8 Meg x 16 x 4 banks [DB/OL]. http://www.micron.com/ddr2, 9-22-2008.
    [77] Micron Technology, Inc. Synchronous DRAM MT48LC2M32B2– 512K x 32 x 4 banks [DB/OL]. http://www.micron.com/sdram, 9-22-2008.
    [78] Vllnei A P. VHDL数字电路设计教程[M].乔庐峰,王志功译.北京:电子工业出版社, 2005. 2-9.
    [79]姜立冬. VHDL语言程序设计及应用[M].第二版.北京:北京邮电大学出版社, 2007. 3-8.
    [80] Chung S Y, Richardson T J, Urbanke R. Analysis of sum-product of low-density parity-check codes using a Gaussian Approximation [J]. IEEE Trans. Inf. Theory, 2001(47): 657-670.
    [81] Choi Y S, Voltz P, Cassara F A. On channel estimation and detection for multicarrier signals and fast and selective Rayleigh fading channels [J]. IEEE Trans. Commun., 2001, 49(8): 1375-1387.
    [82] Dent P, Bottomley G E, Croft T. Jakes fading model revisited [J]. Electronic Letters, 2000, 39(13): 1162-1163.
    [83] Cai X, Giannakis G B. Bounding performance and suppressing intercarrier interference in wireless mobile OFDM [J]. IEEE Trans. Commun., 2000, 51(12): 2047-2056.
    [84] Nikopour H, Jamali S H. On the performance of OFDM systems over a Cartesian clipping channel: a theoretical approach [J]. IEEE Trans Wireless Comm., 2004, 11(3): 2083-2096.
    [85]薛小刚,葛毅敏. Xilinx ISE FPGA/CPLD设计指南[M].北京:人民邮电出版社, 2007. 33-67.
    [86] Declercq D, Giannakis G B. Recovering clipped OFDM symbols with Bayesian inference [C]. Proc. IEEE Inter. Conf. Acoustics, Speech and Signal Proc. (ICASSP'00). Houston: ICASSP'00, 2000. 157-160.
    [87] Kim D, Stuber G L. Clipping noise mitigation for OFDM by decision-aided reconstruction [J]. IEEE Commun. Letters, 2009, 13(1): 4-6.
    [88] [101] Air Interface for Fixed and Mobile Broadband Wireless Access Systems [S]. IEEEStd. 802.16e, 2005.
    [89] Van Nee R, Prasad R. OFDM for Wireless Multimedia Communications [S]. Norwood, MA: Artech House, 2000.
    [90] Aulin T. A modified model for the fading signal at a mobile radio channel [J]. IEEE Trans. Veh. Technol., 1997(48): 182-203.
    [91] COST 207 WG1. Proposal on channel transfer functions to be used in GSM tests late 1986 [S]. COST 207 TD (86)51 Rev. 3, Sep. 1986.
    [92] Sansaloni T, Perez-Pascua A, Valls J. Area-efficient FPGA-based FFT processor [J]. Electronics Letters, 2003, 39(19): 1020-1027.
    [93] VAN DE BEEK J J, SANDELL M, B?RJESSON P O. ML estimation of time and frequency offset in OFDM systems [J]. IEEE Trans. Signal Process., 1997, 45: 1800-1805.
    [94] LUISE M, MARSELLI M, REGGIANNINI R. Low-complexity blind carrier frequency recovery for OFDM signals over frequency-selective radio channels [J]. IEEE Trans. Commun., 2002, 50: 1182-1188.
    [95] Peng F, Ryan W E. New approaches to clipped OFDM channels: modeling and receiver design[C]. The 2005 IEEE Global Telecommun. Conf. (Global-Com'05). St. Louis, MO: Global-Com'05, 2005. 1490 - 1494.
    [96] Peng F, Ryan W E, Zhang J. MLSD Bounds and Near-Optimum Receiver Designs for Clipped OFDM Channels[C]. The 2007 IEEE Global Telecommun. Conf. (GlobeCom'07). Washington DC: GlobeCom'07, 2007. 1172-1176.
    [97] F. Peng, W. E. Ryan and J. Zhang, MLSD Bounds and Receiver Designs for Clipped OFDM Channels[C]. The 2007 IEEE Global Telecommun. Conf. (GlobeCom'07), Washington DC: GlobeCom'07, 2007. 1745-1750.
    [98] Digital Video Broadcasting (DVB), Framing Structure, Channel Coding and Modulation for Digital Terrestrial Television [S]. ETSI Std. EN 300 744 V1.5.1, 2004.
    [99] Tellado J, Hoo L M C, Ci J M. Maximum-likelihood detection of nonlinearly distorted multicarrier symbols by iterative decoding, [J]. IEEE Trans. Comm., 2003, 51(2): 218-228.
    [100] Wang T, Proakis J G, Zeidler J R, Interference analysis of filtered multitone modulation over time-varying frequency-selective fading channels [J]. IEEE Trans. Commun., 2007, 55(4): 717-727.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700