用户名: 密码: 验证码:
基于连续小推力的航天器轨道设计与控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文系统研究了连续小推力技术在近地空间轨道设计和控制中的应用,全文主要研究成果总结如下:
     基于连续小推力控制提出一种普适的相对构形设计方法,并据此设计出两种典型非自然相对构形:悬停轨道和快速绕飞轨道。1)从悬停轨道的定义出发,基于动力学原理,推导了针对任意类型参考轨道实现悬停的方法,突破了目前参考卫星仅局限于圆轨道的限制。给出了相对圆轨道、大椭圆轨道以及双曲线轨道的悬停控制力方程以及燃耗计算公式。2)针对圆参考轨道卫星,推导了满足快速绕飞条件的空间圆编队动力学模型,并分析了一个绕飞周期内的燃耗情况。在绕飞周期确定的条件下,给出了最小燃耗的计算方法。
     基于高斯方程提出一种利用连续小推力实现特殊任务轨道的一般设计方法,并给出三种特殊轨道的实现方法:“人工冻结轨道”、“人工太阳同步轨道”以及“人工太阳同步冻结轨道”。1)提出仅在周向或者在周向以及径向两个方向均施加连续常值小推力的两种控制策略,在非临界倾角条件下,实现“人工”冻结效果。对控制策略进行了优化设计,在确保不会对其它轨道要素的长期变化产生影响的前提下,使得燃耗最小。进一步从理论上证明了周向控制比径向控制更节省能量。2)给出了“人工太阳同步轨道”与“人工太阳同步冻结轨道”的实现原理和方法。
     基于空间平台观测数据,针对人工冻结轨道和悬停轨道两种不同类型的小推力轨道航天器,提出两种不同形式的滤波定位算法。1)针对人工冻结轨道等小推力轨道航天器,提出一种基于星间方向观测数据的改进滤波定位算法。将用于初轨计算的改进拉普拉斯方程作为观测方程,在同样测量精度下,该算法的收敛性能明显优于一般滤波算法。在此基础上,将目标的小推力增广为状态变量,设计了基于光学测量的非合作小推力航天器滤波定位算法。2)针对悬停轨道等小推力轨道航天器,基于星载雷达数据,分别设计了以相对位置速度和相对拟平均根数为状态变量的星间相对轨道确定UKF滤波算法。推导了无奇点的相对拟平均根数与相对位置速度之间的转换矩阵,并对转换矩阵的精度进行了有效补偿。提出以相对位置速度为直接观测量,设计了具有自调整功能的测量误差协方差阵。
     设计了用于悬停轨道构形保持控制的一种自适应无抖振滑模变结构反馈控制律。以悬停轨道为例,在开环控制的基础上设计了用于轨道构形保持的自适应无抖振滑模变结构反馈控制律,在保留变结构控制强鲁棒性特点的基础上,有效抑制了高频抖振。仿真结果表明,存在未知外界干扰的情况下,控制力是连续的,稳态控制精度可达10?4 m。并以“Molniya”和静止轨道为例,分析了悬停轨道的可行性。
     随着电推进技术的进步,小推力轨道在未来的航天任务中将会得到日益广泛的应用。本文以此为背景,从任务需求角度出发,研究了利用连续小推力技术实现特殊任务轨道的设计和控制方法,文中得到的一些结论具有一定的应用价值。
Applications of continuous low thrust technology in the near Earth orbits design and control are researched in this dissertation. The main results achieved are summarized as follows.
     A relative formation design method based on continuous low thrust is presented, and two typical non-nature formations which are hovering orbits and fast flying around orbits are derived from this method. 1) A hovering method at any selected position to any kind of orbits including circle, elliptical and hyperbolic ones is given, which expands the research domain of hovering orbits. The control thrust and fuel consumption formulas are also developed. 2) A control law to realize fast flying around (FFA) space circle formation on circle orbit is proposed, and the fuel expenditure in a formation period is determined by analytical expression, and an optimality condition is developed such that this fuel expenditure is minimized. Validity of the conclusion is proved by numerical method.
     A general method to achieve orbits of special mission using continuous low thrust is studied based on Gauss’variation of parameters equations, and three specific orbits are realized using this method as an example. 1) We propose that radial or both of radial and transverse accelerations could be applied to eliminate the rotation of the argument of perigee with arbitrary orbital elements, which means that we can realize artificial frozen orbit while the spacecrafts are not at the critical inclination. Further more, it is proved that the transverse control could save more energy compared with the radial control. Fuel optimization on control strategies are also given, and all the strategies are of no effect on other orbital parameters’secular movement. Amending methods on the control strategies mentioned above are presented to eliminate the residual secular growth of the argument of perigee. 2) Similarly, the ways to realize artificial Sun synchronous orbit and artificial Sun synchronous frozen orbit are presented.
     Two navigation filters for space targets which are described in inertia coordinate or relative frame are studied using space-based measurements, especially for targets of hovering orbits and artificial frozen orbits. 1) For targets of inertia coordinate, an improved orbit determination filter is developed using bearings-only measurements. In this filter, we rebuild the observation equations with the improved Laplace method in a creative way, which considered both the geometry and orbit restrictions. Simulation results show that convergent performance is dramatically improved compared to general filters with the same measurement precision. 2) For targets of relative frame, a relative navigation Unscented Kalman Filters (UKF) is discussed while the desired orbit is prescribed in terms of quasi-mean element differences. This strategy is designed for spaceborne radar which can provide measurements including range, range rate, angle and angle rate.
     An adaptive chattering-free sliding mode variable structure feedback control scheme is studied to make sure the hovering states stable. The hovering states are unstable under the open-loop control system considering perturbations and thrust errors, so a feedback sliding mode variable structure control which is adaptive and chattering-free is designed. Under this feedback control scheme, the high-frequency chattering phenomenon is avoided, while the system stays highly robust at the same time. Simulation results show that the feedback control thrusts are continuous and the steady-states error could be confined to 10-4m at the present of uncertain perturbations. The feasibility of realizing hovering orbits is analyzed taking the“Moliya”and GEO (geosynchronous Earth orbit) satellites as example.
     In this dissertation, from the view of space mission, orbit design and control schemes using continuous low thrust are studied. With the development of electronic propulsion technology, low thrust orbits could be widely used in the future space missions, conclusions of this dissertation may have some application value.
引文
[1]Duffey T M, Huffine C M,Nicholson S B. The Target Indicator Experiment on TacSat-2[R].Washington:Naval Research Laboratory,2008.
    [2]张郁.电推进技术的研究应用现状及其发展趋势[J].火箭推进, 2005,31(2):27-36.
    [3]Demmons N, Hruby V,Spence D. ST7-DRS Mission Colloid Thruster Development[C]. 44th AIAA Joint Propulsion Conference & Exhibit Hartford, CT,2008.
    [4]Christoph H, Klaus H,Edgar F. High-Precision Optical Metrology System for The SMART-2 Mission as Precursor for The DARWIN Satellite Constellation [C]. Interferometry XI: Techniques and Analysis,2002.
    [5]Nathrath N, Trumper M,Rapp S. Manufacturing Technologies for LISA[C]. 3rd European Conference on Antennas and Propagation,London,2009.
    [6]Chien S, Sherwood R,Doyle R. The TechSat-21 Autonomous Sciencecraft Experiment[C]. Intelligent Systems for Aeronautics,Belgium,2002.
    [7]Eastwood I, Chialin W,Stephen L D. Cloud Profiling Radar for The CloudSat Mission[C]. IEEE Aerospace and Electronic Systems Conference,Chicago,2005.
    [8]刘洋.编队卫星星间基线确定方法研究[D].长沙:国防科技大学,2007.
    [9]袁建平,朱战霞.空间操作与非开普勒运动[J].宇航学报, 2009,30(1):42-47.
    [10]Michael F O. Micro-Satellite Technology Experiment (MiTEx) Upper Stage Propulsion System Development[C]. 43rd AIAA Joint Propulsion Conference & Exhibit,Cincinnati, OH,2007.
    [11]Christopher N. Transient Pressure Analysis and Verification Testing for Themicro-Satellite Technology Experiment Upper Stage Propulsion System[C]. 43rd AIAA Joint Propulsion Conference & Exhibit,Cincinnati, OH 2007.
    [12]边炳秀,魏延明.电推进系统在静止轨道卫星平台上应用的关键技术[J].空间控制技术与应用, 2008,34(1):20-24.
    [13]黄良甫.电推进系统发展概况与趋势[J].真空与低温, 2005,11(1):1-8.
    [14]Eric J P. Recent Electric Propulsion Development Activities for NASA Science Mission[C]. AIAA 45th Joint Propulsion Conference and Exhibit,Chicago,2009.
    [15]Patterson M, Benson S,Soulas G. NEXT Ion Propulsion System Development Status[C]. Proceedings of 54th JANNAF Propulsion Meeting,Orlando,2008.
    [16]Kamhawi H, Manzella D,Mathers A. In-Space Propulsion High Voltage Hall Accelerator Project Overview[C]. Proceeding of 54th JANNAF PropulsionMeeting,Orlando,2008.
    [17]Soulas G, Patterson M,Van N J. NEXT Ion Thruster Performance Dispersion Analyses[C]. AIAA 43th Joint Propulsion Conference and Exhibit,Cincinnati,OH,2007.
    [18]Herman D, Soulas G,Patterson M. Status of the NEXT Ion Thruster Long-duration Test[C]. AIAA Joint Propulsion Conference and Exhibit,Cincinnati,OH,2007.
    [19]Peterson P, Kamhawi H,Manzella D. Hall Thruster Technology for NASA Science Mission: HiVHAC Status Update[C]. AIAA 43th Joint Propulsion Conference and Exhibit Cincinnati, OH,2007.
    [20]Rayman M, Fraschetti T,Raymond C. Dawn: A Mission in Development for Exploration of Main Belt Asteroids Vesta and Ceres[C]. 55th International Astronautical Congress,Vancouver, Canada,2004.
    [21]Hitoshi K. Powered Flight of Hayabusa in Deep Space [C]. 42nd AIAA Joint Propulsion Conference & Exhibit ,Sacramento, California,2006.
    [22]Enrico C. Drag-free and Attitude Control for the GOCE Satellite.[J].Automatica, 2008,44(3):1766-1780.
    [23]Zachary J F. Orbit Determination Using Modern Filters/Smoothers and Continuous Thrust Modeling[D]. Massachusetts:Massachusetts Institute of Technology,2008.
    [24]吴汉基,蒋远大,张宝明,等.电火箭推进的空间探测器[J].中国航天, 2006,28(4):24-28.
    [25]Bertrand R, Bernussou J,Geffroy S. Electric Transfer Optimization for Mars Sample Return Mision[J].Acta Astronautica, 2001,48(5):651-660.
    [26]Storn R,Priee K. Diferential Evolution - A Simple and Efficient Heuristic for Global Optimization Over Continuous Space[J].Journal of Global Optimization, 1997,37(11):341-359.
    [27]Casalina L, Colasurd G,Pastrone D. Optimization Procedure for Preliminary Design of Opposition-Class Mars Missions[J].Journal of Guidance Control and Dynamics, 1998,21(1):134-140.
    [28]Raymond H. A New Fast Numerical Method for Solving Two-point Boundary-value Problem[J].Jounal of Guidance Control and Dynamics, 2004 27(2):301-304.
    [29]尚海滨,崔平远,栾恩杰.星际小推力转移轨道快速设计方法[J].航空学报, 2007,28(6):1281-1286.
    [30]Zondervan K P,Wood L J. Optimal Low Thrust Three-burn Orbit Transfer With Large Plane Changes[J].Journal of Astronautical Sciences, 1984,32(3):407-427.
    [31]Brown K R. Rapid Optimization of Multiple-burn Rockent Flight[C]. International Business Machines Corporation,Cambridgs, Massachusetts,1969.
    [32]Kluever C A,Pierson B L. Optimal Low-Thrust Earth-Moon Transfers with a Switching Function Structure[J].Journal of Astronautical Sciences, 1994,42(3):269-283.
    [33]Redding D C,Breakwell J V. Optimal Low Thrust Transfers to Synchronous Orbit[J].Journal of Guidance Control and Dynamics, 1984,7(2):148-155.
    [34]Enright P J,Conway B A. Optimal Finite Thrust Spacecraft Trajectories Using Collocation and Nonlinear Programming[J].Journal of Guidance Control and Dynamics, 1991,14(5):981-985.
    [35]Herman A L,Conway B A. Direct Optimization Using Collocation Based on High-Order Gauss-Lobatto Quadrature Rules[J].Journal of Guidance Control and Dynamics, 1996,19(3):592-599.
    [36]Zhu R Z,Wang X G. Continuous Constant Thrust Maneuver in Polar Coordinate System[J].Spacecraft Engineering, 2008,17(2):31-37.
    [37]Tang S,Walberg G D. Earth-to-Mars Low Thrust Transfer Analyzed as A Large Nonlinear Programming Problem[C]. AIAA space Programs and technologies Conference,Washington,1995.
    [38]Betts J T,Erb S O. Optimal Low Thrust Trajectory to The Moon[J].Jounal of Applied Dynamical Systems, 2003,2(2):144-170.
    [39]尚海滨,崔祜涛,崔平远,等.基于改进配点法的星际小推力轨道设计与优化[J].哈尔滨工业大学学报, 2007,39(12):1904-1907.
    [40]尚海滨,崔平远,栾恩杰.基于最优状态反馈的小推力转移轨道制导策略[J].吉林大学学报(工学版), 2007,37(4):949-954.
    [41]Benson D. A Gauss Pseudospectral Transcription for Optimal Control[D]. Massachusetts:Massachusetts Institute of Tchnology,2004.
    [42]涂良辉,袁建平,罗建军.基于伪光谱方法的有限推力轨道转移优化设计[J].宇航学报, 2008,29(4):1189-1193.
    [43]尚海滨,崔平远,徐瑞,等.基于高斯伪光谱的星际小推力转移轨道快速优化[J].宇航学报, 2010,31(4):1005-1011.
    [44]杨维廉.冻结轨道的一阶解[J].中国空间科学技术, 2002,20(4):45-50.
    [45]Brouwer D. Solution of The Problem of Artificial SatelliteTheory Without Drag[J].Astronautical Journal, 1959,64(3):378-397.
    [46]Hogan P J. Simulation of Geosat, Topex/Poseidon, and ERS-1 Altimeter Data from 1/8deg Pacific Ocean Model: Effects of Space-time Resolution on Mesoscale Sea Surface Height Variability[J].MTS Journal, 1993,26(2):98-107.
    [47]Mark E P,Peter A. Earth Observing-1 Spacecraft bus[C]. 15th AIAA Small Satellite Conference,Cambridgs, Massachusetts,2001.
    [48]Yan Q,Kapila V. Analysis and Control of Satellite Orbits Around Oblate Earth Using Perturbation Method[C]. Proceedings of the 40th IEEE Conference on Decision and Control,Orlando, Florida,2001.
    [49]Christopher C W,Vikram K. Eliminating Perigee Rotation in J2 Perturbed Orbits with a Constant Radial Acceleration[C]. AIAA Guidance, Navigation and Control Conference and Exhibit,Hilton Head, Carolina,2007.
    [50]周姜滨,袁建平,罗建军.任意轨道要素冻结轨道的径向小推力控制策略研究[J].宇航学报, 2008,29(5):1536—1539.
    [51]张育林,曾国强,王兆魁,等.分布式卫星系统理论及应用[M].北京:科学出版社,2008.
    [52]Wang G B, Meng Y H, Zheng W,等. Artificial Frozen Orbit Control Scheme Based on J2 Perturbation[J].Science China Technological Sciences, 2010,53(11):3138-3145.
    [53]王志刚,袁建平,陈士橹.伴随卫星最优小推力释放与回收控制[J].西北工业大学学报, 2003,21(3):294-298.
    [54]王志刚,袁建平,陈士橹.形成三星星座的小推力变轨的时间最短控制[J].宇航学报, 2001,22(6):294-297.
    [55]Marec J P. Optimal Low Thrust Limited Power Transfers Between Arbitrary Elliptical Orbits[J].Acta Astronautica, 1976,30(4):511-540.
    [56]Fernandes S D. Optimum Low Thrust Limited Power Transfer Between Neighboring Elliptic Non-equatorial Orbits in An Non-central Gravity Field[J].Acta Astronautica, 1995,49(5):763-770.
    [57]李亮,和兴锁,张娟,等.考虑地球扁率影响的任意椭圆轨道小推力最优交会控制[J].西北工业大学学报, 2005,23(3):400-405.
    [58]Straight S D. Maneuver Design for Fast Satellite Circumnavigation[M]. Massachusetts: Air Force Institute of Technology,2004.
    [59]Masutani Y, Matsushita M,Miyazaki F. Fly Around Maneuvers on a Satellite Orbit by Impulsive Thrust Control[C]. Proceedings of the 2001 IEEE International Conference on Robotics & Automation,Seoul Korea,2001.
    [60]罗建军,杨宇和,袁建平.共面快速受控绕飞轨迹设计与控制[J].宇航学报, 2006,27(6):1389-1392.
    [61]罗建军,周文勇,袁建平.卫星快速绕飞轨迹设计与制导[J].宇航学报, 2007,28(3):628-632.
    [62]朱彦伟.航天器近距离相对运动轨迹规划与控制研究[D].长沙:国防科技大学,2009.
    [63]刘鲁华,郑伟,汤国建.一种空间交会绕飞段的小推力滑移制导方法[J].空间控制技术与应用, 2010,36(1):46-50.
    [64]王功波,孟云鹤,郑伟,等.快速绕飞卫星空间圆编队设计方法[J].宇航学报, 2010,31(12):2456-2470.
    [65]林来兴,黎康.卫星对空间目标悬停的轨道动力学与控制方法研究[J].中国空间科学技术, 2008,28(2):9-12.
    [66]闫野.卫星相对空间目标任意位置悬停的方法研究[J].中国空间科学技术, 2009,29(1):1-5.
    [67]范剑峰.关于非开普勒轨道的讨论[C].空间非开普勒轨道动力学与控制专题研讨会会议论文集,哈尔滨,2008.
    [68]王功波,郑伟,孟云鹤,等.基于动力学的椭圆轨道悬停方法研究[J].宇航学报, 2010,31(6):1527-1532.
    [69]Sawai S, Scheeres D J,Broschart S B. Control of Hovering Spacecraft Using Altimetry[J].Journal of Guidance Control and Dynamics, 2002,25(4):786-795.
    [70]Broschart S B,Scheeres D J. Control of Hovering Spacecraft Near Small Bodies[J].Journal of Guidance Control and Dynamics, 2005,28(2):343-354.
    [71]Stephen B B,Daniel J S. Boundedness of Spacecraft Hovering Under Dead-band Control in Time-Invariant Systems[J].Journal of Guidance Control and Dynamics, 2007,30(2):601-610.
    [72]Lu E,Love S. Gravitational Tractor for Towing Asteroids[J].Nature, 2005,438(11):177-178.
    [73]Bong W. Dynamics and Control of Gravity Tractor Spacecraft for Asteroid Deflection[J].Journal of Guidance Control and Dynamics, 2008,31(5):1413-1423.
    [74]Bong W. Hovering Control of a Solar Sail Gravity Tractor Spacecraft for Asteroid Deflection[C]. AAS/AIAA Space Flight Mechanics Meeting,Sedona Arizona,2007.
    [75]Viacheslav G P, Mikhail S K,Gennady G F. 1st ACT Global Trajectory Optimisation Competition: Results found at MoscowAviation Institute and Khrunichev State Research and Production Space Center[J].Acta Astronautica, 2007,61(5):775-785.
    [76]Carlos C D, Tomas P,Jesus G. 1st ACT Global Trajectory Optimization Competition:Results Found at GMV[J].Acta Astronautica, 2007,61(5):786-793.
    [77]李俊峰,祝开建. 2005-2009年国际深空轨迹优化竞赛综述[J].力学与实践, 2010,32(4):130-137.
    [78]谭莹.天基空间目标探测技术探讨[J].空间电子技术, 2006,24(3):25-30.
    [79]乐凯.空间目标天基与地基监视系统对比分析[J].光学技术, 2006,32(5):40-44.
    [80]骆文辉,杨建军.国外空间监视系统的现状与发展[J].飞航导弹, 2008,23(4):25-31.
    [81]王杰娟,于小红.国外天基空间目标监视研究现状与特点分析[J].装备指挥技术学院学报, 2006,17(4):32-37.
    [82]郭张龙.卫星导弹预警系统支援反TBM作战[D].西安:空军工程大学,2006.
    [83]李颖.空间目标监视系统发展现状及展望[J].国际太空, 2004,21(6):28-32.
    [84]余建慧,苏增立,谭谦.空间目标天基光学观测模式分析[J].量子电子学, 2006,23(6):772-776.
    [85]Stokes G H, Von B C,Sridharan R. The Space-Based Visible Program[J].Lincoln Laboratory Journal, 1998,11(2):205-238.
    [86]Stokes G H, Viggh H E,Kent P J. Space-Based Visible (SBV) Surveillance Data Verification and Telemetry Processing[C]. International Telemetering Conference,1996.
    [87]Anderson J C,Downs G S. Signal Processor for Space-based Visible Sensing[J].SPIE, 1991,27(9):78-92.
    [88]Bijaoui A, Alby F,Vandame B. Optical Observations in Geostationary Orbit[C]. 33th Cospar Scientific Assembly,Warsaw,2000.
    [89]Escane I, Delong N,Newland F. First Results for The ROSACE Autonomous Orbit Determination System Using Deviation on CCD[C]. 16th International Symposium on Space Flight Dynamics,California,2001.
    [90]Seong T P,Jang G L. Improved Kalman Filter Design for Three-dimensional Radar Tracking[J].IEEE Transactions on Aerospace and Electronic Systems, 2001,37(2):727-739.
    [91]刘林.航天器轨道理论[M].北京:国防工业出版社,2000.
    [92]戎鹏志,陆本魁.一种改进型的拉普拉斯轨道计算方法[J].天文学报, 1991,32(1):62-73.
    [93]Milani A,Knezevic Z. From Astronomy to Celestial Mechanics: Orbit Determination with Very Short Arcs[J].Celestial Mechanics and Dynamical Astronomy, 2005,95(1):1-18.
    [94]潘晓刚,周海银,王炯琦.基于单站短弧段光学观测的低轨卫星轨道预报算法[J].天文学报, 2009,50(4):445-458.
    [95]Tommei G, Milani A,Rossi A. Orbit Determination of Space Debris: Admissible Regions[J].Celestial Mechanics and Dynamical Astronomy, 2007,97(4):289-304.
    [96]Maruskin J M, Scheeres D J,Alfriend K T. Correlation of Optical Observations of Objects in Earth Orbit[J].Journal of Guidance control and dynamics, 2009,32(1):194-209.
    [97]潘晓刚,李济生,段晓君.天基空间目标监视与跟踪系统轨道确定技术研究[J].自然科学进展, 2008,18(1):1226-1239.
    [98]甘庆波,马静远,陆本魁.一种基于星间方向观测的初轨计算方法[J].宇航学报, 2007,28(3):283-287.
    [99]吴顺华,辛勤,万建伟.对卫星目标的仅测角天基单站无源定位可观测性分析[J].航空学报, 2009,30(1):104-108.
    [100]Guo F,Fan Y. A Method of Tracking Satellite By Single Satellite Using Bearings-Only Measurement[J].Journal of Astronautics, 2005,26(2):196-200.
    [101]LI Q. Research of Satellite-to-satellite Passive Locating and Tracking with Bearings-only Measurements[J].Journal of National University of Denfense Technology, 2007,29(2):70-75.
    [102]吴勤,高雁翎.美国空间对抗装备的新进展[J].航天电子对抗, 2007,23(3):1-7.
    [103]Chris S, Rich B,Craig A M. Satellite Formation Fying Design and Evolution[J].Journal of Spacecraft and Rockets, 2001,38(2):102-136.
    [104]Franz D B,Jonathan P H. Real-time Experimental Demonstration of Precise Decentralized Relative Navigation for Formation Flying Spacecraft[C]. AIAA Guidance Navigation and Control Conference and Exhibit,California,2002.
    [105]郭碧波,梁斌,李成.航天器最终逼近段的相对导航研究与半实物仿真验证[J].宇航学报, 2008,29(4):1245-1251.
    [106]Sengupta P,Vadali S R. Formation Design and Geometry for Keplerian Elliptic Orbits With Arbitrary Eccentricity[J].Journal of Guidance Control and Dynamics, 2007,30(4):951-962.
    [107]Schaub H, Vadali S R,Juukins J L. Spacecraft Formation Flying Using Mean Orbit Elements[J].Journal of the Astronautical Sciences, 2000,48(1):69-87.
    [108]Schaub H,Alfriend K T. Hybrid Cartesian and Orbit Element Feedback Law for Formation Fying Spacecraft[J].Journal of Guidance Control and Dynamics, 2002,25(2):387-393.
    [109]Schaub H. Spacecraft Relative Orbit Geometry Description Through Orbit Element Differences[C]. The 14th National Congress of Theoretical and Applied Mechanics,Blacksburg,2002.
    [110]Yamanaka K,Finn D. A New State Transition Matrix for Relative Motion on an Arbitrary Elliptical Orbit [J].Journal of Guidance Control and Dynamics, 2002,25(1):60-66.
    [111]Alfriend K T, Hanspeter S,Dong W G. Gravitational Perturbations Nonlinearity and Circular Orbit Assumption Effects on Formation Flying Control Strategies[C]. AAS Guidance and Control Conference,Breckenridge,2000.
    [112]Sengupta P, Vadali S R,Alfriend K T. Second-Order State Transition for Relative Motion Near Perturbed Elliptic orbits[J].Celestial Mechanics and DynamicalAstronomy, 2007,97(2):101-129.
    [113]Nathan B S, Robert A B,Frank R C. Comparison of The Extended and Unscented Kalman Filters for Angles Based Relative Navigation[C]. AIAA Astrodynamics Specialist Conference and Exhibit,Honolulu, Hawaii,2008.
    [114]刘勇,徐世杰.椭圆轨道航天器相对导航的多项式插值滤波算法[J].中国空间科学技术, 2008,21(3):37-44.
    [115]Redding D C,Adams N J. Linear-Quadratic Station Keeping for the STS Orbiter[J].Journal of Guidance Control and Dynamics, 1989,12(2):248-255.
    [116]Sparks A. Satellites Formation Keeping Control in the Presence of Gravity Perturbations[C]. Proceedings of the American Control Conference,Chicago,2000.
    [117]Yan Q, Yang G,Kapila V. Nonlinear Dynamics and Output Feedback Control of Multiple Spacecraft in Elliptical Orbits[C]. Proceedings of the American Control Conference,Chicago,2000.
    [118]于萍,张洪华.椭圆轨道编队的构型变化控制方法[J].中国空间科学技术, 2006,26(1):1-8.
    [119]Pan H,Kapila V. Adaptive Nonlinear Control for Spacecraft Formation Flying with Coupled Translational and Attitude Dynamics[C]. Proceedings of the 40th IEEE Conference on Decision and Control,Orlando,2001.
    [120]Breger L S. Model Predictive Control for Formation Flying Spacecraft [D]. Massachusetts:Massachusetts Institute of Technology,2004.
    [121]曹喜滨,贺东雷.编队构形保持模型预测控制方法研究[J].宇航学报, 2008,29(4):1276-1283.
    [122]Shan J, Liu H,Liu G. Dynamics and Fuzzy Control for Formation Flying with Elliptical Reference Orbits[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit,Rhode, Island,2004.
    [123]Xu Y, Tatsch A,Fitz-Coy N G. Chattering Free Sliding Model Control for a 6 DOF Formation Flying Mission[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit,California,2005.
    [124]Yeh H, Eric N,Andrew S. Nonlinear Tracking Control for Satellite Formations[J].Journal of Guidance Control and Dynamics, 2002,25(2):376-386.
    [125]Qi G. Nolinear Dynamics and Output Feedback Control of Multiple Spacecraft in Elliptical Orbits[C]. Proceeding of American Control Conference,Chicago,2000.
    [126]Naasz B J. Classical Element Feedback Control for Spacecraft Orbital Maneuvers[D]. Virginia:Virginia Ploytechnic Institute and State University,2002.
    [127]Marcio S, Vikram K,Qi G Y. Adaptive Nonlinear Control of Multiple Spacecraft Formation Flying[J].Journal of Guidance Control and Dynamics, 2000,23(3):385-390.
    [128]Queiroz M S, Kapila V,Yan Q. Adaptive Nonlinear Control of Multiple Spacecraft Formation Flying[J].Journal of Guidance Control and Dynamics, 2000,23(3):385-390.
    [129]Ilgen M R. Low Thrust OTV Guidance Using Lyapunov Optimal Feedback Control Techniques[J].Advances in the Astronautical Sciences, 1993,85(2):1527-1545.
    [130]Massey T,Shtessel Y. Satellite Formation Control Using Traditional and High Order Sliding Modes[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit,Rhode, Island,2004.
    [131]王兆魁,张育林.分布式卫星精确构形保持变结构控制[J].航天控制, 2005,23(6):23-27.
    [132]Nelson E, Sparks A,Kang W. Coordinated Nonlinear Tracking Control for Satellite Formations[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit,Montreal, Canada,2001.
    [133]吴宝林,曹喜滨.大气阻力摄动对卫星编队飞行队形的影响分析[J].航天控制, 2006,24(1):19-23.
    [134]郝继刚,张育林.基于大气阻力的卫星编队构形沿航迹模糊控制方法[J].国防科技大学学报, 2007,29(3):6-10.
    [135]黄卫东,张育林.分布式卫星轨道构形的大气摄动分析及修正方法[J].宇航学报, 2005,26(5):649-653.
    [136]Duan X D,Peter M B. Low-Thrust Autonomous Control for Maintaining Formation and Constellation Orbits[C]. AIAA/AAS Astrodynaraics Specialists Conference,Providence, RI,2004.
    [137]Vignal K, Pierre M,Henry P. Low-Thrust Spacecraft Formation Keeping[J].Journal of Spacecraft and Rockets, 2006,43(2):466-475.
    [138]Sec J S. Analytical Solutions for Low-Thrust Minimum Time Control of a Satellite Formation[D]. Iowa:Air Force Institute of Technology,2004.
    [139]孟云鹤.近地轨道航天器编队飞行控制与应用研究[D].长沙:国防科技大学,2006.
    [140]Ross I M. Linearized Dynamic Equations for Spacecraft Subject to J2 Perturbations[J].Journal of Guidance Control and Dynamics, 2003,26(4):657-659.
    [141]Schweighart S A,Sedwick R J. High-fidelity Linearized J2 Model for Satellite Formation Flight[J].Journal of Guidance Control and Dynamics, 2002,25(6):1073-1080.
    [142]Soderlund H. Relative Dynamics for Formation Flying Satellites[D]. Lulea:Lulea University of Technology,2005.
    [143]杏建军.编队卫星周期性相对运动轨道设计与构形保持研究[D].长沙:国防科技大学,2007.
    [144]Balaji S K,Tatnall A R. Relative Trajectory Analysis of Dissimilar Formation Flying Spacecraft[C]. AIAA Space Flight Mechanics Meeting,Puerto, Rico,2003.
    [145]Gim D,Alfriend K T. The State Transition Matrix of Relative Motion for The Perturbed Non-circular Reference Orbit[C]. AIAA Space Flight Mechanics Meeting,California,2001.
    [146]Schaub H. Incorporating Secular Drifts into The Orbit Element Difference Description of Relative Orbits[C]. 13th AIAA Space Flight Mechanics Meeting,Puerto,Rico,2003.
    [147]孟鑫,李俊峰,高云峰.一种便于摄动分析的编队卫星性对运动的描述[J].应用数学和力学, 2005,26(11):1328-1336.
    [148]李俊峰,孟鑫,高云峰. J2摄动对编队卫星相对轨道构形的影响[J].清华大学学报(自然科学版), 2004,44(2):224-227.
    [149]孟鑫,李俊峰,高云峰.编队飞行卫星相对运动的零J2摄动条件[J].清华大学学报(自然科学版), 2004,44(2):219-233.
    [150]孟云鹤,戴金海. J2摄动影响下的卫星编队稳定性分析仿真与构形设计[J].系统仿真学报, 2005,17(2):483-487.
    [151]安雪滢.椭圆轨道航天器编队飞行动力学及应用研究[D].长沙:国防科技大学,2006.
    [152]Lawden D F. Optimal Trajectories for Space Navigation[M]. London:Buttersworths,1963.
    [153]Carter T E,Humi M. Fuel-optimal Rendezvous Near A Point in General Keplerian Orbit[J].Journal of Guidance Control and Dynamics, 1987,10(2):567-573.
    [154]Carter T E. New Form for the Optimal Rendezvous Equations Near a Keplerian Orbit[J].Journal of Guidance Control and Dynamics, 1990,13(1):183-186.
    [155]Wang Gongbo. A Spacecraft Relative Navigation Arithmetic Based on Quasi-Mean Element Differences[C]. 60th International Astronautical Congress, Daejeon, Korea, 2009.
    [156]www.stk.com.
    [157]白鹤峰.卫星星座的分析设计与控制方法研究[D].长沙:国防科技大学,1999.
    [158]邓自立.自校正滤波理论及其应用[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [159]张玉祥.人造卫星测轨方法[M].北京:国防工业出版社,2007.
    [160]蔡金狮.飞行器系统辨识学[M].北京:国防工业出版社,2007.
    [161]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996.
    [162]Huang J Y, Gao W,Huang J C. Variable Structure Control: a Survey[J].IEEETrans. Ind. Elect., 1993,40(1):2-22.
    [163]Yu D C,Meng Q H. A Novel Sliding Mode Nonlinear Proportional-Integral Control Scheme for Controlling Chaos[J].Chinese Physics, 2005,14(5):914-921.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700