用户名: 密码: 验证码:
基于突触可塑性和MAPK/ERK信号通路的清热利胆解毒方对铜负荷大鼠学习记忆行为的干预机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.研究背景及目的
     肝豆状核变性(Wilson disease,WD)是一种常染色体隐性遗传的铜代谢障碍疾病,临床上WD引起神经系统变性可使整个神经系统受累,以基底节、小脑系统神经损伤为基础的锥体外系症状包括以双上肢为主的震颤,言语表达能力下降、含糊不清,肌张力增高、双膝关节痛、行走障碍,吞咽障碍及表现为孤僻、欣快和记忆力下降等神经精神系统症状。
     学习记忆的实质是信号的传导和处理的过程,这一切功能的产生都是以特定结构的形成为其基础。行为依赖性的突触可塑性正是学习记忆形成的机制,后天训练获得了空间辨别性学习记忆功能后在海马内会引起突触数量的增多、突触活性区膜面积的增加、突触小泡数量和体积的增加等一系列形态学变化,这些变化被认为是空间辨别性学习记忆在海马结构内引起了突触形态学的可塑性变化。
     MAPK通路是细胞外信号引起核反应的细胞信息传递的汇聚通路之一,MAPK主要由三个途径组成,即细胞外信号调节激酶(ERK)、c-jun末端调节激酶和蛋白调节激酶p38。其中ERK包括ERK1和ERK2,大量研究表明ERK与长时程增强(LTP)存在效应关系,阻止了ERK的激活,也
     同时阻止海马CA1区LTP的诱导,而LTP和学习、记忆过程密切相关,被许多学者命名为“学习、记忆的突触模型”,从而确定了ERK与学习记忆的关系。ERK激活后还可以使海马细胞的树突发生形态学改变,说明ERK可能参与了神经元形态学可塑性的形成过程,有助于信息的传递和接受。MAPK/ERK信号转导通路与学习、记忆密切相关,细胞内多条途径可激活ERK,活化的ERK从多方面参与学习、记忆的形成过程。
     前期对WD患者的研究发现,以神经症状为主的脑型WD患者存在有严重的记忆障碍,而其他临床表型的WD患者记忆商也偏低。WD患者智能、记忆损害程度与疾病病程的演变过程相一致,提示铜造成的神经细胞损伤对WD患者的学习记忆功能产生了一定的影响。导师所在课题组在临床实践中证明:以清热利胆解毒方为主的中西医结合治疗可以使WD患者智商总体水平有不同程度的提高,尤其可使视空间技能显著提高,体现在观察能力、长时间视觉记忆能力、远见性、计划性和结构综合判断能力均增强。
     本实验主要开展以下研究:建立铜负荷大鼠模型,观察清热利胆解毒方中药对铜负荷大鼠学习记忆行为及MAPK/ERK信号通路表达的影响,运用电子显微镜技术检测清热利胆解毒方中药对铜负荷大鼠海马区微结构的影响,初步探讨清热利胆解毒方中药治疗WD学习记忆功能障碍的机制。
     2方法
     2.1实验分为5组:分别为空白对照组,模型对照组,清热利胆解毒方组,清热利胆解毒方组加青霉胺组,青霉胺组;
     2.2按照文献复制铜负荷大鼠模型;
     2.3使用清热利胆解毒方中药对各治疗组铜负荷大鼠进行干预,选用青霉胺为阳性对照药物;
     2.4Morris水迷宫法检测铜负荷大鼠学习记忆行为;
     2.5免疫组化法检测MAPK/ERK蛋白的表达;
     2.6电镜技术观察铜负荷大鼠大鼠海马区微结构变化;
     3.结果
     3.1与正常组相比,模型对照组,清热利胆解毒方组,清热利胆解毒方组加青霉胺组,青霉胺组大鼠均不同程度的表现出进食减少、活动量减小,皮毛光泽度差,部分有毛发脱落等。随着治疗进行,清热利胆解毒方组,清热利胆解毒方组加青霉胺组,青霉胺组大鼠的一般状况均有所改善。
     3.2Morris水迷宫行为学实验:定位航行实验中模型组大鼠的平均潜伏期较空白组明显延长(P﹤0.01),青霉胺加清热利胆解毒方中药组、清热利胆解毒方中药组及青霉胺组较模型组平均潜伏期显著减少(P﹤0.05),组间比较无显著差异。空间探索试验中模型组大鼠的穿越平台较空白组明显减少(P﹤0.01),青霉胺加清热利胆解毒方中药组、清热利胆解毒方中药组及青霉胺组较模型组穿越平台显著增加(P﹤0.05),组间比较无显著差异。
     3.3免疫组化法检测MAPK/ERK信号通路表达:MAPK/ERK蛋白阳性信号呈棕黄色,模型组及各治疗组可见阳性细胞表达,模型组阳性细胞数表达较空白组显著减少(P﹤0.01),青霉胺加清热利胆解毒方中药组、清热利胆解毒方中药及青霉胺组较模型组MAPK/ERK阳性细胞数表达显著增加(P﹤0.01),组间比较无显著差异。
     3.4电镜观察海马区突触可塑性变化:采用透射电镜技术,观察各组大鼠海马CA3区神经元突触界面超微结构的变化,模型组与空白对照组比较,模型组大鼠神经元突触间隙明显变宽(P﹤0.05),PSD厚度明显变薄(P﹤0.01)。与模型组比较,青霉胺加清热利胆解毒方中药组、清热利胆解毒方中药及青霉胺组较模型组突触间隙明显变窄(P﹤0.05),PSD厚度明显增加(P﹤0.05)。
     4.结论
     4.1本研究采用铜负荷方法建立了铜过量负荷大鼠模型,模型组可见学习记忆功能的变化,该模型可在一定程度上反应铜过量沉积导致神经系统损伤引起学习记忆功能变化的的病理机理。
     4.2本研究发现铜过量负荷大鼠模型可见学习记忆功能的下降、清热利胆解毒方中药对铜负荷大鼠有改善学习记忆功能的作用。
     4.3本研究发现铜过量负荷大鼠模型有MAPK/ERK信号通路蛋白的阳性表达减少,各治疗组较模型组明显改善。提示:铜过量负荷后大鼠脑组织MAPK/ERK信号通路蛋白的阳性表达减少可能是导致学习记忆功能损害的原因之一,清热利胆解毒方中药可能通过对MAPK/ERK信号通路的表达增加而发挥改善学习记忆功能的作用。
     4.4本研究发现铜过量负荷大鼠模型有神经元突触界面超微结构的变化,各治疗组突触超微结构较模型组明显改善。提示:铜过量负荷后大鼠脑组织神经元突触界面超微结构改变可能是导致学习记忆功能损害的原因之一,清热利胆解毒方中药可能通过对通过调节神经元突触界面超微结构来发挥改善学习记忆功能的作用。
1Objectives:
     Wilson’s disease (WD) is an autosomal recessive disorder of coppermetabolism caused by decreased biliary excretion. Clinically, Widespreadcopper accumulation in central nervous system (CNS) can make thedegeneration of CNS. Patients with WD exhibit a broad range of symptoms,including the extrapyramidal symptoms that based on basal ganglia andcerebellum damage present with both upper extremities tremor, decline inverbalization, hypermyotonia, knee-joint pain, walking disorders, deglutitiondisorders, and performance as the autism, euphoria, memory decline and otherneuropsychiatric symptoms.
     The essence of learning and memory is the process of signal transductionand processing. Generation of all of this functionality is based on theformation of its specific structure. Behavior-dependent synaptic plasticity isthe mechanism of learning and memory formation. It will cause increases inthe number of synapses, the membrane area of the synaptic active zone, thenumber and volume of synaptic vesicles and other series of morphologicalchanges in the hippocampus when the function of spatial discriminativelearning and memory being obtained by training, whcih are considered that the spatial discriminative learning and memory in the hippocampus causesmorphological synaptic plasticity changes.
     The MAPK pathway is one of the cell information disseminationaggregation pathway of the nuclear reaction caused by extracellular signal.MAPK is composed of three main ways, namely the extracellularsignal-regulated kinase (ERK), the end of the c-jun kinase of p38-regulatedkinase and protein regulation. ERK includes ERK1and ERK2. Studies haveshown that the effect relationship exists between the ERK and long-termpotentiation (LTP), which blocks ERK activation, and also prevents theinduction of LTP in hippocampal CA1region. LTP is closely related to theprocess of learning and memory, which is named “synaptic model of learningand memory” by many scholars. Thus it determines the relationship betweenthe ERK and learning and memory. ERK activation can also make themorphological changes of dendrites in hippocampal cells, indicating that ERKmay be involved in the establishment of neuron morphological plasticity,which is contribute to the delivery and reception of the information. MAPK/ERK signal transduction pathway is closely related to the learning andmemory and ERK activation caused by the intracellular pathway is involved inthe establishment of learning and memory from the aspects.
     The preliminary study found that WD patients with mainly neurologicalsymptoms have severe dysmnesia and other clinical phenotypes in patientswith low memory quotient. The degrees of intelligence and memoryimpairment in WD patients are consistent with the evolution of the diseasecourse, indicating that the nerve cells damage caused by the copper has acertain impact on learning and memory function in WD patients. The theresearch group of tutor in clinical practice proved: Compound Formulae ofQingre Lidan Jiedu based on combination of Chinese traditional and Westernmedicine can improve the IQ level of WD patients in different degrees, and particularly can significantly improve the visuospatial skills reflected in theability to observe, long term visual memory ability, vision, plan and structurecomprehensive judgment.
     This study was carried out the following research: the establishment ofthe copper load rat model, the observation of the impact of CompoundFormulae of Qingre Lidan Jiedu on learning and memory behavior and MAPK/ERK signaling pathway expression in the copper load rat, the effect ofCompound Formulae of Qingre Lidan Jiedu on micro-structure of thehippocampus in the copper load rat by electron microscopy detection andinitially discussing the mechanism of learning and memory dysfunction inWD by Compound Formulae of Qingre Lidan Jiedu treatment.
     2Methods:
     2.1Rats were randomly were divided into5groups: blank control group,model control group, Compound Formulae of Qingre Lidan Jiedu group,Compound Formulae of Qingre Lidan Jiedu plus penicillamine group,penicillamine group.
     2.2Establishment of the copper load rat model according to the literature.
     2.3Employ the Compound Formulae of Qingre Lidan Jiedu intervention in thetreatment group copper loaded rats, and select penicillamine as positivecontrol drug.
     2.4Detect the learning and memory behavior of copper loaded rats by Morriswater.
     2.5Detect MAPK/ERK protein expression by immunohistochemical method.
     2.6Observe the micro-structure changes of the hippocampus in copper loadedrats by electron microscopy.
     3Results
     3.1Compared with the blank control group, model control group, CompoundFormulae of Qingre Lidan Jiedu group, Compound Formulae of Qingre Lidan Jiedu plus penicillamine group and penicillamine group rats showed thateating less, Less activities, the fur gloss got worse and hair loss. With thetreatment, the general condition of Compound Formulae of Qingre LidanJiedu group, Compound Formulae of Qingre Lidan Jiedu plus penicillaminegroup and penicillamine group rats improved in different degrees.
     3.2.Morris water maze experiment: the average incubation period of the modelrats was significantly longer in the navigation test compared with the blankcontrol group (P <0.01); the average incubation period of CompoundFormulae of Qingre Lidan Jiedu group, Compound Formulae of Qingre LidanJiedu plus penicillamine group and penicillamine group rats significantlydecreased compared with the model group (P <0.05) and no significantdifferences existed between groups. The through platform number of themodel rats significantly decreased in space exploration test compared with theblank control group (P <0.01); the through platform number of CompoundFormulae of Qingre Lidan Jiedu group, Compound Formulae of Qingre LidanJiedu plus penicillamine group and penicillamine group rats significantlyincreased compared with the model group (P <0.05) and no significantdifferences existed between groups.
     3.3MAPK/ERK protein expression by immunohistochemical method:positive signal of MAPK/ERK protein appeared brownish yellow; there werepositive cells inthe model group and the treatment group; the number of positive cells in themodel group significantly decreased compared with the blank control group (P<0.01); the number of positive cells in the Compound Formulae of QingreLidan Jiedu group, Compound Formulae of Qingre Lidan Jiedu pluspenicillamine group and penicillamine group significantly increased comparedwith the model group (P <0.05) and no significant differences existed betweengroups.
     3.4Synaptic plasticity changes by electron microscopy in the hippocampus: toobserve the ultrastructural changes of synaptic interface in hippocampal CA3neurons by transmission electron microscopy; the synaptic cleft in the modelgroup significantly got wider compared with the blank control group (P <0.05)and the PSD thickness significantly got thinner (P <0.05); the synaptic cleft inthe Compound Formulae of Qingre Lidan Jiedu group, Compound Formulaeof Qingre Lidan Jiedu plus penicillamine group and penicillamine groupsignificantly narrowed compared with the model group (P <0.05) and the PSDthickness significantly increased (P <0.05).
     4Conclusion
     4.1This study used the the copper load method to establish the excessivecopper load rat model; there were visible changes in learning and memoryfunction in the model group; the model reflected the pathomechanism of thechanges in learning and memory function caused by copper excess depositionleading to nervous system damage in some degrees.
     4.2This study found that the decline in learning and memory function existedin copper load rat model and Compound Formulae of Qingre Lidan Jiedu canimprove the learning and memory function of copper load rat.
     4.3Our study found MAPK/ERK signaling pathway protein expressiondecreased in copper load rat model, and each treatment group had somesignificant improvements compared with the model group, suggesting thatMAPK/ERK signaling pathway protein expression in brain after copperexcess deposition may be one of the reasons of learning and memorydysfunction, and Compound Formulae of Qingre Lidan Jiedu may play a rolein improving learning and memory function through increasing expression ofMAPK/ERK signaling pathway.
     4.4Our study found there were neuron ultrastructural changes of synapticinterface in copper load rat model, and each treatment group had some significant improvements compared with the model group, suggesting that theultrastructural changes of synaptic interface in brain neurons after copperexcess deposition may be one of the reasons of learning and memorydysfunction, and Compound Formulae of Qingre Lidan Jiedu may play a rolein improving learning and memory function through adjusting the neuronultrastructure of synaptic interface.
引文
[1]Gitlin JD. Wilson’s disease[J].Gastroenterology,2003,125(6):1868-1877.
    [2]孙波,戴建平.Wilson病脑MRI表现[J].中华放射学杂志,1995,29(8):519-522.
    [3]张柏蓣,粱秀龄,刘焯霖,等.Wilson氏病多器官的病理和超微病理学研究[J].中国神经精神疾病杂志,1992,18(1):18-20.
    [4]李琳,张志强.脑缺血再灌注损伤与细胞凋亡的研究进展[J].中华物理医学与康复杂志,2005,27(1):60-62.
    [5]Jing Liu,Purnima Narasimhan,Fengshan Yu,et al.Neuroprotectionby hypoxic preconditioning involves Oxidative stress-mediatedexpression of hypoxia-inducible factor anderythropoietin[J].Stroke,2005,36(6):1264-1269.
    [6]王共强,胡文彬,胡纪源.Wilson病的神经心理功能障碍[J].医学研究杂志,2011,40(1):147-150.
    [7]李春.脑型肝豆状核变性患者的智能、记忆障碍研究[J].右江民族医学院学报,2007,22(1):19-21.
    [8]Bull PC,Thomas GR,Rommens JM,et al.The Wilson disease geneis a putative copper transporting P-ATPase similar to the Menkesgene[J].Nat Genet,1993,5(4):327-337.
    [9]鲍远程.现代中医神经病学[M].第一版.北京:人民卫生出版社,2003:517.
    [10]蔡永亮,杨任民,许圣弘.中西医结合治疗对肝豆状核变性患者智商影响的前瞻性研究[J].中国中西医结合杂志,1996,16(11):6-8.
    [11]杨文明,陈彪,鲍远程,等.肝豆状核变性病中医临床思考[J].中国实验方剂学杂志,2004,10(6):66-69.
    [12]杨文明,韩辉,鲍远程,等.中医对肝豆状核变性病因病机及辨证论治的探索[J].北京中医药大学学报,2012,19(4):6-9.
    [13]杨文明,张春海,李瑞娟,等.毒邪在肝豆状核变性致病中的作用[J].中国实验方剂学杂志,2009,15(11):109-111.
    [14]汪瀚,杨文明,鲍远程.从铜毒论治肝豆状核变性初探[J].安徽中医学院学报,2009,28(5):4-6.
    [15]张允岭,郭蓉娟,常富业,等.论中医毒邪的特性[J].北京中医药大学学报,2007,30(12):800-801.
    [16]赵昌林.论毒邪病因学说[J].中华中医药杂志,2010,25(1):80-83.
    [17]张杰,尹艳艳,王芝兰.中医毒邪辨析[J].中医药信息,2007,24(2):1-2.
    [18]王殿华,陈金亮.肝豆状核变性从毒邪论治探讨[J].中医杂志,2006,47(6):461-462.
    [19]鲍远程,杨文明,张波,等.现代中医神经病学[M].第一版北京:人民卫生出版社,2003:517-530.
    [20]胡锦琪,张锦生.肝纤维化的病理诊断实践与理论[J].诊断学理论与实践,2005,4(1):71-74.
    [21]吕继红.三七总皂苷对氧糖剥夺的皮质神经元损伤的保护作用[J].中国社区医师,2010,12(9):65-67.
    [22]赵珍东.姜黄素抗肝纤维化作用及机理研究[J].中国实验方剂学杂志,2010,16(3):55-57.
    [23]刘康永,韩咏竹,杨任民.中药肝豆汤对遗传性肝豆状核变性患者铜锌代谢的影响[J].现代康复,2001,5(13):37-39.
    [24]张丹丹.大黄的临床药理研究[J].中国中医药现代远程教育,2011,9(17):68-69.
    [25]沈丽霞,李淑娟,张丹参,等.大黄酚对小鼠记忆障碍的作用及其机制分析[J].中国药理学通报,2003,19(8):906-908.
    [26]唐铭坚,谭礼萍,刘争红,等.大黄的药理活性研究进展[J].中国热带医学,2012,12(7):886-889.
    [27]李淑娟,董晓华,武海霞,等.大黄及其有效成分药理作用研究进展[J].医学综述,2005,15(1):76-78.
    [28]Kuo YC, Meng HC, Tsai WJ. Regulation of cellproliferation,inflammatory cytokine product ion and calciummobilization inprimary human T lymphocytes byemodin from Poiygonumhypoleucum Ohkwi[J].Inf lamm Res,2001,50(2):73-82.
    [29]Kni ttel T,Mehde M,Kobold D,et al.Expression patterns ofmatrix metalloproteinases and their inhibitors in parenchyma landnon-parenchymal cells of rat liver:regulation by TNF-alpha andTGF-betal[J].Hepatology,1999,30(1):48-60.
    [30]赵旭升,李西辉.主成分分析用于中药黄连中微量元素含量的研究[J].微量元素与健康研究,2007,24(3):25-26.
    [31]Yuzbasiyan-Gurkan V,Grider A,Nostrant T,et al.Treatment ofWilson disease with zinc:Intestinal metallothionein induction[J].JLab.Clin Med,1992,120(9):380-384.
    [32]Zhang B J,Xu D,Guo Y,et a1.Protection by and anti-oxidantmechan ism of berberine against rat liver fibrosis induced bymulti-pie hepatotoxic factors[J].Clin Exp PharmacolPhysiol,2007,15(10):31-33.
    [33]黄琳,陆付耳,杨小玉.黄连解毒汤对胰岛素抵抗大鼠肝脏线粒体氧化应激的影响[J].中国中西医结合杂志,2008,28(8):725-728.
    [34]张向荣,赵志英,张春燕.姜黄素对AD大鼠学习记忆的改善及其与脑组织NO、SOD、MDA和ChAT的关系[J].医学研究杂志,2012,41(9):82-86.
    [35]张晶莹,白雪松,孙兰,等.姜黄素对D-半乳糖所致痴呆模型小鼠空间学习记忆的影响[J].职业与健康,2012,28(4):407-409.
    [36]Aggarxwa B B,Sung B.Pharmacological basis for the role ofcurcumin in chronic diseases: an age-old spice with moderntargets[J].Trends Pharmacol Sci,2009,30(2):85-94.
    [37]Cheng Y,Ping J,Liu C,et al.Study on effects of extracts fromSalvia Mihiorrhiza and Curcuma Longa in inhibitingphosphorylatedextracellular signal regulated kinase expression in rafs hepaticstellate cells[J].Chin J Integr Med,2006,12(3):207-211.
    [38]赵珍东,黄兆胜.姜黄素对HSC PDGF-BB、PDGFRβ及ERK-1表达的影响[J].中药材,2009,32(5):732-735.
    [39]El-Demerdash FM,Yousef MI,Radwan FM.Ameliorating effect ofcurcumin on sodium arsenite-induced oxidativedamage and lipidperoxidation in different rat organs[J].Food Chem Toxicol,2009,47(1):249-254.
    [40]Tang Y,Chen A.Curcumin prevents leptin raising glucose levelsin hepatic stellate cells by blocking translocation of glucosetransporter-4and increasing glucokinase[J].Br J Pharmacol,2010,161(5):1137-1149.
    [41]张雅媛,马世平.金钱草对食饵性胆色素结石的防治作用[J].中药药理与临床,2004,20(2):21-22.
    [42]董良飞,高云涛,杨益林,等.金钱草提取物体外清除活性氧及抗氧化作用研究[J].云南中医中药杂志,2006,27(3):47-48.
    [43]宋晓斌,何波,陈鹏,等.三七皂苷Rg1对动物学习记忆功能的影响及其机理研究[J].昆明医学院学报,2010,31(6):26-27.
    [44]乔萍,杨贵贞.三七皂甙Rg1改善D-半乳糖模型鼠学习记忆能力与其作用的可能因素[J].中国免疫学杂志,2003,19(11):772-774.
    [45]郭长杰,伍杰雄,李若馨.三七总皂苷对痴呆大鼠模型学习记忆行为的影响及其机理探讨[J].中国药房,2005,15(10):598-600.
    [46]石小枫,刘祀,刘林,等.三七总苷抗实验性肝纤维化的研究[J].中药药理与临床,2004,20(1):12-14.
    [47]元文勇,姜文泉,姜惟龙,等.三七总皂甙对大鼠肝脏缺血再灌注损伤中肝细胞线粒体的保护作用[J].新乡医学院学报,2005,22(2):109-111.
    [48]崔煜,蔡永亮,徐磊,等.中西医结合治疗对脑型肝豆状核变性患者记忆力影响的研究[J].中国中医急症,2007,16(5):527-529.
    [49]Stevens CF.Spatial learning and memory:the beginning of adream[J].Cell,1996,87(7):1147.
    [50]Kodama H,Murata D,Mochizuki D,et al.Copper and cerulopasminmetabolism in the LEC rat,an animal model for Wilson disease[J].JInher Metab Dis,1998,21(3):203-206.
    [51]石铸,梁秀龄.Wilson病的动物模型[J].中国临床神经科学,2003,11(1):88-91.
    [52]Theophilos M B,Cox D W,Mercer J F.The toxi milk mouse is amurine model of Wilson disease[J].Hum Mol Genet,1996,5(10):1619-1621.
    [53]李毓雯,万小华,宁琴,等.铜过量负荷导致肝细胞凋亡及其对BAX、BcL-2基因表达的影响[J].中国当代儿科杂志,2008,21(10):42-25.
    [54]Eichenbaum H.Learning from LTP: a comment on recent attemptsto identify cellular and molecular mechanisms of memory[J].LearnMem,1996,3(3):61-65.
    [55]程明,朱熊兆.学习记忆的行为学研究方法[J].中国行为医学科学,2005,14(1):65-66.
    [56]叶翠飞,李斌,安文林,等.避暗反应测定大鼠学习记忆功能方法的探讨[J].中国实验动物学报,2009,8(3):164-169.
    [57]Pastor AM.Effeets of electrical stimulation of the nueleusbasalis on two way active avoidance acquisition,retention,andretrieval[J].Behav Brain Res,2004,154(1):41-54.
    [58]Andrade C,Alwarshetty M..Effect of innate direction bias onT-maze learning in rats: implications for research[J]. J NeurosciMethods,2001,10(1):31-35.
    [59]Wenk GL,Assessment of Spatial Memory Using the Radial Arm Mazeand Morris Water Maze[J].Curr Protoc Neurosci,2004,8.5A.1-8.5A.12.
    [60]邹涛,程明,朱熊兆.急性心理应激对小鼠记忆的影响[J].中国行为医学科学,2005,14(1):23-25.
    [61]Markowska AL, Spangler EL. Behavioral assessment of theeneseenee-accelerated mouse (SAMP8and R1)[J].physiol,Behav,1998,64:15-26.
    [62]Arteni NS,Salgueiro J.Neonatal cerebral hypoxia ischemiacauses lateralized memory impairments in the adult rat.[J].Brainresearch,2003,973,(1):171-178.
    [63]Van Dama D,Lenders G,De Deyn PP.Effect of Morris wa-termazediameter on visual-spatial learning in different mousestrains[J].Neurobiol Learn Mem,2006,85:164-172.
    [64]Sweatt JD.Motigen-activated protein kinases in synapticplasticity and memory[J].Curr Opin Neurobiol,2004,14:311-317.
    [65]Jonathan M Levenson,Kenneth J O’Riordan,Karen D Brown,etal.Regulation of histone acetylation during memory formation inthe hippocampus[J].J Biol Chem,2004,279(39):40545-40559.
    [66]Bliss T V P.Young receptors make smart mice[J].Nature,401:25-27.
    [67]Mariana F,Beatriz D,Alejandro D,et al.Phosphorylation ofextra-nuclear ERK/MAPK is required for long-term memoryconsolidation in the crab Chasmagnathus[J].BehaviouralBrain Res,2005,158(2):251-261.
    [68]Purcell AL,Sharma SK,Bagnall MW,et al.Activation of a tyro-sinekinase-MAPK cascade enhances the induction of long-ter-msynapticfacilitation and long-term memory in Aplysia[J].Neuron,2003,37(3):473-484.
    [69]袁辉,杨胜,周文霞.MAPK级联信号通路与长时程增强[J].中国药理学通报,2006,22(7):769-774.
    [70]Morozov A,Muzzio IA,Bourtchouladze R,et al.Rap1couples cAMPsignaling to a distinct pool of p42/44MAPK regulating excitability,synaptic plasticity,learning, and memory[J].Neuron,2003,39(2):309-325.
    [71]Cullen PJ, Lockyer PJ. Intergration of calcium and Rassignaling[J].NatRevMoll Cell Biol,2002,3(5):339-348.
    [72]Mariana F,Beatriz D,Alejandro D,et al.Phosphorylation of extranuclear ERK/MAPK is required for long-term memory consolidation inthe crab Chasmagnathus. Behavioural[J].Brain Res,2005,158(2):251-261.
    [73]Yuan LL, Adams JP, SwankM,et al.Protein kinasemodulationof dendritic K+channels in hippocampus involves amitogen-activated protein kinase pathway.J Neurosci,2002,22(12):4860-4868.
    [74]Birnbaum SG,Varga AW,Yuan LL,et al.Structure and functionof Kv4-family transient potassium channels[J].Physiol Rev,2004,84(3):803-833.
    [75]Wu GY, Deisseroth K,Tsien RW.Spaced stimuli stabilize MAPKpathway activation and its effects on dendritic morphology[J].NatNeurosci,2001,4(2):151-158.
    [76]Goldin M,Segal M.Protein kinase C and ERK involvement indendritic spine plasticity in cultured rodent hippocampalneurons[J].Eur J Neurosci,2003,17(12):2529-2539.
    [77]龚小卫,姜勇.丝裂原活化蛋白激酶激活蛋白激酶(MK)研究进展[J].生物化学与生物物理进展,2007,34(7):695-701.
    [78]Swank MW,Sweatt JD.Increased histone acetyltransferase andlysine acetyl transferase activity and biphasic activation of theERK/RSK cascade in insular cortex during novel taste learning[J].JNeurosci,2001,21(10):3383-3391.
    [79]Watabe AM,Zaki PA,O Dell TJ.Coactivation ofbeta-adrenergicand cholinergic receptors enhances the induction of long-termpotentiation and synergistically activates mitogen-activatedSignalling mechanisms protein kinase in the hippocampal CA1region[J].J Neurosci,2000,20(16):5924-5931.
    [80]Subramaniam S, Zirrgiebel U, Halbach OB, et al.ERK activationpromotes neuronal degeneration predominantly through plasmamembrane damage and independently of caspase-3[J].J CellBiol,2004,165(3):357-369.
    [81]OkamotoT,Takeda S, Murayama Y, et al.Ligand-dependent Gprotein coupling function of amyloid transmembrane precursor.[J].Biol Chem,1995,270(9):4205-4208.
    [82]Erkinjuntti T,Roman G,Gauthier S.Treatment of vasculardementia-evidence from clinical trials with cholinesteraseinhibitors [J].JNeurol Sci2004,226(1-2):63-66.
    [83]商秀丽,薛一雪,蔡葵,等.阿尔茨海默病大鼠海马N-甲基天冬氨酸受体和丝裂酶原激活蛋白激酶的表达[J].解剖学报,2005,36(3):241-245.
    [84]Li F,Omori N,Jin G,et al.Cooperative expression of survivalp-ERK and p-Akt signals in rat brain neurons after transient MCAO[J].Brain Res,2003,962(1-2):21-26.
    [85]严洪新,徐恩.细胞外信号调节激酶与缺血性脑卒中[J].现代医学,2010,38(4):427-430.
    [86]Vikman P,Ansar S,Henriksson M,et al.Cerebral ischemia inducestranscription of inflammatory and extracellular-matrix-relatedgenes in rat cerebral arteries [J].Exp Brain Res,2007,183(4):499-510.
    [87]Ho Y,Samarasinghe R,Knocch M E,et al.Selective inhibitionof mitogen-activated protein kinase phosphatases by zinc accountsfor extracellular signal-regulated kinase1/2-dependent oxidativeneuronal cell death[J].Mol Pharmacol,2008,74(4):1141-1151.
    [88]Bickler PE, Zhan X, Fahlman CS. Isoflurane preconditionshippocampal neurons against oxygen-glucose deprivation:role ofintracellular Ca2+and mitogen-activated protein kinasesignaling[J].Anesthesiology,2005,103(3):532-539.
    [89]李君,高维娟.MAPK级联信号通路与血管性痴呆的相关性研究进展[J].第四军医大学学报,2009,30(17):1630-1632.
    [90]李美丽洪炎国.丝裂原活化蛋白激酶和疼痛[J].中国疼痛医学杂志,2010,16(4):241-243.
    [91]Hu HJ,Carrasquillo Y,Karim F,et al.The kv4.2potassium channelsubunit is required for pain plasticity[J].Neuron,2006,50(1):89-100.
    [92]陈燕.神经元的突触可塑性与学习和记忆[J].生物化学与生物物理学进展,2008,35(6):610-619.
    [93]Ngerl U V,Eberhorn N,Cambridge S B,et al.Bidirectional activitydependent morphological plasticity in hippocampalneurons[J].Neuron,2004,44(5):759-767.
    [94]王佩,王海祥,王维平.突触可塑性与学习记忆[J].脑与神经疾病杂志,2008,16(5):651-653.
    [95]Harris KM,Jensen FE,Tsao B.Three-dimensional structure ofdendritic spines and synapses in rat hippocampus (CA1) at postnatalday15and adult ages: implications for the maturation of synapticphysiology and long-term potentiation[J].Neurosci1992,12(7):2685-2705.
    [96]库宝善.加压素与学习记忆[J].生理科学进展,1981,12(1):79.
    [97]Norris CM, Foster TC. MK-801improves retention in aged rats:implications for altered neural plasticity in age-related memorydeficits[J].Neurobiol Learn Mem,1999,71(2):194-206.
    [98]左昕,潘奇波,林春辉.学习记忆中长时记忆形成的分子机制[J].海军医学杂志,2008,29(4):364-366.
    [99]Napolitano M,Marfia GA,Vacca A,et al.Modulation of geneexpression following long-term synaptic depression in thestriatum[J].Brain Res,1999,72(1):89-96.
    [100]张松林.长时程突触可塑性的研究进展[J].齐齐哈尔医学院学报,2012,33(23):3261-3263.
    [101]席艳,万建华,邓锦波.突触可塑性的生物物理学基础和体视学测量研究进展[J].中国医药生物技术,2009,4(5):370-373.
    [102]Bouvier D, Corera A T,Tremblay ME,et al.Pre-synaptic andpost-synaptic localization of EphA4and EphB2in adult mouseforebrain[J].J Neurochem,2008,106(2):682-695.
    [103]Wu K,Siekevitz P.Neurochemical characteristics of apostsynaptic density fraction isolated from adult caninehippocampus[J].Brain Res,1988;457(1):98-112.
    [104]沈丽,张琳,南燕.体视学在突触超微结构定量研究中的应用.中国体视学与图像分析[J].1998,3(1):37-41.
    [105]郭秀娟,王静敏,牛争平.突触后致密蛋白-95在离子型谷氨酸受体转运中的作用[J].山西医科大学学报,2010,41(4):378-380.
    [106]Aarts M, Liu Y,Liu L,et,al.Treatment of Ischemic Brain Damageby Perturbing NMDA Receptor-PSD-95Protein Interactions[J].Science,2002,298(5594):846-850.
    [107]何振斌,原鹏程,徐龑飞.突触后致密物-95研究新进展[J].山东医药,2013,53(4):97-99.
    [108]Lee HW,Kim Y,Han K,et al.The Phosphoinositide3-PhosphataseMTMR2Interacts with PSD-95and Maintains Excitatory Synapses byModulating Endosomal Traffic[J].Neurosci2010,30(16):5508-5518.
    [109]李旭,申乐,许力,等.突触后致密物蛋白质95基因沉默及对神经病理性疼痛大鼠疼痛行为的干预[J].协和医学杂志,2011,2(4):343-349..
    [110]Tao F,Tao YX,Gonzalez JA,et al.Knockdown of PSD-95/SAP90delays the development of neuropathic pain in rats.[J]. Neuroreport2001,12(15):3251-3255.
    [111]Takashi Yamauch.Neuronal Ca2+/calmodulin-dependent proteinkinase Ⅱ-discovery, progress in a quarter of a century,andperspective:implication for learning and memory[J].Biol PharmBull,2005,28(8):1342-1354.
    [112]刘传玉,梅元武,张小乔.经颅磁刺激对脑梗死大鼠学习记忆与健侧海马锥体细胞树突和突触结构的影响[J]中华精神科杂志,2006,39(2):115-118.
    [113]Markus EJ,Petit TL.Synaptic structure plasticity:Role ofsynaptic shape[J].Synapse,1989,22(3):1-11.
    [114]David C,Chen J.Involvement of caspase-3-like protease inthe,mechanism of cell death following focally evoked limbicseizures[J].J Neurochemistry,2000,74(3):1215-1223.
    [1]Dedoussis GV, Genechel J, Sialvera TE, et al.Wilson disease: highprevalence in mountainous area of Crete[J].Ann Hum Genet,2005,69(3):268-74.
    [2]Dhawan A,Ferenci P,Geubel A,et al.Genes and metal:a deadlycombination[J].Acta Gastroeterol Belg,2005,68(1):26-32.
    [3]Thomas GR, Forbes JR,Roberts FA, et al. The Wilson disease gene:spectrum of mutations and their consequences[J].Genet,1995,9(1):210-217.
    [4]Lee BH, Kim JH, Lee SY, et al. Distinct clinical courses accordingto presenting phenotypes and their correlations to ATP7B mutationsin a large Wilson's disease cohort[J].Liver Int,2011,31(6):831-839.
    [5]杨任民.肝豆状核变性[M].第一版.安徽:安徽科技出版社,1995,41-69.
    [6]Hasan NM, Gupta A, Polishchuk E, et al. Molecular eventsinitiating exit of a copper-transporting ATPase ATP7B from thetrans-Golgi network[J]. J Biol Chem,2012,287(43):36041-36050.
    [7]Rosencrantz R,Schilsky M. Wilson disease: pathogenesis andclinical considerations in diagnosis and treatment[J].Semin LiverDis,2011,31(3):245-259.
    [8]Frydman M, Bonne-Tramir B, Farrer LA, et al. Assignment of thegene for Wilson disease to chromosome13: linkage to the esteraseD locus[J]. Proc Natl Acad SCi USA1985,82(3):1819-1821.
    [9]Tanzi RE, Petrukhin K, Chernov I, et al. The Wilson disease geneis a copper transporting ATPase with homology to the Menkes diseasegene[J].Nat Genet1993,5(3):344-350.
    [10]Bull PC, Thomas GR, Rommens JM, et al. The Wilson disease geneis a putative copper transporting P-type ATPase similar to theMenkes gene[J].Nat Genet1993,5(4):327-337.
    [11]Schushan M, Bhattacharjee A, Ben-Tal N, et al. A structuralmodel of the copper ATPase ATP7B to facilitate analysis of Wilsondisease-causing mutations and studies of the transport mechanism[J].Metallomics,2012,4(7):669-78.
    [12]Huster D, Kühne A, Bhattacharjee A, et al. Diverse functionalproperties of Wilson disease ATP7B variants[J]. Gastroenterology.2012,142(4):947-956.
    [13]Arnab Gupta, Ishita Chattopadhyay, Sumit Dey. MolecularPathogenesis of Wilson Disease Among Indians: A Perspective onMutation Spectrum in ATP7Bgene, Prevalent Defects, ClinicalHeterogeneity andImplication Towards Diagnosis[J].Cell MolNeurobiol,2007,142(8):1023-1033.
    [14]Kalita J, Somarajan BI, Misra UK,et al. R778L, H1069Q, andI1102T mutation study in neurologic Wilson disease[J].Neurol India,2010,58(4):627-630.
    [15]Santhosh S, Shaji RV, Eapen CE,et al. Genotype phenotypecorrelation in Wilson's disease within families--a report on foursouth Indian families[J]. World J Gastroenterol,2008,14(29):4672-4676.
    [16]Li XH, Lu Y, Ling Y,et al. Clinical and molecularcharacterization of Wilson's disease in China: identification of14novel mutations[J]. BMC Med Genet,2011,11(12):6.
    [17]Wang LH, Huang YQ, Shang X, et al. Mutation analysis of73southern Chinese Wilson's disease patients: identification of10novel mutations and its clinical correlation[J].J Hum Genet,2011,56(9):660-665.
    [18]Wu ZY, Wang N,Murong SX, et al. Identification and analysis ofmutation of the Wilson disease gene in Chinese population[J]. ChinMed J,2000,113(1):40-43.
    [19]Petrukhlin K, Fischer S G, Pirastu M, et al. Mapping; cloningand genetic chanracterization of the region containing the Wilsondisease gene[J]. Nature Genet.1993,5(4):338-343.
    [20]Yamaguchi Y,Heiny MY,Gitlin JD,et al.Isolation andcharacterization of a human liver cDNA as a candidate gene for Wilsondisease[J].Biochem Biophys Res Commun,1993,197(1):271-277
    [21]徐评议,梁秀龄.肝豆状核变性基因突变研究[J].中国神经精神疾病杂志,1998,24(1):12-13.
    [22]Bingham MJ,Burchell A,Mcardle HJ.Identification of aATP-dependent copper transport system in endoplasmic reticulumvesicles isolated from rat liver[J].Physiol,1995,482(3):583-587.
    [23]Dijkstra M,Berg GJ,Wolters H,et al.Adenosine triphosphate-dependent copper transporter in human liver[J]. Hepatol,1996,95(1):412-416.
    [24]马少春,徐评议,梁秀龄,等.肝豆状核变性8号外显子778密码子基因突变的酶切检测[J].中国神经精神疾病杂志,1998,24(6):333-335.
    [25]王柠,吴志英,林珉婷,等.应用限制性酶谱分析法快速检出Wilson病基因突变热点[J].中华神经科杂志,1999,32(5):281-283.
    [26]Suzuki Y, Orita M, Shiraishi M, et al. Detection of ras genemutations in human lung cancers by single-strand conformationpolymorphism analysis of polymerase chain reaction products[J].Oncogene,1990,5(7):1037-1043.
    [27]Folhoffer A, Horváth A, Hegedüs D, et al. ATP7B gene mutationsin Hungarian patients with Wilson disease--case reports toillustrate the diverse clinical presentations[J]. Orv Hetil,2003,144(51):2509-2515.
    [28]Yoo HW. Identification of novel mutations and the three mostcommon mutations in the human ATP7B gene of Korean patients withWilson disease[J].Genet Med,2002,4(6Suppl):43S-48S.
    [29]李祥,杨文明.肝豆状核变性基因诊断与治疗进展[J].中国实用神经疾病杂志,2012,15(3):90-93.
    [30]杨静芳,梁秀龄,马守忠,等.74例肝豆状核变性患者中ATP7B基因七种新突变的发现[J].中华神经科杂志,2006,39(10):673-677.
    [31]杨文明,汪美霞,杨静芳,等.基于DHPLC技术的Wilson病基因诊断[J].中西医结合心脑血管病杂志,2008,6(12):1430-1432.
    [32]许月芳,范玉新,余龙,等.PCR直接测序在Wilson病基因第8外显子检出一个突变热点[J].中华医学遗传学杂志,1998,15(5):284-287.
    [33]Ravnik-Glavac M,Atkinson A, Glavac D,et al. DHPLC screen-ing of cystic fibrosis gene mutations[J].Hum Mutat,2002,19(4):374-383.
    [34]杨任民,鲍远程,杨兴涛,等.五种驱铜药物对肝豆状核变性患者排铜效果的比较[J].新药与临床,1987,6(6):341-343.
    [35]Shimizu N,Yamaguehi Y,Aoki T.Treatment and managementof Wilson’s disease [J].Pediatr Int,1999,41(4):419-422.
    [36]Brewer GJ,Terry CA,Aisen AM,et al.Worsening of Neurologicsyndrome in Patients with Wilson’s disease with inintalPenicillamine therapy[J].Arch Neurol,1987,44(5):490-492.
    [37]李文杰,王晓平.肝豆状核变性治疗药物二巯丁二酸(钠)[J].中国实用神经疾病杂志,2012,33(9):574-575.
    [38]韩咏竹,王训,胡纪源,等.二巯基丁二酸钠冲击治疗肝豆状核变性临床疗效及对体液微量元素的影响[J].临床神经病学杂志,1998,11(3):152-155.
    [39]杨任民,江停战,陈卫东.口服二巯丁二酸对肝豆状核变性临床疗效及尿铜的影响[J].临床神经病学杂志,1995,8(2):183-185.
    [40]王晓平,杨任民.口服2,3二巯基丁二酸对Wilson病凝血象的影响[J].安徽医科大学学报,1993,28(1):67-69.
    [41]韩咏竹,王训,杨任民.4种驱铜新药治疗肝豆状核变性的临床不良反应[J].中国新药杂志,1998,7(2):128-130.
    [42]任明山,杨任民,胡文彬,等.二巯丙磺酸钠与二巯基丁二酸或青霉胺治疗肝豆状核变性的比较[J].中国新药与临床杂志,1998,17(1):23-24.
    [43]Ogra Y,Chikusa H,Suzuki KT. Metabolic fate of the insolublecopper/tetrathiomolybdate complex formed in the liver of LEC ratswith excess tetrathiomolybdate.[J].InorgBiochem,2000,78(2):123-128.
    [44]Brewer GJ.Recognition,diagnosis,and management of Wilson’sdisease[J].Proc Soc Exp Bio Med,2000,223(l):39-46.
    [45]Zimdahl WL.Effect of drugs upon copper metabolism inhepatolenticular degeneration and normal subjects[J]. Lab Clin Med,1954,43(5):774-777.
    [46]杨任民,鲍远程,胡纪源,等.葡萄糖酸锌治疗肝豆状核变性31例[J].新药与临床,1989,3(4):210-203.
    [47]Brewer GJ.Zinc acetate for the treatment of Wilson'sdisease[J].Expert Opin Pharmacother,2001,2(9):1473-1477.
    [48]Farinati F, Cardin RD.Zinc treatment prevents lipidperoxidation and increases glutathione availability in Wilson'sdisease.[J].Lab Clin Med,2002,141(6):372-377.
    [49]李晓曦,林永杰,黄灿文,等.肝豆状核变性患者消化道出血的治疗[J].中华胃肠外科杂志,2001,4(1):40-41.
    [50]MalhiH, IraniA N, VolenbergI, et al. Early cell trans plantationin LEC rats modeling Wilson’s disease eliminates hepatic copperwith reversal of liver disease[J].Gastro enter ology,2002,122(2):438-447.
    [51]Eghtesad B,Nezakatgoo N,Geraci LC et al.Liver transplantationfor Wilson disease:a single center experience[J].Liver TransplantSurge,1999,5(6):467-474.
    [52]Stangl MJ, Beuers U, et al. Allogenic liver transplantation:aform of"gene therapy"in metabolic disease[J].Chirurg,2001,71(7):808-819
    [53]Schilsky Ml, Scheinberg IH,et al.Liver transplantation forWilson’s disease Indications and outcome[J].Hepatology,1994,19(3):583-587.
    [54]Ha-Hao D, Mehe U, Hofmann C, et al. Chances and shortcomingsof adenovirus-mediated ATP7B gene transfer in Wilson disease:proofof principle demonstrated in a pilot study with LECrats[J].Castroenterol,2002,40(4):209-216.
    [55]孟雁,苏牧.人ATP7B基因对Wilson病动物模型LEC大鼠暴发性肝炎的治疗[J].解剖学报,2004,35(3):282-286.
    [56]Merle U, Encke J, Tuma S, et al. Lentiviral gene transferameliorates disease progression in Long-Evans cinnamon rats: ananimal model for Wilson disease[J]. Scand J Gastroenterol,2006,41(8):974-982.
    [57]Ala A, Walker AP, Ashkan K, et al. Wilson's disease [J]. Lancet,2007,369(9559):397-408.
    [58]Irani AN, Malhi H, Slehria S, et al. Correction of liver diseasefollowing transplantation of normal rat hepatocytes into Long-EvansCinnamon rats modeling Wilson's disease[J]. Mol Ther2001,3(3):302-309.
    [59]Malhi H, Icani AN, Volenherg, et al. Early cell transplantationin LEC rats modeling Wilson's disease eliminates hepatic copperwith reversal of liver disease[J].Gastroenterology,2002,122(2):438-47.
    [60]石铸,梁秀龄,王荧,等.胚肝细胞移植治疗Wilon病的初步研究[J].中华神经科杂志,2004,37(1):48-51.
    [61]Malhi H.,Joseph B., Schilsky M.L, et al.Development of celltherapy strategies to overcome copper toxicity in the LEC rat modelof Wilson disease[J].Regen Med.2008;3(6):165-173.
    [62]孙怡,杨任民.实用中西医结合神经病学[M].人民卫生出版社,1999:532-533.
    [63]杨文明,陈彪,鲍远程,等.肝豆状核变性病中医临床思考[J].中国实验方剂学杂志,2004,10(6):66-69.
    [64]吴登山.中药治疗肝豆状核变性1例[J].浙江中医杂志,1996,(6):283.
    [65]邓振明.中医药治愈肝豆状核变性1例[J].中医杂志1991,32(11):17.
    [66]童康尔.中药治疗肝豆状核变性[J].中国乡村医生,1996,12(4):22.
    [67]杨任民.肝豆状核变性的药物治疗[J].中风与精神疾病杂志,2005,22(3):196-199.
    [68]杨任民,鲍远程,杨兴涛,等.肝豆汤对37例肝豆状核变性驱铜的观察[J].中西医结合杂志,1984,4(8):462-464.
    [69]任明山,张波,杨任民,等.中西医结合治疗肝豆状核变性临床研究[J].中国中西医结合杂志,1997,17(3):136-138.
    [70]汤其强,杨任民,韩咏竹,等.肝豆汤对肝豆状核变性皮肤成纤维细胞模型铜代谢的影响[J].中国中西医结合杂志,2000,20(1):37-9.
    [71]胡文彬,杨任民.肝豆片Ⅰ号对肝豆状核变性患者微量元素排泄的影响[J].中国临床康复,2003,7(30):4165.
    [72]王宗彩.加味白金丸治疗肝豆状核变性[J].朝阳医药通讯,1997,16(2):46.
    [73]吴天红.祛铜方治疗肝豆状核变性[J].中医药信息,1992,2(4):22-23.
    [74]曹亮,刘康永,赵蕾蕾.中西医结合治疗肝豆状核变性临床观察[J].上海中医药杂志,2003,37(9):14-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700