用户名: 密码: 验证码:
新型热塑性聚烯烃与氯化聚烯烃的相容性及界面特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热塑性聚烯烃(Thermoplastic polyolefins, TPO)因其具有重量轻、力学性能好、价格低廉和可重复利用等特点而被广泛用作汽车保险杠、挡雨板、仪表板和其它一些汽车部件。但是,用TPO制成的汽车塑料部件表面存在喷涂的漆层易脱落的问题。解决该问题的主要方法是在TPO和漆层间引入一层粘结促进剂(Adhesion promoter,AP),常用氯化聚烯烃(Chlorinated polyolefins,CPO)。虽然AP有效地促进了涂料与TPO表面的粘结,但仍然存在耐久性不足的问题。而通过对CPO与TPO的界面和CPO促进涂层与TPO粘结性等的深入研究,可为解决汽车塑料部件的耐久性奠定技术基础。
     本研究通过脉冲式原子力显微镜(PFM-AFM)、激光扫描聚焦荧光显微镜(LSCFM)、广角X射线衍射(WXRD)、扫描电镜(SEM)、动态力学分析(DMA)、差示扫描量热(DSC)和偏光光学显微镜(POM)等多种现代仪器分析技术及搭接剪切、拉伸等实验技术,对聚丙烯(isotactic polypropylene, iPP)/乙烯-丁烯共聚物(Ethylene-butene copolymer, EBR)新型热塑性聚烯烃与CPO的相容性、界面结构特性和界面粘结特性进行了实验研究和理论分析。
     通过相互作用能密度(Bij-Bc)从理论上分析了iPP、EBR和CPO双组分共混物的相容性,运用LSCFM、SEM和DMA等技术的研究表明:iPP/EBR和iPP/CPO共混物是不相容的;EBR/CPO共混物在熔融状态下相容,在固体状态下部分相容。随EBR含量增加,iPP/EBR共混物的相容性有改善的趋势,并建立了iPP/EBR的相结构模型。
     采用衰减全反射-傅立叶红外光谱(ATR-FTIR)表征了注射成型TPO板的表面组成。结果表明,虽然试样TPO板中EBR含量一定,但其表面的EBR含量却随位置的不同而不同。当EBR含量为12mass%时,从近浇口到远离浇口,TPO板表面的EBR含量呈增加趋势;当EBR含量为25mass%时,TPO板表面的EBR含量与离浇口的距离没有明显的关系。对TPO板的表面和近表面的形态和结构研究表明,在TPO板表面存在几百微米厚的皮层,皮层中存在明显的iPP穿晶层和EBR;从近浇口到远离浇口,皮层的厚度减小,TPO板表面的EBR相的尺寸增加。
     用高分辨率的PFM-AFM表征了TPO/CPO/TPO粘结试件的界面结构特性。结果表明,在iPP和CPO间是一个21nm的很陡的界面;未经过退火处理的CPO包覆的TPO板,TPO和CPO间是一个28nm宽的界面;而经过120°C退火处理20min的CPO包覆TPO板的界面宽为58nm。说明CPO促进与TPO的粘结是由于CPO优先与EBR作用的结果。PFM-AFM观察还发现,TPO/CPO界面存在一个硬度与周围很不同的600~1500nm宽的“过渡带”。提出了CPO促进与TPO界面粘结的机理和CPO/TPO界面区结构模型。
     分析了注射成型TPO板的配方和表面组成分布对粘结试件的断裂模式和TPO板的界面粘结特性的影响。随TPO板中的EBR含量增加,或TPO板的位置从近浇口变为远离浇口,粘结试件的断裂模式由界面破坏转变为混合破坏。随TPO板中EBR含量的增加,断裂强度和粘结能呈上升趋势;从近浇口到远离浇口,断裂强度和粘结能增加。分析表明,断裂强度和粘结能随TPO板配方的变化而变化是与TPO板中EBR含量和TPO本体强度相关的;断裂强度和粘结能随TPO基材离浇口距离的变化而变化是与TPO板表面的EBR含量(即表面组成分布)和皮层厚度相关的,也就是与最初注射成型时的流场相关。
     研究了CPO的结晶性及其与TPO粘结性能的相关性。CPO是一个低结晶度、有两个热转变峰的聚合物,其结晶度和玻璃化温度Tg均随老化时间的增加而增加;CPO的玻璃化温度Tg与结晶度Xc、CPO的屈服应力与结晶度Xc、TPO/CPO/TPO粘结件的断裂强度与CPO氯含量之间均存在线性关系。在此基础上,建立了CPO/TPO粘结力模型,该模型能很好地预测界面粘结实验结果;并提出了改善CPO/TPO界面粘结性能的方法。
Thermoplastic polyolefins (TPO) have become increasing popular alternatives tosteel-made automotive parts such as painted bumper, fascia, filler, panels and otherinterior and exterior parts because of its lightweight, low cost, good mechanicalproperties and recyclability. However, this kind of painted automotive parts madefrom TPO has the disadvantage of paint failure. An important method to overcomethis problem is the application of a layer of adhesion promoter (AP), oftenchlorinated polyolefins (CPO). Although AP can promote the adhesion of paint toTPO effectively, paint failure during the period of guarantee is still a serious problemin automotive industry. So, the research on the interface of CPO and TPO, and howCPO promote coating adhesion to TPO substrate will lay a technical foundation onthe solving of the problem of the wear of automotive parts.
     In this study, the experimental investigations and theoretical analysis on themiscibility, the interface, and the adhesion between iPP/EBR thermoplasticPolyolefins and chlorinated polypropylene (CPO) were carried out by many advancedanalytical instruments and experimental technics, such as pulse force mode-atomicforce microscopy (PFM-AFM), laser scanning confocal fluorescence microscopy(LSCFM), wide angle X-ray diffrection(WXRD), scanning electronic microscope(SEM), dynamic mechanical analysis (DMA), differrential scanning calorimeter(DSC), polarized optical microscopy (POM), lap-shear test and tensile test, etc.
     The morphology and the miscbility of iPP, EBR and CPO binary blends wereanalyzed by binary interaction energy density (Bij-Bc). The theretical analyzed resultswere further verified by LSCFM, SEM and DMA, etc. The conclusion was obtainedthat iPP/EBR and iPP/CPO blends are immiscible, EBR/CPO blend is miscible inmelt and partially miscible in solid state. The further inverstigation on themorphology of iPP/EBR blend showed that there was some improvement on themiscbility of iPP/EBR blend with the increasing of EBR content. The phase structuremodel of iPP/EBR blend was established.
     The composition at the surface of the injection-molded TPO plaques wascharacterized by attenuated total reflectance-Fourier transform infrared (ATR-FTIR).The result shows that although the amount of EBR content in TPO plaque is stable,the EBR content at surface of TPO12plaque changes with position of TPO plaque.The EBR content at the surface of TPO12plaque increases from near gate to far fromthe gate, but there is no obvious difference in EBR content at surface of TPO25plaque with respect to the gate.
     The morphology at the surfce and the near surface of TPO plaques was studied.The result shows there exists a skin layer with hundreds of micrometers thickness inTPO plaque. Within the skin layer, there is a pronounced transcrystalline layer andsignificant amounts of EBR. The thickness of the skin layer decreases and thedimension of EBR phase at the surface of TPO plaque increases from near the gate tofar from the gate.
     The interfacial structure of TPO/CPO/TPO lap shear joints was investigated byhigh resolution PFM-AFM. The results revealed a sharp interface (21nm) betweeniPP and CPO, a wider interface (28nm) between TPO and CPO without annealing,and an even broader interface (58nm) between TPO and CPO subjected to annealingat120°C for20min. These results are in accord with the idea that CPO interactspreferentially with the impact modifier as it promotes adhesion to TPO. A novelobservation from the PFM-AFM results was the presence in TPO/CPO samples of atransition zone of very different stiffness with a width on the order of600to1500nm.The interfacial adhesion mechanism of CPO to TPO and the interfacial structuralmodel were proposed, too.
     The adhesion of CPO to injection-molded TPO plaques and the fracture mode oflap joints varied both with the composition of TPO plaques and the compositiondistribution at the surface of TPO plaques. The fracture mode of the adhesion jointschanged from interfacial failure to mixed failure with the increasing of EBR contentin TPO plaque or from near the gate to far from the gate of TPO plaque. The fracturestrength and adhesion energy increased with the increasing of EBR9content in TPOblends, they increased from near the gate to far from the gate, too. The analyzedresults shows that the changing of the fracture strength and the adhesion energy withthe composition of TPO plaques was correlated to the EBR content in TPO plaqueand the cohesive force of TPO plaque, the changing of the fracture strength and theadhesion energy with the position at the surface of TPO plaques was correlated to theEBR content (also the composition distribution) at the surface of TPO plaques andthe thickness of skin layer, which were actually correlated to the folw field of themelt.
     The crystallization of CPO and its correlation to the adhesion of CPO to TPOsubstrate were investigated. CPO is a low-crystallinity polymer with two meltingpeaks. Both the crystallinity Xcand the glass transition temperature Tgof CPOincrease with the ageing time, three types of linear relationship were revealed relatedto CPO: Tgof CPO to the crystallinity Xcof CPO, the yield stress of CPO to XcofCPO, and the fracture strength to the clorine content of CPO. Based on these results,the adhesion force model of CPO/TPO was established. The predicted results from this model met very well with the experimental results. The methods to improve theadhesion of CPO to TPO were proposed, too.
引文
1庚晋,周洁,白木.塑料部件全攻略——汽车用塑料市场现状与发展分析.国外塑料.2003,21(5):15~20
    2杨燕.汽车塑料应用日益深化.北京汽车.2004,(4):24~29
    3M. Seki, H. Vchida, Y. Maeda, S.Yamauchi, K.Takgi, Y.Ukai, Y. Matsushita.Study on the Thermodynamic Interactions between Isotactic Polypropylene andEthylene-1-hexene Random Copolymer by SANS. Macromolecules.2000,33:9712~9719
    4Y. S. Lin, H. K.Yasuda, Low-Temperature Cascade Arc Torch Treatments forEnhanced Adhesion of Primer to Thermoplastic Olefins. J. Appl. Polym. Sci.1998,67:855~863
    5S. George, K. T. Varughese, S. Thomas. Thermal and Crystallization Behavior ofIsotactic Polypropylene/nitrile Rubber Blends. Polymer.2000,41:5485~5503
    6B. John, K.T.Varughese, Z. Oommen, P. P tschke, S.Thomas. DynamicMechanical Behavior of High-Density Polyethylene/Ethylene Vinyl AcetateCopolymer Blends: Effect of the Blend Ratio, Reactive Compatibilization, andDynamic Vulcanization. J. Appl. Polym. Sci.2003,87:2083~2099
    7朱永彬,刘廷华.汽车塑料化及其前景.塑料2005,34(5):40~46
    8傅和青.聚丙烯及氯化聚丙烯接枝改性研究.华南理工大学博士学位论文.2005,4
    9张增民.聚丙烯高性能化改性技术的新进展.塑料.2001,30(3):23~28
    10J. A.Grande. Versatility Extends Role of TPOs in Auto Iindustry. Modern Plastics.1997,74(14):34~36
    11R. A.Ryntz, P. V.Yaneff, Coatings of Polymers and Plastics. Marcel Dekker, Inc.2005, Ch.1:3~47
    12王苇,王立,王驰亮,周峻峰.氯化聚烯烃的研究进展.高分子通报.2005,(2):104~111
    13李军.氯化聚丙烯及其应用进展.现代化工.1996,16(6):20~23
    14葛发祥.氯化等规聚丙烯.安徽化工.1993,(2):6~12
    15张立新,孙勤.氯化聚丙烯生产及市场现状.氯碱工业.2003,(5):33~34
    16朱诚身,张宜红.不同氯含量氯化聚丙烯的热降解.高分子材料科学与工程.1997,13(l):75~78
    17张宜红,朱诚身,王经武等.氯化聚丙烯热氧降解研究.高分子材料科学与工程.1995,11(6):86~89
    18K. Sakai, H. Sobue. Study of Structure and Thermal Properties of Polypropyleneand Chlorinated Polypropylene by Infrared Spectroscopy and DifferentialScanning Calorimetry. J Appl. Polym. Sci.1972,16:2657~2670
    19A. K. Mukherjee, M.Patri. Thermal Studies on Chlorinated Atactic Polypropylene,J Macromol. Sci., Chem.1989,26(1):213~226
    20李敏锐.氯化聚丙烯的接枝改性研究.硕士学位论文,哈尔滨工业大学.2006,6
    21范忠雷,刘大壮.氯化聚丙烯溶度参数的研究.中国胶粘剂.2003,12(3):l0~13
    22傅和清,黄洪.氯化聚丙烯接枝改性研究.化学与粘合.2004,32(1):23~25
    23R. J.Clemens, G. N Batts, J. E Lawniczak, K. P. Middleton. How do ChlorinatedPoly(olefines) Promote Adhesion of Coatings to Poly(propylene). Progress inOrganic Coatings1994,24(1~4):43~54
    24Z. L. Fan, D. Z. Lin, J. J. Wang. Study on the Miscibility of ChlorinatedPolypropylene with Alkyd Resin by Dilute Solution Viscometry. Physics andChemistry of Liquids.2003,41(4):391~397
    25郭志光,顾卡丽. PP塑料表面涂料的研制.现代涂料与涂装.2003,(3):10~12
    26马向东.氯化聚丙烯接枝物的合成及其与醇酸树脂的相容性.郑州大学硕士学位论文.2003,5
    27何勇,刘海龙,刘晖.氯化聚丙烯的合成技术进展.中国氯碱.2003,(12):16~18
    28郝留成,邬润德,童筱莉.聚烯烃塑料涂料及涂装.化工新型材料.2003,31(7):24~26
    29H. Tang, D. C. Matin. Microstructural Studies of Interfacial Deformation inPainted Thermoplastic Polyolefins (TPOs). J. Mater. Sci.2002,37:4777~4785
    30黄世强,杨自善. CPP-PMS-BA三元接枝共聚物及其粘结性能的研究.塑料工业.1990,(3):28~30
    31S. Mitsutoshi. Coating Material for Polyolefin Resin Molding. JP1998-176137
    32T. Kazuhiko, Y. Hideaki, K. Takashi, A. Hiroyuki, F. Kazuhiro, M. Keiichi.Glare-preventive Coating Composition for Polyolefin Molded Article.JP2000-239602
    33S. Kazukuni, T. Naosuke, U. Takaaki, U. Keiji, Binder Resin Composition and itsUse. JP2000-273389A
    34莫纯良,林伟文,万卓均.微型汽车改性聚丙烯塑料保险杠的涂装技术及涂装工艺.涂料工业.2004,34(5):52~55
    35杨茹欣,李玮,何颖.聚丙烯合金技术新进展及其应用.上海塑料.2006,136(4):14~17
    36张玲.弹性体及无机刚性粒子增韧增强聚丙烯复合材料的研究.四川大学博士论文.2002,4
    37Z. Mencik, D. R. Fitchmun. Texture of Injection-molded Polypropylene. J. Polym.Sci.: Polym. Phys.1973,11:973~989
    38M. Fujiyama, T. Wakino, Y. Kawasaki. Structure of Skin Layer inInjection-molded Polypropylene. J. Appl. Polym. Sci.1988,35:29~49
    39M. Fujiyama, T. Wakino. Distribution of Higher-order Structures inInjection-molded Polypropylenes. J. Appl. Polym. Sci.1991,43:57~81
    40R. A. Ryntz, A. McNeight, A. Ford. How Molding Conditions Affect Adhesion ofCoatings to TPOs. Plastic Engineering.1996,52(9):35~38
    41B. D. Pennington, R. A. Ryntz, M. W. Urban. Stratification in ThermoplasticOlefins(TPO),Photoacoustic FT-IR Depth Profiling Studies. Polymer.1999,40:4795~4803
    42M. Moffitt, Y. Rharbi, W. Chen, J. Tong, M. A. Winnik, D. W. Thurman, J. P.Oberhauser, J. A. Kornfield, R. A. Ryntz. Stratified Morphology of APolypropylene/elastomer Blend Following Channel Flow. J. Polym. Sci., Polym.Phys.2002,40:2842~2859.
    43M. Moffitt, Y. Rharbi, H. X. Li, M. W. Winnik. Novel Morphology Evolution inThick Films of a Polymer Blend. Macromolecules.2002,35:3321~3324
    44C. H. Arns, M. A. Knackstedt, A. P. Roberts, V. W. Princzewski, Morphology,Cocontinuity, and Conductive Properties of Anisotropic Polymer Blends.Macromolecules.1999,32:5964~5966
    45李翠云,李辅安.聚丙烯共混增韧改性研究进展.化学推进剂与高分子材料.2006,4(2):19~22
    46陶国良,牛建岭.硫化胶粉/PP共混材料的研究.中国塑料.2001,15(9):73~75
    47E. Tomasetti, B. Nysten, P. G. Rouxhet, C. Poleunis, P. Bertrand, R. Legras.Surface Characterization of Polypropylene/(ethylene-propylene) CopolymerBlends(EP/PP):Application to Injection-molded Systems. Surface and InterfaceAnalysis.1999,27:735~742
    48B. R. Kiland, M. W. Urban, R. A. Ryntz. Distribution of Individual Componentsin Thermoplastic Olefins: Step-scan FTIR Photoacoustic Phase Analysis. Polymer.2000,41:1597~1606
    49B. R. Kiland, M. W. Urban, R. A. Ryntz. Surface depth-profiling of polymercompounds using step-scan photoacoustic phase analysis. Polymer.2001,42:337~344
    50伊剑波,左瑞霖,常鹏善.橡胶/聚丙烯树脂共混增韧研究进展.塑料.2000,29(3):33~37
    51周达飞,吴张永.汽车用塑料-塑料在汽车中的应用.化学工业出版社.2003,8
    52A. Van der Wal, J. J. Mulder, J. Oderkerk. Polypropylene-rubber Blends:2. theEffect of the Rubber Content on the Deformation and Impact Behaviour. Polymer.1999,40:6031~6044
    53A. Van der Wal, J. J. Mulder, J. Oderkerk. Polypropylene-rubber Blends:1. theEffect of the Matrix Properties on the Impact Behaviour. Polymer.1998,39:6781~6787
    54黄英,刘晓辉,李郁忠.三元乙丙橡胶增韧聚丙烯体系力学性能的研究.机械科学与技术.1997,16(2):295~298.
    55A. M. C. Souza, N. R. Demarquette. Influence of Coalescence and Interfacial onthe Morphology of PP/HDPE Compatibilized Blends. Polymer.2002,43(7):3959~3967
    56M. Yamaguchi, H. Miyata, K. Nitta. Compatibility of Binary Blends ofPolypropylene with Ethylene-olefin Copolymer. Journal of Applied PolymerScience1996,62:87~97
    57C. J. Carriere, H C. Silvis. The Effects of Short-chain Branching and ComonomerType on the Interfacial Tension of Polypropylene-polyolefin Elastomer Blends.Journal of Applied Polymer Science.1997,66:1175~1181
    58Y. Thomann, J. Suhm, R. Thomann, R. Mulhaupt. Investigation of Morphologiesof One-and Two-phase Blends of Isotactic Poly(propylene) with RandomPoly(ethene-co-1-butene). Macromolecules.1998,31:5441~5449
    59D. Mader, Y. Thomann, J. Suhm, R. Mulhaupt. Influence of ComonomerIncorporation on Morphology and Thermal and Mechanical Properties of BlendsBased upon Isotactic Metallocene-polypropylene and Random Ethane/1-buteneCopolymers. Journal of Applied Polymer Science.1999,74:838~848
    60E. L. Bedia, S. Murakami, K. Senoo, S. Kohjiya. Structural Development andMechanical Properties on Immiscible and Miscible Blends from IsotacticPolypropylene and Ethylene-1-hexene Copolymers under Uniaxial Drawing.Polymer.2002,43:749~755
    61K. Nitta, O. Keikichi, M. Yamaguchi. Mechanical Properties of Binary Blends ofPolypropylene with Ethylene-α-olefin Copolymer. Polymer.1998,39(1):53~58
    62Y. Yokoyama, T. Ricco. Toughening of Polypropylene by Different ElastomericSystem. Polymer.1998,39(16):3675~3681
    63F. M. Mirabella, N. Dioh. Theoretical Ananysis and ExperimentalCharacterization of the TPO/Adhesion Promoter/Paint Interface of PaintedThermoplastic Polyolefins. Polymer Engineering and Science.2000,40(9):2000~2006
    64Z. Yin, J. Yang, N. Coombs, M.A. Winnik, R.A. Ryntz, P. Yaneff. QuantitativeProbing the Interfacial Structure of TPO/CPO Blends by Transmission ElectronMicroscopy via EDX. Polymer.2007,48:1297~1305
    65Y. Ma, J. P. S. Farinha, M. A.Winnik. Compatibility of Chlorinated Polyolefinwith the Components of Thermoplastic Polyolefin: a Study by Laser ScanningConfocal Fluorescence Microscopy. Macromolecules.2004,37:6544~6552
    66H. R. Morris, B. Munroe, R. A. Ryntz, P. J. Treado. Flourescence and RamanChemical Imaging of Themoplastic Olefin(TPO) Adhesion Promotion. Langmuir.1998,14(9):2426~2434
    67R. P. Wool. Polypropylene Structure, Blends and Composites1: Structure andMorphology. J. Karger-Kocsis(Ed.), Chapman and Hall, London.1995,226
    68Y. Ma, M. A. Winnik, P. V. Yaneff, R. A. Ryntz. Surface and InterfaceCharacterization of Chlorinated Polyolefin Coated Thermoplastic Polyolefin. JCTResearch.2005,2(5):407~416
    69J. E. Lawniczak, K. A. Williams, L.T. Germinario. Characterization of AdhesionPerformance of Topcoats and Adhesion Promoters on TPO Substrates. JCTResearch.2005,2(5):399~405
    70H. B.Horst, B. Harald. Coating of Untreated Polypropylene with Halogen FreeAqueous Materials. Progress in Organic Coatings.2000,40(1~4):49~54
    71Y. Aoki. Role of Crystallinity of Polymer in Adhesion between ChlorinateIsotactic Polypropylene and Isotactic Polypropylene. J. Poly. Sci.:Part C.1969,23:855~864
    72潘炜.摩托车塑料用涂料的选择.工程塑料应用.1999,(9):18
    73H. Tang, D.C. Martin. Microstructural Studies of Interfacial Deformation inPainted Thermoplastic Polyolefins. Journal of Materials Science.2002,37(22):4783~4791
    74T. J. Prater, S.L. Karberline, J. W. Holubka, R. A. Ryntz. Examination ofDistribution of TPO Adhesion Promoter Material in a Painted TPO System. J.Coat. Technol.1996,68(857):83~91
    75H. R. Morris, J. F. Turner, B. Munroe, R. A. Ryntz, P. J. Treado. ChemicalImaging of Thermoplastic Olefin(TPO) Surface Architecture. Langmuir.1999,15(8):2961~2972
    76R. A. Ryntz, B. Buzdon. The Relationship between Clearcoat Permeability andAdhesion Promoter Penetration to the Gasline Resistance of Painted TPOSubstrtes. Progress in Organic Coatings.1997,32:167~172
    77R. A. Ryntz. The Effects of Thermoplastic Poly(olefin)(TPO) Morphology onSubsequent Paintability and Thermal Shock Performance. Progress in organiccoatings.1996,27:241~254
    78C. Bonnerup, P. Gatenholm. The Effect of Surface Energies and MolecularInterdiffusion on Adhesion in Multicomponent Polymer Systems. J. Adhesion Sci.Technol.1993,7(3):247~262
    79R. A. Ryntz, Q. Xie, A. C. Ramamurthy. Effects of Coating Solvents on theMorphology of Thermoplastic Polyolefins(TPO). J. Coat. Technol.1995,67(843):45~56
    80P. J. Schmitz, J. W. Holubka. Investigation of the “Surface” and “Interphase”Composition of Adhesion Promoter/Thermoplastic Olefin Systems: the Effect ofAdhesion Promoter Bake Temperature. J. Adhesion.1995,48:137~148
    81R. A.Ryntz, Q. Xie, A. C. Ramamurthy. Thermal and impact induced stressfailure in painted TPO: The role of surface morphology. J. Coat. Technol.1995,67(840):35~46
    82J. S. Trent, J. I. Scheinbeim, P. R. Couchman. Ruthenium tetraoxide staining ofpolymers for electron microscopy. Macromolecules1983,16(4):589~598
    83J. D. Tong, M. Moffit, X. Huang, M. A. Winnik. Use of Dye-LabeledEthylene-butene Copolymer as a Tracer in Laser Scanning Confocal FlorescenceMicroscopy Studies of Thermoplastic Olefins. J. Polym. Sci.: Part A: PolymerChemistry.2001,39:239~252
    84L. Li, S. Sosnowski, E. Kumacheva, M. A. Winnik. Coalescence at the Surface ofa Polymer Blend as Studied by Laser Confocal Florescence Microscopy,Langmuir.1996,12(9):2141~2144
    85H. Jonnai, Y. Nishikawa, T. Koga, T. Hashimoto. Direct Observation ofThree-Dimensional Bicontinuous Structure Developed via SpinodalDecomposition, Macromolecules.1995,28(13):4782~4784
    86Z.Yin, Y. Ma, W. Chen, N. Coombs, M.A. Winnik, R. A. Ryntz, P. V. Yaneff.Adhesion of CPO onto High Modulus TPO: Lap-Shear Tests in Conjunction withMicroscopy Studies of the Fracture Surface Structure. Polymer.2005,46:11610~11623.
    87H. U. Krotil, T. Stifter, H. Waschipky, K. Weishaupt, S. Hild, O. Marti, PulsedForce Mode: A New Method for the Investigation of Surface Properties. Surf.Interface Anal.1999,27:336~340
    88A. Rosa-Zeiser, E. Weilandt, S. Hild, O. Marti. The Simultaneous Measurementof Elastic, Electrostatic and Adhesive Properties by Scanning Force Microscopy:Pulsed-force Mode Operation. Meas. Sci. Technol.1997,8:1333~1338
    89A. Doring, J. Stahr, S. Zollner. Analyzing the Effectiveness of Atomic ForceMicroscopy for Evaluating Pressure-sensitive Adhesives. Adhesives Age.2000,9:39~43
    90E. Tomasetti, S. Vandorpe, D. Daoust, T. Boxus, J. Marchand-Brynaert, C.Poleunis, P. Bertrand, R. Legras, P. G. Rouxhet. Diffusion of an AdhesionPromoter (Chlorinated Polypropylene) into Polypropylene/Ethylene–PropyleneCopolymer (PP/EP) Blends: Method of Quantification. J. Adhesion Sci. Technol.2000,14(6):779~789
    91P. J. Schmitz, J. W. Holubka. Investigation of the Surface and InterphaseComposition of Adhesion Promoter/Themoplastic Olefin Systems: The effect ofAdhesion Promoter Bake Temperature, J. adhesion.1995,48(3):137~148
    92Y. J. Park, H. J. Kim, M. Rafailovich, J. Sokolov. Viscoelastic Properties andLap Shear Strength of EVA/Aromatic Hydrocarbon Resins as Hot-melt Adhesives.J. Adhesion Sci., Technol.2003,17(13):1831~1845
    93M. B. Yuri, L.J. Jφrgen. Fracture Energy–Fracture Stress Relationship for WeakPolymer-Polymer Interfaces. Polymer.2005,46:6016~6024
    94G. Guérin, F. Mauger, R. E. Prud’homme. The Adhesion of AmorphousPolystyrene Surfaces Below Tg. Polymer.2003,44(24):7477~7484
    95J.C. Russ, The Image Processing Handbook.4th edn, CRC Press LLC, BocaRaton, Florida,2002
    96W. Rasband. Image J, http://rsb.info.nih.gov/ij/, National Institute of Health,USA.
    97J. Brandrup, E.H. Immergut. editors. Polymer Handbook.3rd edn, Wiley, NewYork.1989, V/19, V/29
    98A. Shanks, J. Li, Y. Li. Polypropylene-Polyethylene Blend MorphologyControlled by Time-Temperature-Miscibility. Polymer.2000,41:2133~2139
    99J. Li, R.A. Shanks, R.H. Olley, G.R. Greenway. Miscibility and IsothermalCrystallization of Polypropylene in Polyethylene Melts. Polymer.2001,42:7685~7694
    100Y. Yokoyama, T. Ricco. Toughening of Polypropylene by Different ElastomericSystems. Polymer.1998,39(16):3675~3681
    101E. Tomasetti, R. Legras, Henri-Mazeaud, B. Nysten. Plastic Deformation inPolypropylene/(Ethylene–Propylene) Copolymer Blend during Paint Debonding.Polymer.2000,41:6597~6602
    102M. Yamaguch, H. Miyata, K. Nitta. Structure and Properties for Binary Blends ofIsotactic-Polypropylene with Ethylene-a-Olefin Copolymer.1.Crystallization andMorphology. J. Polym. Sci., Polym. Phys.1997,35:953~961
    103M.Yamaguch, K. Suzuki, H. Miyata. Structure and Mechanical Properties forBinary Blends of Polypropylene and Ethylene-1-Hexene Copolymer. J. Polym.Sci., Polym. Phys.1999,37:701~713
    104M. Yanaguch, H. Miyata. Influence of Stereoregularity of Polypropylene onMiscibility with Ethylene-1-Hexene Copolymer. Macromolecules.1999,32:5911~5916
    105P. J. Flory. Principles of Polymer Chemistry, Cornell University Press,1953.Ithaca, New York
    106R. Koningsveld, L. A. Kleintjens, G. Markertlb. Liquid-Liquid Phase Separationin Multicomponent Polymer Systems.16. Mixtures of Random Copolymers.Macromolecules.1977,10(5):1105~1108
    107D.R. Paul, C.B. Bucknall. Polymer Blends, Vol.2: Performance. A Wiley-Interscience Publication. New York,1999, Ch.29.
    108J.M.G. Cowie. Polymer: Chemistry and Physics of Modern Materials,2nd edn,Blackie Academic&Professional, Heriot-Watt University, Edinburgh.1991,178
    109何曼君,陈维孝,董西侠.高分子物理(修订版).复旦大学出版社.1990:116~118
    110X. M. Zhang, A. Ajji. Oriented Structure of PP/LLDPE Multilayer and BlendsFilms. Polymer.2005,46:3385~3393
    111T. Murayama. Dynamic Mechanical Analysis of Polymer Materials. ElsevierScientific, New York.1978, Ch.3
    112H. A. Klvonakdar, U. Wayenknecht, S.H. Jafari, R. HAssler, H. Eslami. DynamicMechanical Properties and Morphology of Polyethylene/ethylene Vinyl AcetateCopolymer Blends. Advances in Poly. Tech.2004,23(4):307~315
    113L. E. Nielsen, R. F. Landel. Mechanical Properties of Polymers and Composites.2nd edn, New York.1994, Ch.2
    114L. Dong, R. H. Olley, D. C. Bassett. On Morphology and the CompetitionBetween Crystallization and Phase Separation in Polypropylene–PolyethyleneBlends. J. Mater. Sci.1998,33:4043
    115A. Siegmann, Crystallization of Crystalline/Crystalline Blends: Polypropylene/Polybutene-1. J. Appl. Polym. Sci.1982,27:1053~1065
    116J. L. Gerenser, J. F. Elman, M. G. Mason, J. M. Pochan. Esca Studies ofCorona-Discharge-Treated Poly-55Ethylene Surfaces by Use of Gas-PhaseDerivatization. Polymer.198526:1162~1166
    117K. Tsutsui, A. Iwata, S. Ikeda. Plasma Surface Treatment of Poly-Propylene-Containing Plastics. J. Coating Tech.1989,61(776):65~72
    118S. M. Mirabedini, H. Rahimi, S. Hamedifar, S. M. Mohseni. MicrowaveIrradiation of Polypropylene Surface: a Study on Wettability and Adhesion.International Journal of Adhesion&Adhesives.2004,24:163~170
    119P. Castell, M. Wouters, G. De With, H. Fischer, F. Huijs. Surface Modification ofPoly(propylene) by Photoinitiators: Improvement of Adhesion and Wettability.Journal of Applied Polymer Science.2004,92:2341~2350
    120C. Brun, A. Chambaudet, C. Mavon, F. Berger, M. Fromm, F. Jaffiol,Modifications of Polypropylene Surface Properties by Alpha Ionizing Radiation.Applied Surface Science.2000,157:85~91
    121E. Occhiello, M. Morra, G. Morini, F. Garbassi, D. Johnson. On OxygenPlasma-Treated Polypropylene Interfaces with Air, Water, and Epoxy Resins. II.Epoxy Resins. Journal of Applied Polymer Science.1991,42:2045~2052
    122P.C. Painter, M. Watzek, J.L Koeng. Fourier transform infra-red study ofpolypropylene. Polymer.1977,18:1169~1172
    123S. C. Park, Y.R. Liang, H.S. Lee, Y. H. Kim. Three-Dimensional OrientationChange during Thermally Induced Structural Change of Oriented Poly(trimethylene terephthalate) Polarized FTIR-ATR Spectroscopy. Polymer.2004,45:8981~8988
    124S. G. Flores-Gallardo, S. Sanchez-Valdes, L. F. Ramos Devalle. Polypropylene/Polypropylene-Grafted Acrylic Acid blends for Multilayer Films: Preparationand Characterization. Journal of Applied Polymer Science.2001,79:1497~1505
    125C. Bonnerup, P. Gatenholm. Physical Modifications of Propylene/Ethylene-Propylen-Diene-Monomer Rubber Surfaces. I. Determination of SurfaceComposition and Surface Order by Fourier Transform Infrared-Attenuated TotalReflectance. J. polymer science: part B: polymer physics.1993,31:1487~1494
    126J. P. Hobbs, C.S.P. Sung, K. Krishman, S. Hill. Characterization of SurfaceStructure and Orientation in Polypropylene and Poly(ethylene terephthalate)Films by Modified Attenuated Total Reflection IR Dichroism Studies.Macromolecules.1983,16(2):193~199
    127G. Kotum. Reflectance Spectroscopy: Principles, Methods, Applications,Springer-Verlay New York. Inc.1969
    128X. Zhu, D.Yan. In Situ FTIR Spectroscopy Study on the Melting Process ofIsotactic Poly(propylene). Macromol. Chem. Phys.2001,202(7):1109~1113
    129G. Zerbi, F. Ciampell, V. Zamboni. Classification of Crystallinity Bands in theInfrared Spectra of Polymers.Journal of polymer science.1963, C7:141~151
    130A. Nihlstrand, T. Hjertberg, K. Johansson. Plasma Treatment of Polyolefins-Influence of Material Composition,1: Bulk and Surface Characterization Polymer.1997,38:3581~3589
    131S. D. Risio, N. Yan. Characterizing Coating Layer z-Directional BinderDistribution in Paper Using Atomic Force Microscopy. Colloids and Surfaces A:Physicochem. Eng. Aspects.2006,289:65~74
    132T. S. Ellis. Interactions of Chlorinated Polyolefins with Ethylene-PropyleneCopolymers and Their Relevence to Painted TPOs, Polym. Eng. Sci.2001,41:2065~2072
    133M. Al-Harthi, R. Kahraman, B.Yilbas, M. Sunar, B. J. Abdul aleem. Influence ofWater Iimmersion on the Single-lap Shear Strength of Aluminum Joints Bondedwith Aluminum-Powder-Filled Epoxy Adhesive. J. Adhesion Sci. Technol.2004,18(15-16):1699~1710
    134T. A. Huy, R. Adhikari, T. Lüpke, S. Henning, G. H. Michler. MolecularDeformation Mechanisms of Isotactic Polypropylene in α-and β-Crystal Formsby FTIR Spectroscopy. J. Polym. Sci., Polym. Phys.2004,42(24):4478~4488
    135S. Wu. Polymer Interface and Adhesion, Marcel Dekker, INC. New York.1982,Ch.10
    136S. B. Fry, P. J. Greene, D. Magouyrk, W. K. Middle-ton, E. J. Sacksteder.Develop of A New Adhesion Promoter for Coating Thermoplastic Polyolefin. J.Polym. Paint Color.1990,180(4274):732~733
    137S. Miller, K. Middleton. Proc. U. K. Paint Res. Assoc., Coatings for Plastic Symp.1986,16~23
    138K. Mitani, T. Ogata, M. Iwasaki. Chlorine Distribution and Structure-PropertyRelationship of Chlorinated Polypropylene. Journal of Polymer Science:Polymer Chemistry Edition.1974,12(8):1653~1669
    139H. Fu, H. Huang, X. Zhang, H. Chen. Study on the Relation between MeltingPoint and Degree of Chlorination of Chlorinated Polypropylene, ChinesePlastic Science&Technology.2007,35(6):46~48
    140Z. Fan, S. Tang, D. Liu, D. Zhu, Research Progress of Chlorinated Polypropylene,Modern Chemical Industry.2004,24(12):16~19
    141H. R. Allcock, F. W. Lampe, J. E. Mark. Contemporary Polymer Chemistry,3rdEdition, Pearson Education, Inc.2003, Ch.21
    142L H. Lee. New Perspectives in Polymer Adhesion Mechanisms-Importance ofDiffusion and Molecular Bonding in Adhesion. Proc. SPIE1999,6(1993):6~21
    143郑学晶.烯烃聚合中负载型催化剂及初生聚合物颗粒形貌的表征评述.化工进展.2007,26(12):1695~1701
    144I. Rodrigues, J. Sanches.Cell Nucleus GFP Flow Analysis From Sequences ofLSCFM Images. Portugal UT-Austin CFD2008, First Workshop onComputational Engineering: Fluid Dynamics, Lisbon, Portugal, July10-11,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700