用户名: 密码: 验证码:
碳纳米管和稀土化合物改性氢化丁腈橡胶复合材料的结构与吸波性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代社会的发展带来了越来越严重的电磁辐射和电磁污染的问题。吸波材料能够吸收微波的能量,减少反射,可以广泛地应用在抗电子干扰、电磁兼容、安全信息保密、人体安全防护等许多方面。理想的吸波材料应该具有吸收强、频段宽、质量轻等特点。传统的磁性吸波材料的比重较大,且填充量大,其在一些领域中的应用受到限制。碳材料具有优异的导电和介电性能、低密度以及耐腐蚀的优点,低用量填充复合材料就可以获得高的电磁波衰减系数,碳材料在吸波材料领域日益受到重视。橡胶为基体的吸波材料除了能有效耗散微波能量之外,还因其柔软、易剪裁、粘附性好的特点,容易布置用作结构复杂器件或腔体内部的吸波层。本论文选用氢化丁腈橡胶(HNBR)为基体,以多壁碳纳米管(MWCNT)等碳填料以及稀土化合物等作为吸波剂制备了高性能的吸波材料,研究了碳填料和稀土化合物的种类及其复配对于吸波性能的影响,探索了控制复合材料相形态和填料的分布状态以提高材料吸波性能的方法。
     首先研究了导电炭黑(CCB)、碳纤维(CF)和MWCNT填充HNBR复合材料的电磁特性和吸波性能。在相同的填料用量下,HNBR/MWCNT复合材料具有更高的电导率以及复介电常数实部和虚部。复合材料的复介电常数与填料用量间的关系可以采用Maxwell–Garnett模型描述。HNBR/MWCNT复合材料具有最好的吸波性能,当MWCNT用量为10phr时反射率最低,达到49:3dB。HNBR/CCB和HNBR/CF复合材料分别在填料用量为15phr和30phr时有较好的吸波性能,反射率分别为13:1dB和7:1dB。
     将MWCNT和CF与磁性填料羰基铁粉(CIP)复合填充HNBR制备了吸波材料。MWCNT和CF能够显著提升HNBR/CIP复合材料的复介电常数实部和虚部以及介电损耗,提高复合材料的吸波性能,降低匹配频率并拓宽吸收频段。通过水合肼原位还原氧化石墨烯的方法,将石墨烯与CIP复合填充HNBR,制备了HNBR/CIP/还原氧化石墨烯(rGO)复合材料。rGO以剥离的状态分散在复合材料中,提高了HNBR/CIP复合材料的复介电常数虚部和介电损耗,改善吸波性能。
     通过氧化镧(La2O3)和丙烯酸的原位反应,制备了稀土化合物改性HNBR复合材料。用红外光谱仪、X射线衍射仪、扫描电子显微镜等表征了制备过程中的原位反应,La2O3在原位反应之后转化为丙烯酸镧,硫化后成为纳米颗粒,且粒径分布变窄。原位生成的丙烯酸镧能够显著补强HNBR,并提高HNBR的玻璃化转变温度。进一步用多种稀土化合物制备了不同稀土丙烯酸盐改性的HNBR/MWCNT复合材料,研究了原位生成的丙烯酸盐对于复合材料介电性能、吸波性能、力学性能的影响。轻稀土元素(Nd、Sm、Eu)的丙烯酸盐聚合物在HNBR基体中以大尺寸的聚集体存在,而重稀土元素(Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)的丙烯酸盐聚合物在HNBR基体中均匀分散为细小的纳米颗粒。重稀土元素的丙烯酸盐能够提高复合材料的复介电常数的实部和虚部以及介电损耗,延长介电松弛时间,对于提高HNBR/MWCNT的吸波性能有协效作用,其中Dy、Gd、Tm、Lu等稀土元素的效果最为显著。轻稀土元素的丙烯酸盐对于HNBR/MWCNT复合材料的吸波性能影响很小。
     通过氢氧化锂和丙烯酸的原位反应制备了HNBR/丙烯酸锂(LiAA)复合材料,研究了其导电性能、介电性能和吸波性能。原位生成的LiAA在HNBR中均匀分散,能够有效地提高HNBR的拉伸强度和定伸应力。复合材料吸收水分后使复合材料的电导率提高5个数量级,加入氯化镧和氯化铈等稀土氯化物(RECl3)后复合材料的电导率进一步提高。HNBR/LiAA/RECl3复合材料吸水之后,其复介电常数的实部和虚部以及介电损耗提高,介电松弛时间变短,吸波性能提高。
     以不相容的HNBR和乙丙橡胶(EPR)共混物作为吸波材料基体,通过分段共混的方法将MWCNT和CIP选择性地分散到HNBR和EPR中。通过调整基体中HNBR和EPR的比例,可以得到不同填料分布状态的复合材料。研究了微观相形态对于复合材料的电磁特性、吸波性能、力学性能等的影响。当HNBR为连续相,即MWCNT在基体中呈连续分布时,HNBR/EPR/MWCNT/CIP复合材料具有最高的复介电常数虚部和介电损耗,吸波性能最好,反射率可达56:8dB,优于单一HNBR作为基体的HNBR/MWCNT/CIP复合材料。当EPR为连续相时,HNBR/EPR/MWCNT/CIP复合材料的吸收频宽最大,达到5.5GHz。
     以聚氯乙烯(PVC)和预交联粉末丁腈橡胶(P-NBR)为基体、MWCNT为吸波剂,制备了不同MWCNT含量以及分散状态的PVC/MWCNT复合材料。研究了MWCNT的分散状态对于复合材料的导电性能、介电性能、吸波性能的影响。MWCNT用量在4phr或以上时,MWCNT非均匀分散的PVC/P-NBR/MWCNT复合材料具有更高的电导率、复介电常数虚部和介电损耗,其吸波性能优于MWCNT
The development of modern society is bringing increasing problems of electromag-netic radiation and pollution. Microwave absorbing materials (MAM) dissipating inci-dent microwave energy, are widely used in electromagnetic interference, electromag-netic compatibility, information security and human body protection applications. Highabsorption, broad absorption bandwidth and lightweight are the requirement of high per-formance MAM. Most magnetic absorbing materials have the disadvantage of relativelyhigh density and high fller loading, which would restrict their usage. Carbon fllers haveexcellent electrical conductivity and dielectric properties, low density, as well as corro-sion resistance, are getting more and more attention in the research of MAM. Because ofitsadvantagesofsoftness, cohesivenessandeasytotailorintocertainshape, rubberbasedMAM can be used as the absorbing layer of devices with complex structures or inner sur-facesofcavities. Inthisthesis,hydrogenatedacrylonitrile–butadienerubber(HNBR)wasblended with multi-walled carbon nanotubes (MWCNT) and rare earth (RE) compoundsto prepare high performance MAM. Dependence of the type of carbon fllers, rare earthcompounds and their combinations on the microwave absorbing properties was studied.The effect of phase morphology in polymer matrix and fller dispersion on enhancing themicrowave absorbing properties was also investigated.
     Conductivecarbonblack(CCB),carbonfber(CF)andMWCNTwereblendedwithHNBR to prepare MAM, and their electromagnetic characteristics and microwave ab-sorbing properties were studied. HNBR/MWCNT composites had higher electrical con-ductivity, real part and imaginary part of complex permittivity than HNBR/CCB andHNBR/CF composites at a given fller loading. The relationship between permittivity of the composites and their fller loading can be described using the Maxwell–Garnettmodel. HNBR/MWCNTcompositeshadthebestmicrowaveabsorbingpropertiesamongthethreekindsofcomposites,HNBR/MWCNT(100/10)compositehadthelowestrefec-tion loss of49:3dB, while HNBR/CCB (100/15) and HNBR/CF (100/30) compositeshad the refection losses of13:1dB and7:1dB, respectively.
     MWCNT and CF were added into HNBR/carbonyl iron powder (CIP) compositesto prepare MAM. MWCNT and CF can signifcantly increase the complex permittivityand dielectric loss of HNBR/CIP composites. The HNBR/CIP/carbon fller compositeshad lower refection loss, lower matching frequency and broader absorption bandwidththan the HNBR/CIP composites. HNBR/CIP/reduced graphene oxide (rGO) compositeswere prepared by in situ reducing graphene oxide using hydrazine, and rGO was exfoli-ated in HNBR matrix. HNBR/CIP/rGO composite had higher imaginary part of complexpermittivity and dielectric loss than that of HNBR/CIP composite, and the microwaveabsorbing properties of HNBR/CIP composite could be improved.
     Rare earth modifed HNBR composites were prepared by in situ reactions betweenlanthanum oxide (La2O3) and acrylic acid (AA). The in situ reactions were traced usinginfraredspectra, X-raydiffractionanalysisandscanningelectronmicroscopy. La2O3wasconverted to lanthanum acrylate (La(AA)3) after the in situ reactions, and became nano-size particles with narrower size distribution after vulcanization. The La(AA)3couldreinforce HNBR remarkably and increase the glass transition temperature of HNBR aswell. Different kinds of rare earth acrylates modifed HNBR/MWCNT composites wereprepared,andtheirdielectric,microwaveabsorbingandmechanicalpropertieswerestud-ied. The acrylates of light rare earth elements (Nd, Sm, Eu) formed large aggregates inHNBR matrix, while the acrylates of heavy rare earth elements (Gd, Tb, Dy, Ho, Er,Tm, Yb, Lu) were dispersed in HNBR matrix as fne particles. The acrylates of heavyrare earth elements could increase the complex permittivity, dielectric loss and dielectricrelaxation time, improve the microwave absorbing properties of HNBR/MWCNT com-posites, while the acrylates of light rare earth elements had little effect on the microwaveabsorbing properties of HNBR/MWCNT composite.
     HNBR/lithium acrylate (LiAA) composites were prepare using in situ reactions be-tween lithium hydroxide and AA. The in situ prepared LiAA was uniformly dispersedin HNBR matrix, and signifcantly increased the tensile strength and modulus of HNBR.The electrical conductivity of HNBR/LiAA increased by fve orders of magnitude af- ter water absorption, and increased even further by adding lanthanum chloride (LaCl3)or cerium chloride (CeCl3). The HNBR/LiAA/RECl3composites after water absorptionhad higher complex permittivity and dielectric loss, longer dielectric relaxation time, aswell as improved microwave absorbing properties than the composites without water ab-sorption.
     Immiscible HNBR and ethylene–propylene rubber (EPR) blends were used as thematrix for MAM, and MWCNT and CIP were selectively dispersed in HNBR and EPR,respectively. Composites with different fller distribution could be obtained by changingHNBR/EPR ratio. The infuence of phase morphology on the electromagnetic charac-teristics, microwave absorbing and mechanical properties of the composites was investi-gated. WhileHNBRformedcontinuousphase,theHNBR/EPR/MWCNT/CIPcompositehad the highest imaginary part of complex permittivity, dielectric loss, and the best mi-crowave absorbing properties. It had the refection loss of56:8dB, lower than thatof HNBR/MWCNT/CIP composite with HNBR as the only matrix. While EPR formedcontinuousphase, theHNBR/EPR/MWCNT/CIPcompositehadwidestabsorptionband-width of5.5GHz.
     Polyvinyl chloride (PVC) and crosslinked acrylonitrile–butadiene rubber powder(P-NBR) were used as MAM matrix to prepare PVC/MWCNT composites with differentMWCNTloadinganddispersionstate. TheeffectofMWCNTdispersionontheelectricalconductivity, dielectric, microwave absorbing properties of MWCNT composites was in-vestigated. WhentheMWCNTloadingwashigherthan4phr,thePVC/P-NBR/MWCNTcomposites with nonuniformly dispersed MWCNT, had higher electrical conductivity,imaginary part of complex permittivity, dielectric loss, and better microwave absorbingproperties than PVC/MWCNT composites.
引文
[1]刘顺华,刘军民,董星龙.电磁波屏蔽及吸波材料[M].北京:化学工业出版社,2006.
    [2] Balmus S B, Pascariu G N, Creanga F, et al. The cavity perturbation method forthe measurement of the relative permittivity in the microwave range[J]. Journal ofOptoelectronics and Advanced Materials,2006,8(3):971–977.
    [3] Nicolson A M, Ross G F. Measurement of the Intrinsic Properties of Materialsby Time-Domain Techniques[J]. IEEE Transactions on Instrumentation and Mea-surement,1970, IM-19(4):377–382.
    [4] Weir W B. Automatic measurement of complex dielectric constant and permeabil-ity at microwave frequencies[J]. Proceedings of the IEEE,1974,62(1):33–36.
    [5] Baker-Jarvis J, Vanzura E J, Kissick W A. Improved technique for determiningcomplex permittivity with the transmission/refection method[J]. IEEE Transac-tions on Microwave Theory and Techniques,1990,38(8):1096–1103.
    [6]冯永宝,丘泰,李晓云,等.羰基铁/三元乙丙橡胶复合材料的吸波性能[J].材料科学与工艺,2008,16(4):589–592.
    [7] FengYB,TaiQ,ShenCY,etal. Electromagneticandabsorptionpropertiesofcar-bonyl iron/rubber radar absorbing materials[J]. IEEE Transactions on Magnetics,2006,42(3):363–368.
    [8] Liu L, Duan Y, Liu S, et al. Microwave absorption properties of one thin sheet em-ploying carbonyl–iron powder and chlorinated polyethylene[J]. Journal of Mag-netism and Magnetic Materials,2010,322(13):1736–1740.
    [9] Duan Y, Li G, Liu L, et al. Electromagnetic properties of carbonyl iron and theirmicrowave absorbing characterization as fller in silicone rubber[J]. Bulletin ofMaterials Science,2010,33(5):633–636.
    [10] ZhangB,FengY,XiongJ,etal. Microwave-absorbingpropertiesofde-aggregatedfake-shapedcarbonyl-ironparticlecompositesat2-18GHz[J]. IEEETransactionson Magnetics,2006,42(7):1778–1781.
    [11] Yang R B, Liang W F. Microwave properties of high-aspect-ratio carbonyliron/epoxy absorbers[J]. Journal of Applied Physics,2011,109(7):07A311.
    [12] Wen F, Zuo W, Yi H, et al. Microwave-absorbing properties of shape-optimizedcarbonyl iron particles with maximum microwave permeability[J]. Physica B:Physics of Condensed Matter,2009,404(20):3567–3570.
    [13] Kim S S,Kim S T,Yoon Y C, etal. Magnetic, dielectric, and microwave absorbingproperties of iron particles dispersed in rubber matrix in gigahertz frequencies[J].Journal of Applied Physics,2005,97(10):10F905.
    [14] Maeda T, Sugimoto S, Kagotani T, et al. Effect of the soft/hard exchange interac-tion on natural resonance frequency and electromagnetic wave absorption of therare earth-iron-boron compounds[J]. Journal of Magnetism and Magnetic Materi-als,2004,281(2-3):195–205.
    [15] Jia K, Zhao R, Zhong J, et al. Preparation and microwave absorption properties ofloose nanoscale Fe3O4spheres[J]. Journal of Magnetism and Magnetic Materials,2010,322(15):2167–2171.
    [16] Gu X, Zhu W, Jia C, et al. Synthesis and microwave absorbing properties of highlyordered mesoporous crystalline NiFe2O4[J]. Chemical Communications,2011,47(18):5337.
    [17] Sun G, Dong B, Cao M, et al. Hierarchical Dendrite-Like Magnetic Materialsof Fe3O4, γ-Fe2O3, and Fe with High Performance of Microwave Absorption[J].Chemistry of Materials,2011:110215092446092.
    [18] Tong G, Wu W, Guan J, et al. Synthesis and characterization of nanosized urchin-like α-Fe2O3and Fe3O4: Microwave electromagnetic and absorbing properties[J].Journal of Alloys and Compounds,2011,509(11):4320–4326.
    [19] Kong I, Ahmad S H, Abdullah M H, et al. Magnetic and microwave absorbingproperties of magnetite–thermoplastic natural rubber nanocomposites[J]. Journalof Magnetism and Magnetic Materials,2010,322(21):3401–3409.
    [20] Kim D Y, Chung Y C, Kang T W, et al. Dependence of microwave absorbingproperty on ferrite volume fraction in MnZn ferrite-rubber composites[J]. IEEETransactions on Magnetics,1996,32(2):555–558.
    [21] Gama A M, Rezende M C, Dantas C C. Dependence of microwave absorptionproperties on ferrite volume fraction in MnZn ferrite/rubber radar absorbing mate-rials[J]. JournalofMagnetismandMagneticMaterials,2011,323(22):2782–2785.
    [22]李淑环,邹华,张立群,等.磁性填料/硅橡胶吸波复合材料的性能研究[J].特种橡胶制品,2009,30(1):19–23.
    [23]李淑环,邹华,王鑫,等.羰基铁粉/锶铁氧体/MVQ吸波复合材料的制备与性能研究[J].橡胶工业,2010,57(1):17–21.
    [24] Zou H, Li S, Zhang L, et al. Determining factors for high performance siliconerubber microwave absorbing materials[J]. Journal of Magnetism and MagneticMaterials,2011,323(12):1643–1651.
    [25] Cho H S, Kim S S. M-Hexaferrites with planar magnetic anisotropy and their ap-plication to high-frequency microwave absorbers[J]. IEEE Transactions on Mag-netics,1999,35(5):3151–3153.
    [26] Kim Y J, Kim S S. Microwave absorbing properties of Co-substituted Ni2W hex-aferrites in Ka-band frequencies (26.5-40GHz)[J]. IEEE Transactions on Magnet-ics,2002,38(5):3108–3110.
    [27]郑永春,王世杰,冯俊明,等.天然掺杂铁氧体的电磁参数调控机制分析及其在吸波材料中的应用[J].中国科学E辑:技术科学,2006,36(5):550–559.
    [28] Singh P, Babbar V K, Razdan A, et al. Complex permittivity, permeability, and X-band microwave absorption of CaCoTi ferrite composites[J]. Journal of AppliedPhysics,2000,87(9):4362.
    [29] Meshram M. Characterization of M-type barium hexagonal ferrite-based widebandmicrowaveabsorber[J]. JournalofMagnetismandMagneticMaterials,2004,271(2-3):207–214.
    [30] Peng C H, Hwang C C, Wan J, et al. Microwave-absorbing characteristics for thecomposites of thermal-plastic polyurethane (TPU)-bonded NiZn-ferrites preparedby combustion synthesis method[J]. Materials Science and Engineering B,2005,117(1):27–36.
    [31] Yongbao F, Tai Q, Chunying S, et al. Complex permeability and permittivityand microwave absorption property of barium ferrite/EPDM rubber radar absorb-ing materials in2-18GHz[C]//Microwave Conference Proceedings,2005. APMC2005. Asia-Pacifc Conference Proceedings.[S.l.]: IEEE,2005:4–7.
    [32] Han M, Deng L. Doping effect of multiwall carbon nanotubes on the microwaveelectromagnetic properties of NiCoZn spinel ferrites[J]. Applied Physics Letters,2007,90(1):011108.
    [33] Ohkoshi S i, Kuroki S, Sakurai S, et al. A Millimeter-Wave Absorber Based onGallium-Substituted ε-Iron Oxide Nanomagnets[J]. Angewandte Chemie Interna-tional Edition,2007,46(44):8392–8395.
    [34] Dosoudil R, Usakova M, Franek J, et al. Dispersion of complex permeability andEM-wave absorbing characteristics of polymer-based composites with dual ferritefller[J]. JournalofMagnetismandMagneticMaterials,2008,320(20):e849–e852.
    [35] Lee J J, Hong Y K, Bae S, et al. Broadband NixZn0:8xCu0.2Fe2O4Electromag-netic Absorber for1GHz Application[J]. IEEE Transactions on Magnetics,2009,45(10):4230–4233.
    [36] Cheng Y L, Dai J M, Wu D J, et al. Electromagnetic and microwave absorptionproperties of carbonyl iron/La0.6Sr0.4MnO3composites[J]. Journal of Magnetismand Magnetic Materials,2009,322(1):97–101.
    [37] Xu J, Zou H, Li H, et al. Infuence of Nd3+substitution on the microstructure andelectromagnetic properties of barium W-type hexaferrite[J]. Journal of Alloys andCompounds,2010,490(1-2):552–556.
    [38] Meena R S, Bhattachrya S, Chatterjee R. Complex permittivity, permeability andwidebandmicrowaveabsorbingpropertyofLa3+substitutedU-typehexaferrite[J].Journal of Magnetism and Magnetic Materials,2010,322(14):1923–1928.
    [39] Song J, Wang L, Xu N, et al. Microwave electromagnetic and absorbing propertiesof Dy3+doped MnZn ferrites[J]. Journal of Rare Earths,2010,28(3):451–455.
    [40] Meena R S, Bhattachrya S, Chatterjee R. Complex permittivity, permeability andmicrowave absorbing studies of (Co2xMnx) U-type hexaferrite for X-band (8.2–12.4GHz) frequencies[J]. Materials Science and Engineering B,2010,171(1-3):133–138.
    [41] Meena R S, Bhattachrya S, Chatterjee R. Development of “tuned microwave ab-sorbers” using U-type hexaferrite[J]. Materials and Design,2010,31(7):3220–3226.
    [42] Huang X, Zhang J, Wang H, et al. Er3+-substituted W-type barium ferrite: prepa-ration and electromagnetic properties[J]. Journal of Rare Earths,2010,28(6):940–943.
    [43] Wang L, Huang X, Zhang J, et al. Microstructure and microwave electromagneticproperties of Dy3+-doped W-type hexaferrites[J]. Rare Metals,2011,30(5):505–509.
    [44] Pu Y, Tao X, Zhai J, et al. Synthesis and electromagnetic properties of microwaveabsorbing material: Cox(Cu0.5Zn0.5)1xFe2O4(0    [45] Maqsood A, Khan K. Structural and microwave absorption properties ofNi(1x)Co(x)Fe2O4(0:0x0:5) nanoferrites synthesized via co-precipitationroute[J]. Journal of Alloys and Compounds,2011,509(7):3393–3397.
    [46] Tyagi S, Baskey H B, Agarwala R C, et al. Synthesis and Characterization ofSrFe11.2Zn0.8O19Nanoparticles for Enhanced Microwave Absorption[J]. Journalof Electronic Materials,2011,40(9):2004–2014.
    [47] Iqbal M J, Khan R A, Mizukami S, et al. Tailoring of structural, electrical andmagnetic properties of BaCo2W-type hexaferrites by doping with Zr–Mn binarymixturesforusefulapplications[J]. JournalofMagnetismandMagneticMaterials,2011,323(16):2137–2144.
    [48] Chen L, Lu C, Zhao Y, et al. Infrared emissivities and microwave absorptionproperties of perovskite Sm0.5Sr0.5Co1xFexO3(0x0:5)[J]. Journal ofAlloys and Compounds,2011,509(35):8756–8760.
    [49] Shen X Q, Song F Z, CHEN Y, et al. Microwave absorbing characteristics ofnanocrystalline Fe0.13(CoxNi100x)0.87alloy fne fber-epoxy resin composites[J].Journal of Composite Materials,2011,46(1):71–77.
    [50] Guozhi X, Xiaolong S, Zhang B, et al. Microstructure and electromagnetic proper-tiesoffake-likeNd–Fe–Bnanocompositepowderswithdifferentmillingtimes[J].Powder Technology,2011,210(3):220–224.
    [51] Dosoudil R, Franek J, SLáma J, et al. Electromagnetic Wave Absorption Perfor-mances of Metal Alloy/Spinel Ferrite/Polymer Composites[J]. IEEE Transactionson Magnetics,2012,48(4):1524–1527.
    [52] Guo F, Ji G, Xu J, et al. Effect of different rare-earth elements substitution onmicrostructure and microwave absorbing properties of Ba0.9RE0.1Co2Fe16O27(RE=La, Nd, Sm) particles[J]. Journal of Magnetism and Magnetic Materials,2012,324(6):1209–1213.
    [53] Li C J, Wang B, Wang J N. Magnetic and Microwave Absorbing Properties ofElectrospun Ba(1x)LaxFe12O19Nanofbers[J]. Journal of Magnetism and Mag-netic Materials,2012,324(7):1305–1311.
    [54] Xu F, Bai Y, Jiang K, et al. Characterization of a Y-type hexagonal ferrite-basedfrequency tunable microwave absorber[J]. International Journal of Minerals, Met-allurgy, and Materials,2012,19(5):453–456.
    [55] ZhangS,CaoQ. ElectromagneticandmicrowaveabsorptionperformanceofsometransitionmetaldopedLa0.7Sr0.3Mn1xTMxO3˙(TM=Fe,CoorNi)[J]. MaterialsScience and Engineering B,2012,177(9):678–684.
    [56] Tong S Y, Wu J M, Tung M J, et al. Effect of Ni concentration on electromagneticwave absorption of (Ni,Mn,Zn)Fe2O4/resin particulate composites[J]. Journal ofAlloys and Compounds,2012,525:143–148.
    [57] Tadjarodi A, Rahimi R, Imani M, et al. Synthesis, characterization and microwaveabsorbing properties of the novel ferrite nanocomposites[J]. Journal of Alloys andCompounds,2012,542(C):43–50.
    [58] Feng Y, Qiu T. Preparation, characterization and microwave absorbing proper-ties of FeNi alloy prepared by gas atomization method[J]. Journal of Alloys andCompounds,2012,513:455–459.
    [59] Liu J, Feng Y, Qiu T. Synthesis, characterization, and microwave absorption prop-erties of Fe–40wt%Ni alloy prepared by mechanical alloying and annealing[J].Journal of Magnetism and Magnetic Materials,2011,323(23):3071–3076.
    [60] Feng Y, Qiu T. Enhancement of electromagnetic and microwave absorbing prop-erties of gas atomized Fe–50wt%Ni alloy by shape modifcation[J]. Journal ofMagnetism and Magnetic Materials,2012,324(16):2528–2533.
    [61]黄东,丘泰,冯永宝.磁性不锈FeCr合金吸波材料的电磁与吸波性能[J].材料科学与工程学报,2010,28(3):395–398.
    [62] Hashisho Z, Rood M J, Barot S, et al. Role of functional groups on the microwaveattenuation and electric resistivity of activated carbon fber cloth[J]. Carbon,2009,47(7):1814–1823.
    [63] Ling Q, Sun J, Zhao Q, et al. Microwave absorbing properties of linear low den-sity polyethylene/ethylene–octene copolymer composites flled with short carbonfber[J]. Materials Science and Engineering B,2009,162(3):162–166.
    [64] Neo C P, Varadan V K. Design and development of electromagnetic absorberswith carbon fber composites and matching dielectric layers[J]. Smart materialsand structures,2001,10(5):1107.
    [65] Neo C P, Varadan V K. Optimization of Carbon Fiber Composite for Mi-crowaveAbsorber[J]. IEEETransactionsonElectromagneticCompatibility,2004,46(1):102–106.
    [66] Wu J, Chung D. Increasing the electromagnetic interference shielding effective-ness of carbon fber polymer-matrix composite by using activated carbon fbers[J].Carbon,2002,40(3):445–446.
    [67] Zou T, Zhao N, Shi C, et al. Microwave absorbing properties of activated carbonfbre polymer composites[J]. Bulletin of Materials Science,2011,34(1):75–79.
    [68] Li G, Xie T, Yang S, et al. Microwave Absorption Enhancement of Porous CarbonFibers Compared with Carbon Nanofbers[J]. The Journal of Physical ChemistryC,2012:120413113653004.
    [69] Shen G, Xu M, Xu Z. Double-layer microwave absorber based on ferrite and shortcarbonfbercomposites[J]. MaterialsChemistryandPhysics,2007,105(2-3):268–272.
    [70]沈国柱,徐政,张先如.铁氧体和碳纤维双层复合材料吸波性能研究[J].同济大学学报:自然科学版,2008,36(3):379–382.
    [71]孟辉,王智慧,胡传.碳纤维/羰基铁粉复合涂层吸波效果及机理分析[J].材料保护,2006,1:17–19.
    [72] ZhaoJM,AnWX,LiDA,etal. SynthesisandmicrowaveabsorptionpropertiesofSiC-carbon fbers composite in S and C band[J]. Synthetic Metals,2011,161(19-20):2144–2148.
    [73] Zeng J, Fan H, Wang Y, et al. Oxidized electroplating zinc-covered carbon fbersas microwave absorption materials[J]. Journal of Alloys and Compounds,2012,524:59–62.
    [74] Jun Z, Huiqing F, Yangli W, et al. Ferromagnetic and microwave absorption prop-ertiesofcopperoxide/cobalt/carbonfbermultilayerflmcomposites[J]. ThinSolidFilms,2012,520(15):5053–5059.
    [75]黄小忠,田志明,王超英,等.三叶形截面碳纤维的吸波性能研究[J].材料导报,2011,25(004):61–63.
    [76]刘新,王荣国,刘文博,等.异形截面碳纤维复合材料的吸波性能[J].复合材料学报,2009(2):94–100.
    [77] Zou T, Shi C, Zhao N. Microwave absorbing properties of activated carbon-fberfelt dipole array/epoxy resin composites[J]. Journal of Materials Science,2007,42(13):4870–4876.
    [78] Fan H L, Yang W, Chao Z M. Microwave absorbing composite lattice grids[J].Composites Science and Technology,2007,67(15-16):3472–3479.
    [79] Zhao N, Zou T, Shi C, et al. Microwave absorbing properties of activated carbon-fber felt screens (vertical-arranged carbon fbers)/epoxy resin composites[J]. Ma-terials Science and Engineering B,2006,127(2-3):207–211.
    [80] Qin F, Brosseau C. A review and analysis of microwave absorption in polymercompositesflledwithcarbonaceousparticles[J]. JournalofAppliedPhysics,2012,111(6):061301.
    [81] Oh J H, Oh K S, Kim C G, et al. Design of radar absorbing structures usingglass/epoxy composite containing carbon black in X-band frequency ranges[J].Composites Part B: Engineering,2004,35(1):49–56.
    [82] Kwon S K, Ahn J M, Kim G H, et al. Microwave absorbing properties of car-bon black/silicone rubber blend[J]. Polymer Engineering and Science,2002,42(11):2165–2171.
    [83] Barba A A, Lamberti G, d’Amore M, et al. Carbon black/silicone rubber blends asabsorbing materials to reduce Electro Magnetic Interferences (EMI)[J]. PolymerBulletin,2006,57(4):587–593.
    [84] Dishovsky N, Grigorova M. On the correlation between electromagnetic wavesabsorption and electrical conductivity of carbon black flled polyethylenes[J]. Ma-terials Research Bulletin,2000,35(3):403–409.
    [85] Koysuren O, Yesil S, Bayram G, et al. Effect of a carbon black surface treatmentonthemicrowavepropertiesofpoly(ethyleneterephthalate)/carbonblackcompos-ites[J]. Journal of Applied Polymer Science,2008,109(1):152–159.
    [86] Duan Y, Liu S, Wang G, et al. Effect of a coupling agent on the electromagneticand mechanical properties of carbon black/acrylonitrile–butadiene–styrene com-posites[J]. Journal of Applied Polymer Science,2006,102(2):1839–1843.
    [87] Liu X, Zhang Z, Wu Y. Absorption properties of carbon black/silicon carbidemicrowave absorbers[J]. Composites Part B: Engineering,2011,42(2):326–329.
    [88] WuKH,TingTH,WangGP,etal. Effectofcarbonblackcontentonelectricalandmicrowave absorbing properties of polyaniline/carbon black nanocomposites[J].Polymer Degradation and Stability,2008,93(2):483–488.
    [89]陈晓东,王桂芹,段玉平,等.炭黑/钛酸钡复合颗粒的结构及吸波性能[J].硅酸盐学报,2006,34(12):1446.
    [90] AnnaduraiP,MallickAK,TripathyDK. Studiesonmicrowaveshieldingmaterialsbasedonferrite-andcarbonblack-flledEPDMrubberintheX-bandfrequency[J].Journal of Applied Polymer Science,2001,83(1):145–150.
    [91] Liu L, Duan Y, Ma L, et al. Microwave absorption properties of a wave-absorbingcoating employing carbonyl-iron powder and carbon black[J]. Applied SurfaceScience,2010,257(3):842–846.
    [92] Shen X Z, Xie S M, Guo J, et al. Microwave absorbing properties of ternarylinearlow-densitypolyethylene/carbonylironpowder/carbonblackcomposites[J].Journal of Applied Polymer Science,2009,114(6):3434–3439.
    [93] Wen B, Zhao J, Duan Y, et al. Electromagnetic wave absorption properties ofcarbon powder from catalysed carbon black in X and Ku bands[J]. Journal ofPhysics D: Applied Physics,2006,39(9):1960–1962.
    [94] Meng W, Yuping D, Shunhua L, et al. Absorption properties of carbonyl-iron/carbon black double-layer microwave absorbers[J]. Journal of Magnetismand Magnetic Materials,2009,321(20):3442–3446.
    [95] Kim J W, Kim S S. Microwave absorbers of two-layer composites laminate forwide oblique incidence angles[J]. Materials and Design,2010,31(3):1547–1552.
    [96]段玉平,杨洋,冀志江,等. MnO2/CB/环氧树脂双层复合材料的吸波性能研究[J].材料科学与工艺,2009(2):255–258.
    [97] Saib A, Bednarz L, Daussin R, et al. Carbon nanotube composites for broadbandmicrowave absorbing materials[J]. IEEE Transactions on Microwave Theory andTechniques,2006,54(6):2745–2754.
    [98] Micheli D, Apollo C, Pastore R, et al. X-Band microwave characterization ofcarbon-based nanocomposite material, absorption capability comparison and RASdesign simulation[J]. Composites Science and Technology,2010,70(2):400–409.
    [99]肇研,段跃新,李蔚慰,等.多壁碳纳米管复合材料在8mm波段的吸波性能[J].复合材料学报,2007,24(3):23–27.
    [100] Zhang Z, Wang L, Wang E. Microwave Absorbing Properties of Radar Absorb-ing Structure Composites Filling with Carbon Nanotubes[J]. Advanced MaterialsResearch,2011,328:1109–1112.
    [101] Zhang H, Zeng G, Ge Y, et al. Electromagnetic characteristic and microwave ab-sorption properties of carbon nanotubes/epoxy composites in the frequency rangefrom2to6GHz[J]. Journal of Applied Physics,2009,105(5):054314.
    [102]袁华,杜波,刘俊峰,等.多壁碳纳米管/环氧树脂复合材料的吸波性能[J].材料科学与工程学报,2009,27(1):69–71.
    [103] Ye Z, Li Z, Roberts J A, et al. Electromagnetic wave absorption properties of car-bon nanotubes-epoxy composites at microwave frequencies[J]. Journal of AppliedPhysics,2010,108(5):054315.
    [104]汪刘应,刘顾,吴承亮,等.不同管径碳纳米管电磁特性与吸波性能研究[J].功能材料信息,2012,9(1):18–22.
    [105]卿玉长,周万城,罗发,等.多壁碳纳米管/环氧有机硅树脂吸波涂层的介电和吸波性能研究[J].无机材料学报,2010,15(2):181–185.
    [106] Liu Z, Bai G, Huang Y, et al. Microwave Absorption of Single-Walled CarbonNanotubes/Soluble Cross-Linked Polyurethane Composites[J]. The Journal ofPhysical Chemistry C,2007,111(37):13696–13700.
    [107]王志强,张振军,范壮军,等.碳纳米管/三元乙丙橡胶复合材料吸波性能的研究[J].材料导报,2010,24(7):26–28.
    [108] FanZ,LuoG,ZhangZ,etal. Electromagneticandmicrowaveabsorbingpropertiesof multi-walled carbon nanotubes/polymer composites[J]. Materials Science andEngineering B,2006,132(1-2):85–89.
    [109] Pacchini S, Dubuc D, Flahaut E, et al. Double-walled carbon nanotube-basedpolymer composites for electromagnetic protection[J]. International Journal ofMicrowave and Wireless Technologies,2010,2(05):487–495.
    [110] Shen C, Gong R Z, Nie Y, et al. Preparation and electromagnetic performanceof coating of multiwall carbon nanotubes with iron nanogranule[J]. Journal ofMagnetism and Magnetic Materials,2005,288:397–402.
    [111] Han M, Zhang W, Gao C, et al. Hollow nickel microspheres covered with orientedcarbon nanotubes and its magnetic property[J]. Carbon,2006,44(2):211–215.
    [112] Zhao D L, Li X, Shen Z M. Microwave absorbing property and complex permit-tivity and permeability of epoxy composites containing Ni-coated and Ag flledcarbon nanotubes[J]. Composites Science and Technology,2008,68(14):2902–2908.
    [113] Wang C, Lv R, Kang F, et al. Synthesis and application of iron-flled carbon nan-otubes coated with FeCo alloy nanoparticles[J]. Journal of Magnetism and Mag-netic Materials,2009,321(13):1924–1927.
    [114] Zhan Y, Zhao R, Lei Y, et al. Preparation, characterization and electromagneticproperties of carbon nanotubes/Fe3O4inorganic hybrid material[J]. Applied Sur-face Science,2011,257(9):4524–4528.
    [115] Zhan Y, Zhao R, Lei Y, et al. A novel carbon nanotubes/Fe3O4inorganic hy-brid material: Synthesis, characterization and microwave electromagnetic proper-ties[J]. Journal of Magnetism and Magnetic Materials,2011,323(7):1006–1010.
    [116] Wang W J, Zang C G, Jiao Q J. Ni-Coated Carbon Nanotubes/Mn-Zn FerriteComposite as Viable Microwave Absorbing Materials[J]. Advanced Materials Re-search,2011,399-401:310–314.
    [117] ZhaoC,ZhangA,ZhengY,etal. Electromagneticandmicrowave-absorbingprop-ertiesof magnetitedecoratedmultiwalledcarbon nanotubes prepared with poly(N-vinyl-2-pyrrolidone)[J]. Materials Research Bulletin,2012,47(2):217–221.
    [118] LafdiK,ChinA,AliN,etal. Cobalt-dopedcarbonnanotubes: Preparation,texture,and magnetic properties[J]. Journal of Applied Physics,1996,79(8):6007.
    [119] Liu S, Zhu J, Mastai Y, et al. Preparation and Characteristics of Carbon NanotubesFilled with Cobalt[J]. Chemistry of Materials,2000,12(8):2205–2211.
    [120] Kim H M, Kim K, Lee C Y, et al. Electrical conductivity and electromagneticinterference shielding of multiwalled carbon nanotube composites containing Fecatalyst[J]. Applied Physics Letters,2004,84(4):589.
    [121] Che R C, Peng L M, Duan X F, et al. Microwave Absorption Enhancement andComplex Permittivity and Permeability of Fe Encapsulated within Carbon Nan-otubes[J]. Advanced Materials,2004,16(5):401–405.
    [122] Zhu H, Lin H, Guo H, et al. Microwave absorbing property of Fe-flled carbonnanotubes synthesized by a practical route[J]. Materials Science and EngineeringB,2007,138(1):101–104.
    [123] Lin H, Zhu H, Guo H, et al. Investigation of the microwave-absorbing propertiesof Fe-flled carbon nanotubes[J]. Materials Letters,2007,61(16):3547–3550.
    [124] Gui X, Wang K, Wei J, et al. Microwave absorbing properties and magnetic prop-erties of different carbon nanotubes[J]. Science in China Series E: TechnologicalSciences,2009,52(1):227–231.
    [125] NarayananTN,SunnyV,ShaijumonMM,etal. EnhancedMicrowaveAbsorptionin Nickel-Filled Multiwall Carbon Nanotubes in the S Band[J]. Electrochemicaland Solid-State Letters,2009,12(4):K21.
    [126] Zhao D L, Li X, Shen Z M. Preparation and electromagnetic and microwave ab-sorbing properties of Fe-flled carbon nanotubes[J]. Journal of Alloys and Com-pounds,2009,471(1-2):457–460.
    [127] Gui X, Ye W, Wei J, et al. Optimization of electromagnetic matching of Fe-flled carbon nanotubes/ferrite composites for microwave absorption[J]. Journalof Physics D: Applied Physics,2009,42(7):075002.
    [128] Zhao D L, Zhang J M, Li X, et al. Electromagnetic and microwave absorbingproperties of Co-flled carbon nanotubes[J]. Journal of Alloys and Compounds,2010,505(2):712–716.
    [129] Srivastava R, Narayanan T, Mary A, et al. Ni flled fexible multi-walled carbonnanotube–polystyrene composite flms as effcient microwave absorbers[J]. Ap-plied Physics Letters,2011,99:113116.
    [130] SuQ,ZhongG,LiJ,etal. FabricationofFe/Fe3C-functionalizedcarbonnanotubesandtheirelectromagneticandmicrowaveabsorbingproperties[J]. AppliedPhysicsA: Materials Science&Processing,2011,106:59–65.
    [131] Su Q,LiJ,ZhongG,etal. InSitu SynthesisofIron/Nickel Sulfde Nanostructures-Filled Carbon Nanotubes and Their Electromagnetic and Microwave-AbsorbingProperties[J]. The Journal of Physical Chemistry C,2011,115(5):1838–1842.
    [132] Zheng Z, Xu B, Huang L, et al. Novel composite of Co/carbon nanotubes: Syn-thesis, magnetism and microwave absorption properties[J]. Solid State Sciences,2008,10(3):316–320.
    [133] Che R C, Zhi C Y, Liang C Y, et al. Fabrication and microwave absorption of car-bon nanotubes/CoFe2O4spinel nanocomposite[J]. Applied Physics Letters,2006,88(3):033105.
    [134] Vázquez E, Prato M. Carbon Nanotubes and Microwaves: Interactions, Re-sponses, and Applications[J]. ACS Nano,2009,3(12):3819–3824.
    [135] Moradi A. Microwave response of magnetized hydrogen plasma in carbon nan-otubes: multiple refection effects[J]. Applied optics,2010,49(10):1728–1733.
    [136] Zhao D L, Li X, Shen Z M. Electromagnetic and microwave absorbing propertiesof multi-walled carbon nanotubes flled with Ag nanowires[J]. Materials Scienceand Engineering B,2008,150(2):105–110.
    [137] Kawabata A, Kubo R. Electronic properties of fne metallic particles. II. Plasmaresonance absorption[J]. J. Phys. Soc. Jpn,1966,21:1765–1772.
    [138] Guan H, Chen G, Zhang S, et al. Microwave absorption characteristics of man-ganese dioxide with different crystalline phase and nanostructures[J]. MaterialsChemistry and Physics,2010,124(1):639–645.
    [139] Zhu H,Zhang L,Zhang L, et al. Electromagnetic absorptionpropertiesofSn-flledmulti-walled carbon nanotubes synthesized by pyrolyzing[J]. Materials Letters,2010,64(3):227–230.
    [140] Zhang L, Zhu H, Song Y, et al. The electromagnetic characteristics and absorb-ing properties of multi-walled carbon nanotubes flled with Er2O3nanoparticlesas microwave absorbers[J]. Materials Science and Engineering B,2008,153(1-3):78–82.
    [141] Zhang L, Zhu H. Dielectric, magnetic, and microwave absorbing properties ofmulti-walled carbon nanotubes flled with Sm2O3nanoparticles[J]. Materials Let-ters,2009,63(2):272–274.
    [142] Hou C, Li T, Zhao T, et al. Microwave absorption and mechanical properties ofLa(NO3)3-doped multi-walled carbon nanotube/polyvinyl chloride composites[J].Materials Letters,2012,67(1):84–87.
    [143] Fan Y, Yang H, Li M, et al. Evaluation of the microwave absorption property offake graphite[J]. Materials Chemistry and Physics,2009,115(2-3):696–698.
    [144] Gogoi J P, Bhattacharyya N S, Raju K C J. Synthesis and microwave characteri-zation of expanded graphite/novolac phenolic resin composite for microwave ab-sorber applications[J]. Composites Part B: Engineering,2011,42(5):1291–1297.
    [145] Yang Y, Qi S, Wang J. Preparation and microwave absorbing properties of nickel-coated graphite nanosheet with pyrrole via in situ polymerization[J]. Journal ofAlloys and Compounds,2012,520:114–121.
    [146] Yang Y, Qi S, Qin Y, et al. Synthesis and characterization of silver-coated graphitenanosheets with pyrrole via in situ polymerization[J]. Journal of Applied PolymerScience,2012,125(S1):E388–E397.
    [147] Yang Y, Qi S, Zhang X, et al. Preparation and microwave absorbing property ofsilver-coated graphite nanosheet NanoG with Pyrrole[J]. Materials Letters,2012,66(1):229–232.
    [148] Yang Y, Qi S. Preparation of pyrrole with iron oxide precipitated on the surfaceof graphite nanosheet[J]. Journal of Magnetism and Magnetic Materials,2012,324(15):2380–2387.
    [149] Yang Y, Qi S, Wang J. Electromagnetic properties of Nd3+substituted iron oxideon graphite nanosheet[J]. Materials Letters,2012,76(C):120–123.
    [150] Yang Y, Qi S, Wang J. Characterization of a microwave absorbent prepared bycoprecipitation reaction of iron oxide on the surface of graphite nanosheet[J]. Ma-terials Science and Engineering B,2012,177(20):1734–1740.
    [151] Zhang H B, Yan Q, Zheng W G, et al. Tough Graphene Polymer MicrocellularFoams for Electromagnetic Interference Shielding[J]. ACS Applied Materials&Interfaces,2011,3(3):918–924.
    [152] Yan D X, Ren P G, Pang H, et al. Effcient electromagnetic interference shieldingoflightweightgraphene/polystyrenecomposite[J]. JournalofMaterialsChemistry,2012,22(36):18772.
    [153] Singh V K, Shukla A, Patra M K, et al. Microwave absorbing properties of athermally reduced graphene oxide/nitrile butadiene rubber composite[J]. Carbon,2012,50(6):2202–2208.
    [154] BaiX,ZhaiY,ZhangY. GreenApproachToPrepareGraphene-BasedCompositeswith High Microwave Absorption Capacity[J]. The Journal of Physical ChemistryC,2011,115:11673–11677.
    [155]方建军,李素芳,查文珂,等.镀镍石墨烯的微波吸收性能[J].无机材料学报,2011,26(5):467–471.
    [156] Ma E, Li J, Zhao N, et al. Preparation of reduced graphene oxide/Fe3O4nanocom-posite and its microwave electromagnetic properties[J]. Materials Letters,2013,91(C):209–212.
    [157] Chu Z, Cheng H, Zhou Y, et al. Anisotropic microwave absorbing properties oforiented SiC short fber sheets[J]. Materials and Design,2010,31(6):3140–3145.
    [158] LiuG,WangL,ChenG,etal. ComparisonStudyonMicrowaveAbsorbingProper-tiesofSiCAbsorbers[J]. AppliedMechanicsandMaterials,2012,117:1057–1060.
    [159] Meng S, Guo X, Jin G, et al. Preparation and microwave absorbing properties ofSiC microtubes[J]. Journal of Materials Science,2012:1–4.
    [160] Zhao D L, Luo F, Zhou W C. Microwave absorbing property and complex permit-tivity of nano SiC particles doped with nitrogen[J]. Journal of Alloys and Com-pounds,2010,490(1-2):190–194.
    [161] Zhu H, Bai Y, Liu R, et al. In situ synthesis of one-dimensional MWCNT/SiCporous nanocomposites with excellent microwave absorption properties[J]. Jour-nal of Materials Chemistry,2011,21(35):13581–13587.
    [162] Zhu H, Bai Y, Liu R, et al. Microwave absorption properties of MWCNT-SiCcomposites synthesized via a low temperature induced reaction[J]. AIP Advances,2011,1:032140.
    [163] Hourquebie P, Olmedo L. Infuence of structural parameters of conducting poly-mers on their microwave properties[J]. Synthetic Metals,1994,65(1):19–26.
    [164] Duan Y, Wu G, Li X, et al. On the correlation between structural characterizationandelectromagneticpropertiesofdopedpolyaniline[J]. SolidStateSciences,2010,12(8):1374–1381.
    [165] Faez R, Martin I M, De Paoli M A, et al. Microwave properties of EPDM/PAni-DBSA blends[J]. Synthetic Metals,2001,119(1-3):435–436.
    [166] Faez R, Reis A D, Soto-Oviedo M A, et al. Microwave Absorbing Coatings Basedon a Blend of Nitrile Rubber, EPDM Rubber and Polyaniline[J]. Polymer Bulletin,2005,55(4):299–307.
    [167] Soto-Oviedo M A, Araújo O A, Faez R, et al. Antistatic coating and electromag-netic shielding properties of a hybrid material based on polyaniline/organoclaynanocomposite and EPDM rubber[J]. Synthetic Metals,2006,156(18-20):1249–1255.
    [168]方鲲,白树林.掺杂态聚苯胺/三元乙丙橡胶(PAn-DBSA/EPDM)的宽频微波吸收性能研究[J].化工新型材料,2007,35(3):67–71.
    [169] Devi D S P, Bipinbal P K, Jabin T, et al. Enhanced electrical conductivity ofpolypyrrole/polypyrrole coated short nylon fber/natural rubber composites pre-paredbyinsitupolymerizationinlatex[J]. MaterialsandDesign,2013,43(C):337–347.
    [170] Pramila Devi D S, Nair A B, Jabin T, et al. Mechanical, thermal, and microwaveproperties of conducting composites of polypyrrole/polypyrrole-coated short ny-lon fbers with acrylonitrile butadiene rubber[J]. Journal of Applied Polymer Sci-ence,2012,126(6):1965–1976.
    [171] Ting T H, Wu K H. Synthesis, characterization of polyaniline/BaFe12O19compos-ites with microwave-absorbing properties[J]. Journal of Magnetism and MagneticMaterials,2010,322(15):2160–2166.
    [172] Ma R T, Zhao H T, Zhang G. Preparation, characterization and microwave ab-sorption properties of polyaniline/Co0.5Zn0.5Fe2O4nanocomposite[J]. MaterialsResearch Bulletin,2010,45(9):1064–1068.
    [173] Gairola S P, Verma V, Kumar L, et al. Enhanced microwave absorption propertiesin polyaniline and nano-ferrite composite in X-band[J]. Synthetic Metals,2010,160(21-22):2315–2318.
    [174] Ting T H, Yu R P, Jau Y N. Synthesis and microwave absorption characteristicsof polyaniline/NiZn ferrite composites in2–40GHz[J]. Materials Chemistry andPhysics,2011,126(1-2):364–368.
    [175] Yang C C, Gung Y J, Shih C C, et al. Synthesis, infrared and microwave ab-sorbing properties of (BaFe12O19+BaTiO3)/polyaniline composite[J]. Journal ofMagnetism and Magnetic Materials,2011,323(7):933–938.
    [176] Hosseini S H, Mohseni S H, Asadnia A, et al. Synthesis and microwave absorb-ing properties of polyaniline/MnFe2O4nanocomposite[J]. Journal of Alloys andCompounds,2011,509(14):4682–4687.
    [177] Ting T H, Jau Y N, Yu R P. Microwave absorbing properties of polyaniline/multi-walled carbon nanotube composites with various polyaniline contents[J]. AppliedSurface Science,2012,258(7):3184–3190.
    [178] Qing Y, Zhou W, Luo F, et al. Optimization of electromagnetic matching of car-bonyliron/BaTiO3compositesformicrowaveabsorption[J]. JournalofMagnetismand Magnetic Materials,2011,323(5):600–606.
    [179] Zhu Y F, Zhang L, Natsuki T, et al. Facile Synthesis of BaTiO3Nanotubes andTheir Microwave Absorption Properties[J]. ACS Applied Materials&Interfaces,2012,4(4):2101–2106.
    [180] Liu G, Wang L, Zhou J. Synthesis of Micrometer-Scale ZnO Rods and Its Electro-magnetic Performance in Microwave Band[J]. Ferroelectrics,2007,356(1):225–229.
    [181] Zhuo R F, Qiao L, Feng H T, et al. Microwave absorption properties and theisotropic antenna mechanism of ZnO nanotrees[J]. Journal of Applied Physics,2008,104(9):094101.
    [182] Zhuo R F, Feng H T, Chen J T, et al. Multistep Synthesis, Growth Mechanism, Op-tical, and Microwave Absorption Properties of ZnO Dendritic Nanostructures[J].The Journal of Physical Chemistry C,2008,112(31):11767–11775.
    [183] Zhang S, Cao Q. Microwave Absorbing Performance and Infrared Emissivity ofCo-Doped ZnO[J]. Advanced Materials Research,2011,399-401:880–885.
    [184] Chen Y J, Cao M S, Wang T H, et al. Microwave absorption properties of the ZnOnanowire-polyester composites[J]. Applied Physics Letters,2004,84(17):3367.
    [185] FangXY,CaoMS,ShiXL,etal. Microwaveresponsesandgeneralmodelofnan-otetraneedle ZnO: Integration of interface scattering, microcurrent, dielectric re-laxation, and microantenna[J]. Journal of Applied Physics,2010,107(5):054304.
    [186] Li H, Wang J, Huang Y, et al. Microwave absorption properties of carbon nan-otubes and tetrapod-shaped ZnO nanostructures composites[J]. Materials Scienceand Engineering B,2010,175(1):81–85.
    [187] Tang X, Hu K a. Preparation and electromagnetic wave absorption properties ofFe-doped zinc oxide coated barium ferrite composites[J]. Materials Science andEngineering B,2007,139(2-3):119–123.
    [188] Han R, Han X h, Qiao L, et al. Enhanced microwave absorption of ZnO-coatedplanar anisotropy carbonyl-iron particles in quasimicrowave frequency band[J].Materials Chemistry and Physics,2011,128(3):317–322.
    [189] Zhang W, Xu Y, Yuan L, et al. Microwave Absorption and Shielding Property ofCompositeswithFeSiAlandCarbonousMaterialsasFiller[J]. JournalofMaterialsScience&Technology,2012,28(10):913–919.
    [190] Chopra S, Pandey M K, Alam S. Synthesis and characterization of magneticnanocomposites of fullerene-containing polyurethane flms for microwave appli-cations[J]. Journal of Applied Polymer Science,2011,120(6):3204–3211.
    [191] Li Y, Chen C, Pan X, et al. Multiband microwave absorption flms based on defec-tive multiwalled carbon nanotubes added carbonyl iron/acrylic resin[J]. PhysicaB: Condensed Matter,2009,404(8-11):1343–1346.
    [192] Meng X f, Li D h, Shen X q, et al. Preparation and magnetic properties of nano-Nicoated cenosphere composites[J]. Applied Surface Science,2010,256(12):3753–3756.
    [193] Park K Y, Han J H, Lee S B, et al. Microwave absorbing hybrid composites con-taining Ni–Fe coated carbon nanofbers prepared by electroless plating[J]. Com-posites Part A: Applied Science and Manufacturing,2011,42(5):573–578.
    [194] Yang W, Fu Y, Lin X, et al. Microwave absorption property of Ni–Co–Fe–P-coated fake graphite prepared by electroless plating[J]. Journal of Alloys andCompounds,2012,518:6–10.
    [195] Shi G, Zhang J, Yu D, et al. Synthesis and Microwave-Absorbing Properties ofAl2O3CoatedPolyhedralFeNanocapsulesPrepared byArc-DischargeMethod[J].Advanced Materials Research,2011,299:739–742.
    [196] KimJH,KimSS. MicrowaveabsorbingpropertiesofAg-coatedNi–Znferritemi-crospheres prepared by electroless plating[J]. Journal of Alloys and Compounds,2011,509(12):4399–4403.
    [197] He Y, Gong R, Li X, et al. Design, fabrication and characteristic of two-layermicrowave absorbers composed of magnetic micropowder-rubber composites inX-band frequency range[J]. Europhysics Letters,2007,77(6):68006.
    [198] Pinho M S, Gregori M L, Nunes R C R, et al. Aging effect on the refectivitymeasurements of polychloroprene matrices containing carbon black and carbonyl-iron powder[J]. Polymer Degradation and Stability,2001,73(1):1–5.
    [199] Brosseau C, Talbot P. Instrumentation for microwave frequency-domain spec-troscopy of flled polymers under uniaxial tension[J]. Measurement Science andTechnology,2005,16(9):1823–1832.
    [200] Mdarhri A, Brosseau C, Carmona F. Microwave dielectric properties of carbonblack flled polymers under uniaxial tension[J]. Journal of Applied Physics,2007,101(8):084111.
    [201] BrosseauC,NDongW,MdarhriA. Infuenceofuniaxialtensiononthemicrowaveabsorption properties of flled polymers[J]. Journal of Applied Physics,2008,104(7):074907.
    [202] Qin F, Brosseau C, Peng H X. In situ microwave characterization of mi-crowire composites under mechanical stress[J]. Applied Physics Letters,2011,99(25):252902.
    [203]何燕飞,龚荣洲,王鲜,等.橡胶片型吸波材料硫化特性研究[J].功能材料,2006,37(3):386–388.
    [204]李淑环,刘欣然,朱燃,等.偶联剂A151对锶铁氧体/甲基乙烯基硅橡胶吸波复合材料性能的影响[J].橡胶科技市场,2012(8):10–14.
    [205] Kang D W, Yeo H G, Lee K S. Preparation and characteristics of liquid siliconerubber nanocomposite containing ultrafne magnesium ferrite powder[J]. Journalof Inorganic and Organometallic Polymers,2004,14(1):73–84.
    [206] Yu K C, Ma C C M, Teng C C, et al. Preparation and microwave absorbencyof Fe/epoxy and FeNi3/epoxy composites[J]. Journal of Alloys and Compounds,2011,509(33):8427–8432.
    [207] Tian M, Su L, Cai W, et al. Mechanical properties and reinforcement mechanismsof hydrogenated acrylonitrile butadiene rubber composites containing fbrillar sil-icate nanofbers and short aramid microfbers[J]. Journal of Applied Polymer Sci-ence,2010,120(3):1439–1447.
    [208] Likozar B. The effect of ionic liquid type on the properties of hydrogenated ni-trile elastomer/hydroxy-functionalized multi-walled carbon nanotube/ionic liquidcomposites[J]. Soft Matter,2011,7(3):970.
    [209] Gatos K G, Karger-Kocsis J. Effect of the aspect ratio of silicate platelets on themechanical and barrier properties of hydrogenated acrylonitrile butadiene rubber(HNBR)/layered silicate nanocomposites[J]. European Polymer Journal,2007,43(4):1097–1104.
    [210] Valsecchi R, Torlaj L, Turri S, et al. Barrier properties in hydrogenated acryloni-trile butadiene rubber compounds containing organoclays and perfuoropolyetheradditives[J]. Journal of Applied Polymer Science,2010,119(6):3476–3482.
    [211] Cadambi R M, Ghassemieh E. Infuence of nanoclays on mechanical and bar-rier properties of hydrogenated acrylonitrile butadiene rubber nanocomposites[J].Plastics, Rubber and Composites,2011,40(6):283–288.
    [212] Xu D. Friction and wear of HNBR with different fllers under dry rolling andsliding conditions[J]. eXPRESS Polymer Letters,2009,3(2):126–136.
    [213] Xu D, Karger-Kocsis J. Rolling and sliding wear properties of hybrid systemscomposed of uncured/curedHNBR and partlypolymerized cyclic butylene tereph-thalate (CBT)[J]. Tribiology International,2009,43(1-2):289–298.
    [214] D’EliaUF,PelosiG,SelleriS,etal. Acarbon-nanotube-basedfrequency-selectiveabsorber[J]. International Journal of Microwave and Wireless Technologies,2010,2(05):479–485.
    [215]吴红焕,王晓艳,张玲,等.碳纤维吸波材料的研究进展[J].材料导报,2007,21(5):115–117.
    [216]邱军,王玉磊.碳纳米管在聚合物基吸波复合材料中的应用[J].玻璃钢/复合材料,2012(3):80–84.
    [217]李斌鹏,王成国,王雯.碳基吸波材料的研究进展[J].材料导报,2012,26(7):9–14.
    [218] Kim J B, Lee S K, Kim C G. Comparison study on the effect of carbon nanomaterials for single-layer microwave absorbers in X-band[J]. Composites Scienceand Technology,2008,68(14):2909–2916.
    [219] Nanni F, Travaglia P, Valentini M. Effect of carbon nanofbres dispersion on themicrowave absorbing properties of CNF/epoxy composites[J]. Composites Sci-ence and Technology,2009,69(3-4):485–490.
    [220] Deng L, Han M. Microwave absorbing performances of multiwalled carbon nan-otube composites with negative permeability[J]. Applied Physics Letters,2007,91(2):023119.
    [221] Hummers W S, Jr, Offeman R E. Preparation of graphitic oxide[J]. Journal of theAmerican Chemical Society,1958,80(6):1339–1339.
    [222] Essam J W. Percolation theory[J]. Reports on Progress in Physics,1980,43:833–912.
    [223]吴其晔.高分子凝聚态物理学[M].北京:科学出版社,2012.
    [224] AdohiBJP,MdarhriA,PrunierC,etal. Acomparisonbetweenphysicalpropertiesof carbon black-polymer and carbon nanotubes-polymer composites[J]. Journal ofApplied Physics,2010,108(7):074108.
    [225] Garboczi E, Snyder K, Douglas J. Geometrical percolation threshold of overlap-ping ellipsoids[J]. Physical Review E,1995,52(1):819–828.
    [226] Liu Z, Bai G, Huang Y, et al. Refection and absorption contributions to the elec-tromagnetic interference shielding of single-walled carbon nanotube/polyurethanecomposites[J]. Carbon,2007,45(4):821–827.
    [227] Krakovsky I, Myroshnychenko V. Modeling dielectric properties of compositesby fnite-element method[J]. Journal of Applied Physics,2002,92(11):6743.
    [228] Myroshnychenko V, Brosseau C. Finite-element modeling method for the pre-diction of the complex effective permittivity of two-phase random statisticallyisotropic heterostructures[J]. Journal of Applied Physics,2005,97(4):044101.
    [229] Mohanraj G T, Chaki T K, Chakraborty A, et al. AC impedance analysis and EMIshielding effectiveness of conductive SBR composites[J]. Polymer Engineeringand Science,2006,46(10):1342–1349.
    [230] Yusoff A N, Abdullah M H, Ahmad S H, et al. Electromagnetic and absorptionproperties of some microwave absorbers[J]. Journal of Applied Physics,2002,92(2):876–882.
    [231] Paton K R, Windle A H. Effcient microwave energy absorption by carbon nan-otubes[J]. Carbon,2008,46(14):1935–1941.
    [232] Duan Y, Liu S, Wen B, et al. A Discrete Slab Absorber: Absorption Effciency andTheory Analysis[J]. Journal of Composite Materials,2006,40(20):1841–1851.
    [233] Park S, Ruoff R S. Chemical methods for the production of graphenes[J]. NatureNanotechnology,2009,4(4):217–224.
    [234] Villar-Rodil S, Paredes J I, Martínez-Alonso A, et al. Preparation of graphene dis-persions and graphene-polymer composites in organic media[J]. Journal of Mate-rials Chemistry,2009,19(22):3591.
    [235] Wen S, Zhang X, Hu S, et al. Infuence of in-situ reaction on luminescent prop-erties of samarium-complex/hydrogenated acrylonitrile-butadiene composites[J].Polymer,2009,50(14):3269–3274.
    [236] Wang C, Han X, Xu P, et al. The electromagnetic property of chemically reducedgraphene oxide and its application as microwave absorbing material[J]. AppliedPhysics Letters,2011,98(7):072906.
    [237] Guo T, Wang L, Zhang A, et al. Effects of nano calcium carbonate modifed bya lanthanum compound on the properties of polypropylene[J]. Journal of AppliedPolymer Science,2005,97(3):1154–1160.
    [238] Guo Y, Wang L, Zhang A. Mechanical properties and crosslink density of rareearth-modifed high-abrasion furnace-flled powdered natural rubber[J]. Journalof Applied Polymer Science,2006,102(2):1755–1762.
    [239] Han R, Yi H b, Wei J q, et al. Electromagnetic performance and microwave ab-sorbing property of nanocrystalline Sm2Fe14B compound[J]. Applied Physics A,2012.
    [240] Bartsch J R, Lebannon N J. Molding process and composition[J].1969.
    [241] Yuan X, Peng Z, Zhang Y, et al. In situ preparation of zinc salts of unsaturatedcarboxylic acids to reinforce NBR[J]. Journal of Applied Polymer Science,2000,77:2740–2748.
    [242] Peng Z, Qian J, Yin D, et al. Reinforcement of elastomers by in situ preparedaluminium methacrylate[J]. Kautschuk Gummi Kunststoffe,2002.
    [243] DuA,PengZ,ZhangY,etal. Effectofmagnesiummethacrylateonthemechanicalproperties of EVM vulcanizate[J]. Polymer Testing,2002,21:889–895.
    [244] Du A, Peng Z, Zhang Y, et al. Properties of EVM vulcanizates reinforced by insitu prepared sodium methacrylate[J]. Journal of Applied Polymer Science,2003,89:2192–2200.
    [245] Lu Y, Liu L, Shen D, et al. Infrared study onin situ polymerization of zincdimethacrylate in poly(α-octylene-co-ethylene) elastomer[J]. Polymer Interna-tional,2004,53(6):802–808.
    [246] LuY,LiuL,TianM,etal. Studyonmechanicalpropertiesofelastomersreinforcedby zinc dimethacrylate[J]. European Polymer Journal,2005,41(3):589–598.
    [247] Xu C, Chen Y, Wang Y, et al. A study on the crosslink network evolution of nitrilebutadiene rubber reinforced by in situ zinc dimethacrylate[J]. Polymer Compos-ites,2011,32(12):2084–2092.
    [248]彭宗林.不饱和羧酸盐增强三元乙丙橡胶的研究[D].上海:上海交通大学,2001.
    [249]尹德荟.不饱和羧酸金属盐增强丁苯橡胶的研究[D].上海:上海交通大学,2002.
    [250]杜爱华.不饱和羧酸盐增强乙烯-醋酸乙烯酯橡胶的研究[D].上海:上海交通大学,2003.
    [251] Liu L, He L, Yang C, et al. In situ Reaction and Radiation Protection Propertiesof Gd(AA)3/NR Composites[J]. Macromolecular Rapid Communications,2004,25(12):1197–1202.
    [252]刘力.稀土/高分子复合材料制备及其亚微观结构与发光、射线屏蔽及磁性能的关系研究[D].北京:北京化工大学,2004.
    [253] JiangMJ,DangZM,BozlarM,etal. Broad-frequencydielectricbehaviorsinmul-tiwalled carbon nanotube/rubber nanocomposites[J]. Journal of Applied Physics,2009,106(8):084902.
    [254] Turky G M, Ghoneim A M, Kyritsis A, et al. Dielectric dynamics of some ny-lon6/CaCO3composites using broadband dielectric spectroscopy[J]. Journal ofApplied Polymer Science,2011,122(3):2039–2046.
    [255]关振铎,张中太.无机材料物理性能[M].北京:清华大学出版社,1992.
    [256] Havriliak S, Negami S. A complex plane representation of dielectric and mechan-ical relaxation processes in some polymers[J]. Polymer,1967,8:161–210.
    [257] Wei Y Z, Sridhar S. A new graphical representation for dielectric data[J]. TheJournal of chemical physics,1993,99(4):3119–3124.
    [258]崔霞.甲基丙烯酸锂及稀土化合物LaCl3改性乙烯-醋酸乙烯酯橡胶的研究[D].上海:上海交通大学,2007.
    [259]张倩.丁腈橡胶复合物抗静电性能及丁腈橡胶基聚合物固体电解质材料的研究[D].上海:上海交通大学,2010.
    [260]丁黎明,董绍俊,汪尔康.高分子固体电解质研究进展[J].电化学,1997,3(4).
    [261]王云普,郭小芳,顾生玖,等.聚合物固体电解质基体的研究进展[J].高分子通报,2006(002):30–36.
    [262] Ling Q, Sun J, Zhao Q, et al. Microwave-absorbing properties of linear low-density polyethylene/ethylene-octene copolymer/carbonyl iron powder compos-ites[J]. Journal of Applied Polymer Science,2009,111(4):1911–1916.
    [263] Zhang X F, Guan P F, Dong X L. Transform between the permeability and per-mittivity in the close-packed Ni nanoparticles[J]. Applied Physics Letters,2010,97(3):033107.
    [264]段玉平,刘顺华,管洪涛,等.非连续体吸波平板的设计制备及吸波机理分析[J].复合材料学报,2006,23(3):37–43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700