用户名: 密码: 验证码:
硫肥对土壤性质、重金属形态和作物生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国长江以南地区是缺硫较严重的地区。施硫可提高作物产量和品质,但施用不当,会造成作物减产和品质降低。硫与其它元素间的交互作用及其效应方面要超过其本身的营养作用,因此,科学施用硫肥至关重要。本文以不同硫肥(单质S、硫酸根硫SO42--S)为研究对象,采用盆栽方式研究了它们对红壤和黄棕壤上水稻、油菜吸收养分的影响,探讨硫肥施入后土壤氧化还原性、土壤微生物量C、N、S和酶活性的变化,揭示了缩二脲对硫转化及对作物根系活力和养分吸收的效应,分析了硫肥与磷矿粉配施对污染土壤重金属Cd、Cu形态变化和作物生长的影响,旨在为硫肥的合理施用和重金属污染土壤原位固化技术提供科学依据。主要结果如下:
     1)在相同施硫量的水稻盆栽实验中,黄棕壤有效硫含量相对高于红壤,可能因为前者的Fe(Ⅲ)含量较高,氧化能力更强。红壤根表Fe含量(胶膜)高于黄棕壤,水稻吸硫量大于黄棕壤,表明根表胶膜中的硫是植物吸收硫的供应库。缩二脲与硫磺配合施用,对硫磺氧化的影响先抑制后促进,在红壤中水稻吸S量降低,黄棕壤中吸S量增加,表明缩二脲抑制了红壤根系的氧化作用,有可能生成FeS或FeS2沉淀。
     2)单质S在红壤与黄棕壤上的氧化受温度和水分影响。温度低于5℃时硫的氧化速率很低,干湿交替的硫氧化速率较高;随着硫磺施用量增加,其氧化速率增加。土壤氧化还原度pe+pH值在11-12之间。
     3)土壤pH、Eh和log[SO42-]的多元回归分析表明,红壤Eh与施S量的相关性均达极显著水平。红壤0.4g/kg SO42--S处理及黄棕壤0.4g/kg S0-S、0.2g/kgSO42--S处理油菜的生物量、根系活力和吸S量均较低。红壤0.4g/kg SO42--S和黄棕壤0.2g/Kg SO42--S处理的氧化还原体系以H2S03/S电对为主,有还原性物质产生,对油菜吸收S有不利影响。黄棕壤0.4gkg S0-S处理虽然是以H2S04/S电对为主,但其氧化还原电位与硫用量间相关不显著。
     4)以油菜为供试作物,测定了两种硫肥处理间土壤微生物量C、N、S和土壤基础呼吸(C02-C)的变化。随着硫肥用量的增加,土壤微生物量C、N、S和土壤基础呼吸均增加,但在苗期土壤微生物量C则降低。单质S处理油菜吸S量高于SO42--S处理,单质S的增产效果较好。根际土壤微生物量C、N、S和土壤基础呼吸低于非根际土壤,而苗期油菜根际土壤微生物量S大于非根际土壤,硫磺处理的土壤pH值变化与此相似,是影响微生物活性的重要因素。根际土壤蔗糖酶和过氧化氢酶活性低于非根际土壤,脲酶活性高于非根际土壤。土壤微生物量和酶活性对油菜吸收硫起了重要作用。
     5)重金属Cd、Cu污染土壤中,单施硫肥和磷矿粉时,荆芥的生物量增加的顺序为:磷矿粉处理>SO42--S处理>单质S处理,硫肥和磷矿粉配施后生物量明显高于单施。土壤重金属污染时,硫肥用量过量对作物可产生双重毒害作用。硫肥与磷矿粉作用比较,单施硫肥时重金属Cd、Cu更易向植物可利用态转变。
     6)不同硫肥与磷矿粉配施后,污染土壤中水溶态、交换态及残渣态Cu含量降低,水溶和交换态Cd含量增加,残渣态Cd含量降低。0.2g/kg单质S+磷矿粉处理在促进Cd2+向潜在可利用态转化的能力好于单施磷矿粉处理。种植小白菜和荆芥两茬作物后水溶和交换态Cu、Cd含量均降低,残渣态Cd、Cu增加,表明硫肥与磷矿粉配施对土壤重金属的固化有良好作用。
Soil sulfur deficiency is more serious in southern of the Yangtze River in China. Sulfur fertilizers can improve crop yields and quality, and also decrease them if applied properly. And the nutritional role of sulphur is far inferior to the effects and interaction between sulfur and other elements. Therefore, it is essential that rational application of sulfur fertilizer. Pot experiments were carried out to study effects of different sulfur fertilizers (S0-S, SO42--S) on rice, rapeseed and theirs roots vigor, capacity of nutrient uptake in red and yellow brown soils, soil oxidation-reduction reaction, soil microbial biomass C, N, S and enzyme activity and the impact of biuret on paddy soil redox and rice roots vigor. Meanwhile, we explored the effect of sulfur fertilizer on different crops in heavy metal Cd, Cu contaminated soil, and the impact of application of sulphur fertilizers single and combined phosphorus rocks on Cd, Cu forms changes. These could provide a support for the rational application of sulfur fertilizer and situ immobilization technology in heavy metal contaminated soil. The main results are described as follows.
     (1) A rice pot experiment was conducted at the same dose of sulfur fertilizer applied, the effective sulfur content in yellow-brown soil was relatively higher than that one in the red soil, probably because the content of Fe(Ⅲ) was higher, the oxidizing ability was stronger in yellow-brown soil. Total Fe content of the plaque of root surface in:red soil> yellow brown soil, and total sulfur absorbed by the rice in red soil more than that in yellow-brown soil, which suggested sulfur in the plaque of root surface is the base of nutrient supply. Sulfur oxidation is inhibited firstly and promoted later by sulfur application mixed with biuret during the process of soil incubation. Effect of different rates of biuret fertilizer application on the S0-S fertilizer effectivity, the effectivity was reduced in red soil while enhanced in yellow brown soil with increasing rate of biuret application according to sulfur uptake by rice. Biuret might inhibit the oxidation of the root in the plaque of root surface, and led to generate the precipitation of FeS or FeS2.
     (2) Sulfur oxidation rate is influenced by the different temperature and moisture in the red and yellow brown soils, the rate is very low when temperature is below5℃, and is quite fast when wet and dry of soil moisture alternated frequently. And the rate also increased with increasing rates of sulfur applied. The degree of soil redox, pe+pH, was in the range of11-12。
     (3) Multivariate regression analysis showed that the correlation of the soil pH, Eh and log[SO42-] in red soil is better than that of the yellow-brown soil, and reached a highly significant level. There had an negative impact on rape growth, roots vigor and absorption of S amount in the0.4g/kg SO42-S treatment of the red soil and the0.4g/kg S0-S and0.2g/kg SO42--S treatment of yellow brown soil. The redox system was H2SO3/S mainly in the0.4g/kg SO42--S treatment of the red soil and the0.2g/kg SO42--S treatment of yellow brown soil, which could generate reducing substances, which had a negative impact on rape growth. Although the redox system was H2SO4/S mainly in the0.4g/kg S0-S treatment of the yellow brown soil, the correlation between soil redox potential and the rates of sulfur apllied was not significantly
     (4) Rape was used as testing crop, soil microbial biomass C, N, S and soil basal respiration (CO2-C) was measured. Soil microbial biomass C, N, S and soil basal respiration increased with increasing the rates of sulfur fertilizer applied, but the soil microbial biomass C decreased in the seedling stage. The content of rape uptake sulphur in the S0-S treatment was higher than that in the SO42--S treatment, which suggested that the role of increasing yield in the S0-S treatment was better. Soil microbial biomass C, N, S, and soil basal respiration in the rhizosphere soil was lower than that in the non-rhizosphere soil, but the soil microbial biomass S was greater than that of the non-rhizosphere soil in the rape seedling stage, and the soil pH of the S0-S treratments were also similar results, which showed that soil pH was a very important factor affecting the microbial activity. The invertase and catalase activities were weaker, and urease activity was stronger in the rhizosphere soil than that in the non-rhizosphere soil. Soil microbial biomass and enzyme activities played an important role in uptaking of sulfur by rape.
     (5) Sulfur fertilizers and phosphate rock single applied in heavy metals Cd, Cu contamination in soil, the nepeta biomass increased in following order:phosphate rock> SO42--S>S0-S treatment. The crops biomass of sulfur fertilizers combined with phosphate rock applied was significantly higher than that of two fertilizers single applied, respectively. A double toxic effect of excessive amount of sulfur fertilizer applied on crops growth in Cd and Cu combined contaminated soil. In comparison with phosphate rock, sulfur fertilizer promoted the transformation of Cu and Cd from the inactive forms to the active ones more easily.
     (6) Compared with phosphate rock, different rates and forms sulfur fertilizer and phosphate rock combined application could more easily decrease the contents of water soluble and exchange forms Cu, residual Cu, Cd, and increase the contents of water soluble and exchange forms Cd. The role of0.2g/kg S0-S and phosphate rock combined treatment in promoting the transformation of Cd from the active forms to the inactive ones was better than that of the phosphate rock treatment. The contents of water soluble and exchange forms Cu, Cd decreased and residual Cu, Cd increased after continuous cultivated pakchoi and nepeta, which revealed there had a good effect of sulphur fertilizers combined with phosphate rock on the Immobilization of soil heavy metals.
引文
1.安志装,王校常,严蔚东,等.镉硫交互处理对水稻吸收累积及其蛋白巯基含量的影响.土壤学报,2004,41(5):728-734
    2.鲍士旦主编.土壤农化分析(第三版).北京:中国农业出版社,1999
    3.曹志洪,孟赐福,胡正义编著.中国农业与环境中的硫.北京:科学出版社,2011
    4.陈防,鲁剑巍,宁昌会,等.湖北省硫肥施用效果初探.土壤肥料,1997,131:12-15
    5.陈怀满.土壤-植物系统中的重金属污染.北京:科学出版社,1996
    6.陈铭,刘更另,孙富臣.红壤对SO42-和H2P04-的吸附与竞争吸附研究.热带亚热带土壤科学,1996,5(2):85-89
    7.陈秋,李延等.S素营养对水稻若干生理代谢的影响.福建农业大学学报,1997,(3):328-332
    8.陈世宝,朱永官,马义兵.磷对降低土壤中铅的生物有效性的X衍射及电镜分析.环境科学学报,2006,26(6):924-929
    9.迟凤琴,魏丹,申惠波,等.黑龙江省主要类型稻田土壤硫现状及硫肥效果研究.土壤肥料,1999,(6):7-11
    10.仇荣亮,吴菁,尧文元.南方土壤硫酸根吸附解吸影响因子研究.中山大学学报(自然科学版),2001,40(4):88-92
    11.崔红标,田超,周静,等.纳米羟基磷灰石对重金属污染土壤Cu、Cd形态分布及土壤酶活性影响.农业环境科学学报,2011,30(5):874-880
    12.崔岩山,王庆仁,董艺婷,等.硫磺对土壤中Pb、Zn形态的影响.环境化学,2004,23(1):46-50
    13.崔岩山,王庆仁.不同种类硫肥对油菜吸锌的影响.中国农业生态学报,2008,16(1):113-116
    14.丁昌璞,于天仁.水稻土中氧化还原过程的研究.Ⅳ.红壤性水稻土中铁、锰的活性.土壤学报,1958,6:99-107
    15.董元彦,王淑玉,邓友军,李学垣.华中地区几种可变电荷土壤对S042-吸附的研究.华中农业大学学报,1990,9(1):74-79
    16.樊明宪,Messick D L, de Bery C.世界硫需求及硫肥状况.磷肥与复肥,2005,20(6):5-8
    17.范业宽,叶坤合主编.土壤肥料学.武汉大学出版社,2002
    18.高明霞,胡正义,王国栋.水稻根表胶膜的浸提及其元素测定方法.环境化学,2007,26(3):331-334
    19.胡正义,夏旭,无丛杨慧,等.硫在稻根微域中化学行为及其对水稻吸收重金属的影响机理.土壤,2009,41(1):27-31
    20.胡正义,张继榛,刘四化,等.作物幼苗根际土壤MB-S的初步研究.安徽农业大学学报,1996,23(4):451-456
    21.李金凤,陈洪斌,张玉龙,等.辽宁大豆主产区土壤硫素状况及不同硫肥肥效研究.土壤通报,2004,35(4):470-473
    22.李联铁,王正银,邹国纯.尿素和缩二脲含量对作物的双重毒害作用.西南农业大学学报,1993,15(6):546-561
    23.李敏,章力干,胡正义.元素硫在水稻根际氧化特征及其对水稻吸收铁锰磷硫的影响.安徽农业大学学报,2007,34(3):426-431
    24.李书田,林葆,周卫.土壤硫素形态及其转化研究进展.土壤通报,2001,32(3):32-35
    25.李学垣.土壤化学及实验指导.北京:中国农业出版社,1997
    26.李玉影.水稻需硫特性及硫对水稻产质量的影响.土壤肥料,1999,(1):24-26
    27.李媛,崔岩山,陈晓晨,等.几种含硫肥料对油菜和三叶鬼针草吸收铅镉的影响.中国科学院研究生院学报,2009,2(5):621-626
    28.李祖章,刘光荣,袁福生,等.江西省农业生产中硫肥的需求与有效施用.江西农业科技,2001,2:20-21
    29.梁丽芹.硫与矿物改良剂对土壤-亳菊系统中Cd、Pb行为的影响.安徽农业大学硕士论文,2007
    30.梁伟,张纪伍,顾建宁,等.五种南方土壤的硫酸根吸附特性.农村生态环境,1991,1:49-53
    31.林葆,李书田,周卫.影响硫磺在土壤中氧化的因素.土壤肥料,2000,5:3-8
    32.林惠荣,施积炎,傅晓萍,等.硫对铅污染水稻土微生物活性及群落结构的影响.2010,21(7):1829-1834
    33.林启美,吴玉光,刘焕龙.熏蒸法测定土壤微生物量碳的改进.生态学杂志,1999,18(2):63-66
    34.林蔚刚,吴俊江,董德健,等.硅钙肥、生石灰、硫肥三因素二次多项式回归大豆产量效应分析.大豆科学,2007,26(3):351-352
    35.刘崇群.中国南方土壤硫的状况和对硫肥的需求.磷肥与复肥,1995,10(3):14-18
    36.刘光荣,袁福生,李祖章,等.氮硫配施对水稻的效应研究.江西农业学报,2001,13(2):1-7
    37.刘广深,许中坚,徐文彬,等.模拟酸雨对土壤有效磷衰减的影响.矿物学报,2002,22(1):35-38
    38.刘利娟,崔明启,赵佳,等.同步辐射中能X射线近边吸收谱方法研究不同施肥制度对土壤中硫形态的影响.核技术,2010,33(1):5-9
    39.刘生浩.土壤微生物生物量的研究.南京农业大学博士论文,1992
    40.刘鑫,雷宏军,朱端卫.变动氧化还原状况下酸性土壤中活性锰的变化.土壤学报,2008,45(4):734-739
    41.刘鑫,朱端卫,雷宏军.酸性土壤活性锰与pH、Eh关系及其生物反应.植物营养与肥料学报,2003,9(3):317-323
    42.刘修才,莫淑勋.土壤中有机酸比色法测定的研究.土壤学报,1985,2(3):290-296
    43.鲁剑巍,陈防,陈行春,等.钾、硫肥配施对作物产量与品质的影响.土壤通报,1994,25(5):215-218
    44.鲁如坤主编.土壤农业化学分析方法.北京:中国农业科技出版社,2000
    45.罗奇祥,刘光荣,王少先,等.不同硫肥品种在稻-稻-油耕作制中的连施效应.江西农业科技,1997,1:29-32
    46.孟赐福,曹志洪,姜培坤,等.磷矿粉与硫磺配施对油菜产量及养分吸收的影响.中国生态农业学报,2007,15(6):81-83
    47.孟赐福,姜培坤,曹志洪,等.硫素与其他营养元素的交互作用对作物养分 吸收、产量和质量的影响.土壤,2009,41(3):329-334
    48.孟赐福,吕晓男,曹志洪,等.水稻和油菜施硫的增产效应和土壤有效硫临界指标的研究.植物营养与肥料学报,2004,10(2):218-220
    49.潘洁,谢尉法.比浊法间接测定植物中的含硫量.环境科学动态,2002(3):35-36
    50. Paul E A, Clark FE(顾宗濂,李振高,林先贵,等译).土壤生物学与生物化学.北京:科学技术文献出版社,1993,p57-81,p255-272
    51.邱志满,詹长庚,姜丽娜,符建荣.钾硫、硼硫肥配施对油菜效应的研究.土壤通报,1993,24(2):77-79
    52.曲东,王保莉.邻二氮菲分光光度法同时测定水稻土中Fe(Ⅱ)和Fe(Ⅲ).1991,19(1):85-88
    53.曲东,张一平,Schnell S, Conrad R水稻土中铁氧化物的厌氧还原及其对微生物过程的影响.土壤学报,2003,40(6):858-863
    54.沈阿林,姚同山,李学垣,徐凤琳.花岗岩上发育的几种土壤表面氟、磷、硫的竞争吸附.华北农学报,1998,13(2):75-81
    55.师潇雅.解决世界性作物硫钙营养缺乏的新技术.中国科技奖励,2006,(8):40-43
    56.滕淳茜,孟赐福,吴崇书,等.红壤稻田施用磷矿粉和硫肥对油菜和水稻产量的影响.作物与栽培,2004,2:34-35
    57.汪吉东,张永春,郭巧云,等.硫包膜尿素对水稻养分吸收利用及土壤反应的影响.华北农学报(增刊),2008,293-297
    58.王昌全,李冰,周瑾,等.硒硫配合喷施对大蒜营养品质的影响.植物营养与肥料学报,2004,10(2):206-211
    59.王国平,刘景双.湿地生物地球化学研究概述.水土保持学报,2002,16(4):144-148
    60.王涵,王果,黄颖颖,等.pH变化对酸性土壤酶活性的影响.生态环境,2008,17(6):2401-2406
    61.王空军,胡昌浩,董树亭,等.硫水平对玉米氮、硫代谢特性及根系活性的影响.应用生态学报,2003,14(2):191-195
    62.王利,高祥照,马文奇,刘艳华.中国农业中硫的消费现状、问题与发展趋势.植物营养与肥料学报,2008,14(6):1219-1226
    63.王学奎.植物生理生化实验原理和技术.北京:高等教育出版社,2006
    64.王越涛,尹海庆,王生轩,等.施硫对水稻品种水晶3号形态、生理及品质的影响.河南农业科学,2005,(8):69-71
    65.危锋,郝明德.黄土高原长期种植苜蓿对土壤硫、钙、镁的影响.草地学报,2009,3:288-293
    66.吴金水,林启美,黄巧云,肖和艾.土壤微生物生物量测定方法及其应用.北京:气象出版社,2006
    67.吴金水,肖和艾.土壤微生物对硫素转化及有效性的控制作用.农业现代化研究,1999,20(6):350-354
    68.吴蔚东,郑诗樟,卢志红,等.百喜草对红粘土性红壤抗冲性的研究.江西农业大学学报,1999,21(1):71-76
    69.谢良商.标记硫酸铵和元素硫在稻田土壤中的转化.中国农业科学,1995,28(6):58-67
    70.徐成凯,胡正义,章钢娅,等.石灰性土壤中硫形态组分及其影响因素.植物营养与肥料学报,2001,7(4):416-423
    71.徐冬梅,刘广深,许中坚,等.模拟酸雨对土壤酸性磷酸酶活性的影响及机理.中国环境科学,2003,23(2):176-179
    72.许光辉,郑洪元主编.土壤微生物分析方法手册.北京:农业出版社,1986
    73.许学慧,姜冠杰,胡红青,等.草酸活化磷矿粉对矿区污染土壤中Cd的钝化效果.农业环境科学学报,2011,30(10):2005-2011
    74.杨钙仁,童成立,肖和艾,吴金水.水分控制下的湿地沉积物氧化还原电位及其对有机碳矿化的影响.环境科学,2009,30(8):2381-2386
    75.杨国治.土壤中氧化还原反应与重金属危害.环境科学丛刊,1983,3:1-8
    76.姚丽贤,周修冲,侯剑泉,等.沙田柚配施钾及不同形态镁、硫肥的效应研究.土壤肥料,2003,6:21-24
    77.尹迪信,阎献芳,肖厚军,等.贵州省耕地土壤硫素状况及影响因素调查.贵州农业科学,1995,1:5-8
    78.曾宪坤.中国硫肥发展前景展望.磷肥与复肥,2003,18(4):5-7
    79.张继榛,郑路,竺伟民,等.大豆硫磷配施的效应研究.安徽农业大学学报,2000,27(增刊):176-181
    80.张建丽,何盈,蔡顺香,等.含硫钝化剂对抑制芥菜Pb、Cd富集的效果研究.福建农业学报,2007,22(3):293-297
    81.张秋芳,彭嘉桂,林琼,等.硫素营养对不同品种水稻叶片活性氧代谢的影响.福建农业学报,2003,18(2):116-119
    82.张秋芳,彭嘉桂,林琼,等.硫素营养胁迫对水稻根系和叶片超微结构的影响.土壤,2008,40(1):106-109
    83.张伟华,奉小优,皮荷杰,曾清如.硫代硫酸钾萃取土壤中重金属及其对玉米苗期的毒理效应.中国农学通报,2010,26(21):198-201
    84.张英聚.植物的硫营养.植物生理学通讯,1987,(2):9-15。
    85.张永春,汪吉东,梁永红,等.硫包衣尿素对水稻的增产效应及氮素利用率的影响研究.水土保持学报,2007,4:108-111
    86.章钢娅,张效年,于天仁.可变电荷土壤对SO42-的吸附.土壤学报,1987,24(1):14-17
    87.章钢娅,张效年.可变电荷土壤中阴离子的吸附.土壤学进展,1986,4:11-19
    88.周卫,林葆.土壤与植物中硫行为的研究进展.土壤肥料,1997,5:8-11
    89.邹长明,高菊生,王伯仁,等.长期施用含硫化肥对水稻土化学性质和水稻吸收微量元素的影响.安徽技术师范学院学报,2004,18(1):19-25
    90. Abdin M Z, Ahmad A, Khan I, et al. Sulphur interaction with other nutrients. In: Yash P. Sulphur in Plants. Abrol and Altaf Ahmad. The Netherlands:Kluwer Academic Publishers,359-374,2003
    91. Ahmad A, Khan I, Abdin M Z. Interactive effect of nitrogen and sulphur on nitrogen harvest of rapeseed-mustard. Indian J Plant Physi,2001,6:46-52
    92. Ahmad G, Jan A, Arif M, et al. Influence of nitrogen and sulfur fertilization on quality of canola(Brassica napus L.) under rainfed conditions. J Zhejiang Univ Sci B,2007,8(10):731-737
    93. Alina K P, Pendias H. Trance Elements in Soils and Plants. Florid, USA:CRC Press,2001
    94. Allen E R, Ming D W, Hossner L R, et al. Modeling transport kinetics in clinoptilolitc -phosphate rock systems. Soil Sci Soc Am J,1995,59:248-255
    95. Anderson J Z, Ingram J S I. Tropical Soil Biology and Fertility-A Handbook of Methods.2nd ed, CAB International, Wallingford, UK,1993
    96. Anderson T H, Domsch K H. Application of eco-physiological quoient (qCO2 and Dq) on microbial biomasses from soils of different cropping histories. Soil Biol Biochem,1990,22:251-255
    97. Angela S, Stephen G, Dagmar T et al. Activity of microorganisms in the rhizosphere of herbicide treated and untreated transgenic glufosinate-tolerant and wildtype oilseed rape grown in containment. Plant Soil,2004,266:105-116
    98. Asare E, Scarisbrick D H. Rate of nitrogen and sulphur fertilizers on yield, yield components and seed quality of oilseed rape (brassica napus L). Field Crops Res, 1995,44:41.46
    99. Attoe O J, Olson R A. Factors affecting the rate of oxidation of elemental sulfur and that added in rock-phosphate-sulfur fusions. Soil Sci,1966,101:317-324
    100.Banerjee M R, Chapman S J. The significance of microbial biomass sulphur in soil. Biol Fertil Soils,1996,22:116-125
    101.Barbhuiya A R et al. Dynamics of soil microbial biomass C, N and P in disturbed. Europ J Soil Biol,2004,40:113-121
    102.Bitton G, Boylan R A. Effect of acid precipitation on soil microbial activity:I. Soil core studies. J Environ Qual,1985,14:66-69
    103.Bolan N S, Syers J K, Summer M E. Calcium-induced sulfate adsorption by soils. Soil Sci Soc Am J,1993,57:691-696
    104.Brookes P C, Landman A, Pruden G, Jenkinson D S. Chloroform fumigation and release of soil N:a rapid direct extraction method to measure microbial biomass N in soil. Soil Biol Biochem,1985,17:837-842
    105.Brown K A. Sulfur distribution and metabolism in waterlogged peat. Soil Biol Biochem,1985,17:39-45
    106.Cao R X, Ma L Q, Chen M, et al. Phosphate-induced metal immobilization in a contaminated site. Environ Pollut,2003,122:19-28
    107.Cao X D, Wahbi A, Ma L, Li B, Yang Y L. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. J Hazard Mater. 2009,164:555-564
    108.Cao X, Ma L M, Rhue D R, et al. Mechanisms of lead, copper, and zinc retention by phosphate rock. Environ Pollut,2004,131:435-444
    109.Chan K Y, Heenan D P. Lime-induced loss of soil organic carbon and effect on aggregate stability. Soil Sci Soc Am J,1999,63:1841-1844
    110.Chapman S J. Barley straw decomposition and S immobilization. Soil Biol Biochem,1997,29:109-114
    111.Chapman S J. Microbial sulphur in some Scottish soils. Soil Biol Biochem,1987, 9:301-305
    112.Chatterjee C, Pratima S, Dube B K. Zinc stress in mustard as altered by sulphur deficience. J Plant Nutri,2005,28(4):683-690
    113.Chen L. Flue gas desulphurization by-products additions to acid soil Alfalfa productivity and environment quality. Environ Pollu,2001,114(2):161-168
    114.Chen M, Ma L Q, Singh S P, et al. Field demonstration of in situ immobilization of soil Pb using P amendments. Adv Environ Res,2003,8:93-102
    115.Courchesne F, Gobran G R. Mineralogical variations of bulk and rhizosphere soils from a Norway spruce stand. Soil Sci Soc Am J,1997,61:1245-1249
    116.Craig P J. Organometallic compounds in the environment:Principle and reaction. Harlaw, Essex,1986:368p
    117.Cui Y, Wang Q, et al. Elemental sulfur effeets on Pb and Zn uptake by indian mustard and winter wheat. J Environ Sci,2003,6:18-23
    118.Dent D. Acid sulphate soils. A baseline for research anddevelopment. Inter. Institute for Land Reclamation and Improvement. Wageningen, The Netherlands, 1986,25-26
    119.Dick R P. Soil enzyme activities as indicators of soil quality. In:Doran J W et al(ed) Defining soil quality for a sustainable environment. Soil science society of American special publication No35, Madison, Wisconson, pp 107-124,1994
    120.Dick R P. Soil enzyme activities as integrative indicators of soil health. In: Pankhurst C.et al.(ed) Biological indicators of soil health. CAB International, pp121-156,1997
    121.Ding Y, Das K C, Whitman W B, Kastner J R. Enhanced biofiltration of hydrogen sulfide in the presence of methanol and resultant bacterial diversity. Trans AS ABE,2006,49 (6):2051-2059
    122.Dong Y Y, Wang S Y. Cu secondary adsorption by some variable charge soils after adsorbing SO42-.Pedosphere,1993,3(2):173-180
    123.Fan J L, Hu Z Y, Ziadi N, et al. Excessive sulfur supply reduces cadmium accumulation in brown rice (Oryza sativa L.). Environ Pollut,2010,158:409-415
    124.Fan J L, Ziadi N, Langer G B, et al. Cadmium accumulation in potato tubers produced in Quebec. Can J Soil Sci,2009,89(4):425-443
    125.Fazli I S, Abdin M Z, Jamal A, Ahmad S. Interactive effect of sulphur and nitrogen on lipid accumulation, acetyl-CoA concentration and acetyl-CoA carboxylase activity in developing seeds of oilseed crop(Brassica campestris L. and Eruca sativa Mill.). Plant Sci,2005,168:29-36
    126.Fismes J, Vong P C, Guckert A, Frossard E. Influence of sulfur on apparent N-use efficiency, yield and quality of oilseed rape(Brassica napus L.) grown on a calcareous soil. Europ J Agron,2000,12:127-141
    127.Floch C, Capowiez Y, Criquet S. Enzyme activities in apple orchard agroeco-systems:How are they affected by management strategy and soil properties. Soil Biol Biochem,2009,41:61-68
    128.Freney J.R, Melville G.E, Williams C H. Soil organic matter fractions as sources of plant-available sulphur. Soil Biol Biochem,1975,7:217-221
    129.Friedrich J W, Schrader L E. Sulphur deprivation and nitrogen metabolism in maize seedling. Plant Physiol,1978,61:900-903
    13O.Friesen D K, Sale W G, Blair G J. Long-term greenhouse evaluation of partially acidulated phosphate rock fertilizers. Ⅱ. Effect of co-granulation with elemental S on availability of P from two phosphate rocks. Ferti Res,1987,13:45-54
    131.Friesen D K. Fate and efficiency of sulfur fertilizer applied to food crops in West Africa. In:Mokwaunye AU. Alleviating soil fertility constraints to increased crop production in West Africa. Dordrecht, the Netherlands:Kluwer Academic Publisher:1991,59-68
    132.Gao M X, Hu Z Y Wang G D, Xia X. Effect of Elemental Sulfur Supply on Cadmium Uptake into Rice Seedlings When Cultivated in Low and Excess Cadmium Soils. Communi Soil Sci Plant Analy,2010,41(8):990-1003
    133.Germida J J, Lawrence J R, Gupta V V S R. Microbial oxidation of sulphur in Saskatchewan soils.1984,703-710. In:Terry J. W. (ed.) Proceedings of the sulphur 84 conference. Sulphur development Institute of Canada, Calgary
    134.Gharmakher H N, Machet J M, Beaudoin N, Recous S. Estimation of sulfur mineralizeation and relationships with nitrogen and carbon in soils. Biol Fertil Soils,2009,45:297-304
    135.Grant C A, Bailey L D. Fertility management in canola production. Can J Plant Sci,1993,73:651-670
    136.Guang W, Jeff J S, Tahei Y, et al. A modal of oxidation of an element sulfur fertilizer in soils. Soil Sci,1987,143:444-452
    137.Gupta V V S R, Lawrence J R, Germida J J. Impact of elemental sulfur fertilization on agricultural soils. I. effect on microbial biomass and enzyme activities. Can J Soil Sci,1988,68:463-473
    138.Gupta V. V. S. R, Germida J J. Determination of microbial biomass sulfur in soil. Abstracts of the American Society of Agronomy Annual Meeting,1985,156, Chicago Ⅲ
    139.Havlin J L, Beaton J D, Tisdale S L, et al. Soil Fertility and Fertilizers, An Introduction to Nutrient Management.7th ed. Singapore:Pearson Education Inc; 221
    140.He Z L, O'donnell A G, Wu J, et al. Oxidation and transformation of elemental sulphur in soils. J Sci Food Agric,1994,65:59-65
    141.He Z, Wu J, O'Donnell A G, et al. Seasonal responses in microbial biomass carbon, phosphorus and sulphur in soils under pasture. Biol Ferti Soils,1997,24: 421-428
    142.Hedge D M, Murthy I Y L N. Management of secondary nutrients. Indian J Fert, 2005,9:93-100
    143.Heinze S, Raupp J, Joergensen R G. Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture. Plant Soil,2010,328:203-215
    144.Herbert R B, Malmstrom M et al. Quantification of abiotic reaction rates in mine tailings:evaluation of treatment methods for eliminating iron-a nd sulfur-oxidizing bacteria. Environ Sci Technol,2005,39(3):770-777.
    145.Hoffmann C, Stockfisch N, Koch H J. Influence of sulphur supply on yield and quality of sugar beet(Beta vulgaris L.) determination of a threshold value. Europ JAgron,2004,21:69-80
    146.Hoffmann E, Schmidt W. Enzyme system of our culture media. II. Urease. Biochem Z.1953,324(2):124-127
    147.Hu Z Y, Beaton J D, Cao Z H, Henderson A. Sulfate formation and extraction from Red soil treated with micronized elemental sulfur fertilizer and incubated in closed and open systems. Communi.Soil Sci. Plant Analy,2002,33(11&12): 1779-1797
    148.Hu Z Y, Haneklaus S, Wang S P et al. Comparison of Mineralization and Distribution of Soil Sulfur Fractions in the Rhizosphere of Oilseed Rape and Rice. Communi.Soil Sci. Plant Analy,2003,34(15 & 16):2243-2257
    149.Hu Z Y, Yang Z H, Xu C K, et al. Effect of crop growth on the distribution and mineralization of soil sulfur fractions in the rhizosphere. J. Plant Nutr Soil Sci, 2002,165,249-254
    150.Hu Z Y, Zhu Y G, Li M, et al. Sulfur(S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Environ Pollu,2007,147:387-393
    151.Islam M, Ali S, Hayat R. Effect of integrated application of phosphorus and sulphur on yield and micronutrient uptake by chickpea (Cicer arietinum L.). Int J Agric Biol,2009,11:33-38
    152.Jaggi R C, Aulakh M S, Sharma R. Impacts of elemental S applied under various temperature and moisture regimes on pH and Available P in acidic, neutral and alkaline soils. Biol Fertil Soils,2005,41:52-58
    153.Janzen H H, Bettany J R. Oxidation of elemental sulfur under field condition central Saskatchewan. Can J Soil Sci,1987,67:609-618
    154.Janzen H H, Bettany J R. The effect of temperature and water potential on sulphur oxidation in soils. Soil Sci,1987,144:81-89
    155.Joergensen R G, Mueller T. The fumigation-extraction method to estimate soil microbial biomass:calibration of the k,Ec value. Soil Biol Biochem,1996,28(1): 25-31
    156.Kaiser E A et al. Season variations of soil microbial carbon within the plough layer. Soil Biol Soils,1993,25(12):1649-1655
    157.Khan K S, Heinze S, Joergensen R G. Simultaneous measurement of S, macro-nutrients and heavy metals in the soil microbial biomass with CHCI3 fumigation and NH4NO3 extraction. Soil Biol Biochem,2009,41:309-314
    158.Kovacs A B, Kineses I, Vago I. Effects of nitrogen and different N:S ratio on yield and nutrient uptake of mustard (Sinapis alba L). Cereal Res Communi,2007, 35(2):201-204
    159.Kuldip G, Ayyanadar A, Biman K D. Tillage effects on soil microbial biomass in a rainfed agricultural system of northeast Indian. Soil Till Res,2010,109(2): 68-74
    160.Kumar N, Sinha U P. Response of spring-planted sugarcane (Saccharum officinarum) to phosphorus and sulphur application. Indian J Agron,2008,53(2): 187-191
    161.Lappartient A G, Touraine B. Demand-driven control of root ATP-sulfurlase activity and SO42- uptake in intact Canola. Plant Physiol,1996,111:147-157
    162.Lauchli A et al. Encyclopedia of plant physiology, Vol.1513. Springer-Verlag, Berlin and New York,1983
    163.Lawrence J R, Germida J J. Enumeration sulfur oxidating populations Seskatchewan agricultural soils. Can J Soil Sci,1991,71:1127-1136
    164.Lawrence J R, Gupta V V S R, Germida J J. Impact of elemental sulfur fertilization on agricultural soils. Ⅱ. effects on sulfur-oxidizing populations and oxidation rates. Can J Soil Sci,1988,68:475-483
    165.Lawrence, J. R, Germida, J. J. Relationship between microbial biomass and elemental sulfur oxidation in agricultural soils. Soil Sci Am J,1988,52(3): 672-677
    166.Lee A, Boswell C C, Watkinson J H. Effect of particle size on the oxidation of element sulfur thiobacillus number, soil, sulphate and its availability to pasture. New Zealand Agric Res,1988,31:179-186
    167.Lee B K, Lee D S, Kim M G. Rapid time variations in chemical composition of precipitation in south Korea.6th International Conference on Acidic Deposition, Tsukuba, Japan,10-16, December,2000
    168.Lefroy R D, Sholeh B, Blair G. Influence of sulfur and phosphorus placement, and sulfur particle size on elemental sulfur oxidation and the growth response of maize (Zea mays). Austra J Agri Res,1997,48:485-495
    169.Li S T, Lin B, Zhou W. Crop response to sulfur fertilizers and soil sulfur status in some provinces of China. Landbauforschung Volkenrod, Special issue,2005,283: 81-84
    170.Li S, Lin B, Zhou W et al. Oxidation of elemental sulfur in selected soils of China. Pedosphere,2000,10(1):69-76
    171.Li S, Lin B, Zhou W. Effects of previous elemental sulfur applications on oxidation of additional applied elemental sulfur in soils. Biol. Fertil. Soils,2005, 42:146-152
    172.Liao M, Chen C, Huang C Y. Effect of heavy metals on soil microbial activity and diversity in a reclaimed mining wasteland of red soil area. J Envir Sci,2005, 17(5):832-837
    173.Lindsay W L. Chemical Equilibria in Soils. New York:John Wiley & Sons,1979
    174.Mathot M, Mertens J, Verlinden G, Lambert R. Positive effects of sulphur fertilisation on grasslands yields and quality in Belgium. Europ J Agron,2008,28: 655-658
    175.McGrath S P, Zhao F J. Sulphur uptake, yield responses and interactions between nitrogen and sulphur in winter oilseed rape (Brassica napus). J Agri Sci,1996, 126:53-62
    176.McLaren R G, Keer J J, Swift R W. Sulphur transformations in soils using sulphur-35 labelling. Soil Biol Biochem,1985,17:73-79
    177.Meng C F, Lu X N, Cao Z H, et al. Long-term effects of lime application on soil acidity and crop yield on a red soil in central Zhejiang. Plant Soil,2004,265: 101-109
    178.Messick D L, Fan M X. IF A Reginal conference for Asia and the Pacific, chenju Island, Republic of Korea,6-8 October 2003
    179.Nakas J P, Klein D A. Decomposition of microbial cell components in a semi-arid Grassland Soil. Appli Envir Microbi,1979,38:454-460
    180.Nguyen C. Rhizodeposition of organic C by plants:mechanisms and control. Sus Agri part,2009,1:97-123
    181.Nor Y M, Tabatabai M A. Oxidation of element sulfur in soils. Soil Sci Sco Am J, 1977,41:736-741
    182.O'Donnell A G, Wu J, Syers J K. Sulphate-S amendments in soil and their effects on the transformation of soil sulphur. Soil Biol Biochem,1994,26:1507-1514
    183.Park J H, Bolan N, Megharaj M, Naidu R. Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilizing bacteria (Enterobacter sp.). J Envir Manage,2011,92:1115-1120
    184.Park J H, Bolan N, Megharaj M, Naidu R. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. J Hazard Mater,2011, 185:829-836
    185.Pascale D P, Maggio A, Pernice R, et al. Sulphur fertilization may improve the nutritional value of Brassica rapa L. subsp. Sylvestris. Europ J Agron,2007,26: 418-424
    186.PasrichaN. S. et al. Advances in Agronomy. A Press, INC,1993,209-269
    187.Pettit N M, Smith A R J. Soil urease:Activity, stability and kinetic properties. Soil Biol Biochem,1976,8(6):479-484
    188.Pfenning N, Widdel F. Ecology and physiology of some anaerobic bacteria from the microbial sulfur cycle. In:Bothe H, Trebst A. Biology of Inorganic Nitrogen and Sulfur. Berlin:Springer-Verlag,1981,169-177
    189.Pfenning N. The phototrophic bacteria and their role in the sulfur cycle. Plant Soil, 1975,43:1-16
    19O.Pietri J C A, Brookes P C. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biol Biochem,2008,40:1856-1861
    191.Pratibha S, Nandita G. Variation in total biological productivity and soil microbial biomass in rainfed agroecoystems:Impact of application of herbicide and soil amend-ments. Agric Eco Envir,2010,133(3-4):241-250
    192.Rajan S S S. Sulphur adsorbed on hydrous alumina, ligands displaced, and changes in surface change. Soil Sci Sco Am J,1978,42:39-44
    193.Randlett D L, Zak D R, MacDonald N W. Sulfate adsorption and microbial immobilizeation in northern hardwood forests along an atmospheric deposition gradient. Can J Forest Res,1992,22:1843-1950
    194.Rod D B, Sholeh L, Graeme J B. Effect of nutrients and elemental sulfur particle size on elemental sulfur oxidation and the growth of Thiobacillus thiooxidans. Austra J Agri Res,1997,48(4):497-502
    195.Saggar S, Bettany J R, Stewart J W B. Sulfur transformations in relation to carbon and nitrogen in incubated soils. Soil Biol Biochem,1981,13(6):441-559
    196.Saggar S, Bettany J. R, Stewart J W B. Measurement of microbial biomass sultur in soil. Soil Biol Biochem,1982,13:493-498
    197.Sahrawat K L. Effect of biuret content on transformation of urea nitrogen in soil. Soil Biol Biochem,1977,9(3):173-175
    198.Salisbury F G, Ross C W. Plant physiology. Belmont, C A:Wadsworth Publ. Co. 1992
    199.Sarah J, Kemmitt D W et al. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol Biochem,2006,38:898-911
    200.Sarioglu M, Atay U A, Cebeci Y. Removal of copper from aqueous solutions by phosphate rock. Desalination,2005,181:303-311
    201.Skiba U, Wainwright M. Oxidation of elemental sulfur in coastal-dune sands and soils. Plant Soil.1984,77:87-95
    202.Skwierawska M et al. The effect of different rates and forms of sulphur applied on changes of soil agrochemical properties. Plant Soil Environ,2008,54(4): 171-177
    203.Smith J K. Regulation of sulphur assithilution in Tabased bells. Plant Physical, 1980,66:877-883
    2O4.Starkey R L. Oxidation and reduction of sulfur compounds in soils. Soil Sci,1996, 101(4):297-305
    205.Stewart B A, Porter L K. Nitrogon-sulfur relationships in wheat (Triticum aestivum L.), corn (Zea mays L.) and beans(Pbaseolus vulgaris). Agron J,1969, 61:267-271
    206.Strick J E, Nakas J P. Calibration of a microbial sulfur technique for use in forest soils. Soil Biol Biochem,1984,186:289-291
    207.Strickland T C, Fitzgerald J W, Swank W T. Mobilization of recently formed forest soil organic sulfur. Can J Forest Res,1984,14:63-67
    208.Stroo H F, Alexander M. Role of soil organic matter in the effect of acid rain on nitrogen mineralization. Soil Sci Soc Am J,1985,50:1218-1223
    209.Sukhdev S M, Schoenau J J, Grant C A. A review of sulphur fertilizers management for optimum yield and quality of canola in the Canadian Great Plains, Can J Plant Sci,2005,85(2):297-307
    210.Tabatabai M A. Sulfur. In page, A L, J R, Freney, and R H, Miller (eds.):Methods of Soil Analysis. Part 2:Chemical and microbilogical properties.2nd edn. ASA and SSSA, Madison, WI, USA, pp.1982,501-538
    211.Thomas S G, Hocking T J, Bilsborrow P E. Effect of sulphur fertilisation on the growth and metabolism of sugar beet grown on soils of differing sulphur status. Field Crops Res,2003,83:223-235
    212.Tiwari K N, Gupta B R. Sulphur for sustainable high yield agriculture in Uttar Pradesh. Indian J Fert,2006,1:37-52
    213.Truper H G. The enzomology of sulfur metabolism in phototrophic bacteria-a review. Plant Soil,1975,43:29-39
    214.Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem,1987,19:703-707
    215.Vong P C, Nguyen C, Guckert A. Fertilizer sulphur uptake and transformations in soil as affected by plant species and soil type, Europ J Agron,2007,27:35-43
    216.Wainwright M, Nevell W, Grayston S J. Effects of organic matter on sulphur oxidation in soil and influence of sulphur oxidation on nitrification. Plant Soil, 1986,96:369-376
    217.Wainwright M. Effect of exposure to atmospheric pollution on microbial activity in soil. Plant Soil.1980,55:199-205
    218.Wainwright M. Effect of pesticides and N-serve on the oxidation of elemental S in soil. Plant Soil.1979,51:205-215
    219.Wainwright M. Sulfur oxidizing microorganism on vegetation and in soils exposed to atmosphere pollution. Environ Pollut,1978,17:167-174
    220.Wang Y P, Li Q B, Hui W, et al. Effect of sulphur on soil Cu/Zn availability and microbial community composition. J Hazard Mater,2008,159:385-389
    221.Wen, Schoenau J J, Yamamoto T, et al. A modal of oxidation of an element sulfur fertilizer in soils. Soil Sci,2001,166(9):607-613
    222.Wind T, Conrad R. Sulfur compounds, potential turnover of sulfate and thiosulfate and numbers of sulfate-reducing bacteria in planted and unplanted paddy soil. FEMS Microbi Eco,1995,18(4):257-266
    223.Wu J, Joergensen R G, Pommerening et al. Measurement of soil microbial biomass by fumigation -extraction-an automated procedure. Soil Biol Biochem, 1990,22:1167-1169
    224.Wu J, O'Donnell A G, He Z L, Syers J K. Fumigation-extraction method for the measurement of soil microbial biomass-S. Soil Biol Biochem,1994,26:117-125
    225.Wu J, O'Donnell A G, Syers J K. Influence of glucose, nitrogen and plant residues on the immobilzation of sulphate-S in soil. Soil Biol Biochem,1995,27: 1363-1370
    226.Wu J, O'Donnell A G, Syers J K. Microbial growth and sulphur immobilization following the incorporation of plant residues into soil. Soil Biol Biochem,1993, 25:1567-1573
    227.Xue J M, Sands R, Clinton P W, et al. Carbon and net nitrogen mineralisation in two forest soils amended with different concentrations of biuret. Soil Biol Biochem,2003,35:855-866
    228.Xue J M, Sands R, Clinton P W, et al. Priming effect of biuret addition on native soil N mineralisation under laboratory conditions (Short Communication). Soil Biol Biochem,2005,37:1959-1961
    229.Zhao F J, Evans Eric J. Influence of sulphur and nitrogen on seed yield and quality of low glucosinolate oilseed rape (Brassica napus L). J Sci Food Agric, 1993,63(1):29-37
    230.Zhao F J, Hawkesford M J, McGrath S P. Sulphur assimilation and effects on yield and quality of wheat. J Cereal Sci,1999,30:1-17
    231.Zhou W, Lin B, Wang H, et al. Composition of sulphur pool in selected upland soils in north China. Pedosphere,1999,9(2):123-130
    232.Zhou W, Wan M, He P, Li S, Lin B. Oxidation of elemental sulfur in paddy soils as influenced by flooded condition and plant growth in pot experiment. Biol Fertil Soils,2002,36(5):384-389

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700