用户名: 密码: 验证码:
海南岛北部新生代火山岩风化成矿作用地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新生代是海南岛北部火山活动的强烈时期,火山岩分布广,出露面积大,自古近纪始新世以来,曾发生多期多次火山活动,火山喷发时断时续,一直延至第四纪全新世。出露于琼州海峡以南地区的海南岛北部及东部,平面上呈“7”字形展布,面积超过4000km2,占全岛陆域面积的19.5%,岩性以基性岩为主;在区域构造上主要分布于王五-文教深大断裂两侧,以北侧为主。
     海南岛北部地处北纬20。左右,属于热带地区,濒临海洋,受季风和台风影响较大,降水充足,天气炎热,气候季节变化和昼夜变化较大,风化作用强烈,镁、硅等元素的流失形成了大量的现代火山岩风化壳。这些风化壳由三水铝石、水针铁矿、针铁矿、高岭石、伊利石、蒙脱石、绿泥石等矿物组成,部分地段形成的铝土矿、褐铁矿等矿床具有工业价值。据有关资料统计,海南岛火山岩地区风化形成的三水型铝土矿资源探明储量2500万吨、褐铁矿资源达1亿多吨、钴金属量1万多吨,同时伴生镍、镓、铬、铜等多种有价元素,这些新生代火山岩风化淋滤作用形成的矿产资源是一个典型的风化型矿产资源宝库,也是仍在形成的矿产资源,成矿过程比较清晰,是研究风化成矿作用的天然实验室。尽管区域地质工作程度较高,前人在区域地质、环境地质、区域矿产(侧重于油气)、工程地质做了大量的工作,取得了许多重要成果,但对区域火山岩风化成矿作用研究较少,在一些关键性的问题尚未解决。
     本文以海南岛北部新生代火山岩及其风化壳形成的矿产资源作为研究对象,对区域新生代火山岩地质学、岩石矿物学、岩石化学,风化壳组成,风化型矿产的地质、地球化学特征特别是通过褐铁矿、铝土矿、钻土矿典型矿床地质特征,矿床地球化学剖析的基础上,研究了区域火山岩风化作用过程中元素迁移规律、控制因素,结合风化作用过程中矿物成分的变化探讨了区域风化成矿作用,为风化型矿产的研究和开发提供参考。
     1海南岛北部新生代火山岩活动强烈,可分为11个期次;古近纪、新近纪火山岩除石马村组出露地表外大部分隐伏于地下,第四纪除早更新世隐伏于地下外大都出露于地表。
     区域火山岩在热带季风性气候条件下发生风化作用,风化壳的厚度自东向西总体表现厚-薄-厚-薄的相间分布,火山岩时代者古老者风化壳厚,火山岩风化壳厚度受风化作用时间的影响,与火山岩的年龄成正相关关系;风化壳也是区域褐铁矿、铝土矿、钴土矿等风化型矿产的含矿层位。
     2根据区域成矿元素组合、成矿母岩、微地形地貌等不同以及矿床(点)空间的展布位置,将区域风化型矿产划分为南北两个成矿带。南北矿带主要以王五-文教断裂带为界,北侧主要为多文组火山岩风化形成褐铁矿为代表;南侧主要以蓬莱-居丁-南阳一带第三纪石马村组-石门沟组为代表铝、钴、铬矿床为代表组成的南矿带。
     褐铁矿主要分布在北矿带的多文组火山岩风化壳中,在临高-澄迈一带规模大。矿体受地形控制,山顶山坡较厚,山脚和低洼处逐渐尖灭;矿体主要由豆粒状褐铁矿和块状褐铁矿组成,全铁的含量一般30%左右,最高可达57%0铝土矿主要分布南矿带的文昌蓬莱地区第三纪石马村组-石门沟组火山岩风化壳中,矿体呈复碟状,受地形控制。矿层厚度一般30至60cm,主要矿体部分达4-5m,表层覆盖红土层厚度一般1-2m;矿石主要为三水铝石,含矿率一般400kg/m3左右,最高达1000kg/m3以上。钴土矿常与褐铁矿、铝土矿共伴生在一起,分布南矿带的文昌蓬莱地区第三纪石马村组-石门沟组火山岩风化壳中,主要分布在定安及文昌一带,产状受地形控制;主要矿物有铝土矿、褐铁矿、钴土矿组成;钴土矿主要集中在含矿层的下部,含矿率变化大,一般5-15kg/m3,最低lkg/m3,最高达124kg/m3。钴土矿呈片状、豆粒状和珊瑚状,胶状、结核状构造,一般0.5-3cm:矿物成分主要为锂硬锰矿,含钴3.13-8.45%。
     3风化过程中主量元素地质特征及元素地球化学行为
     褐铁矿、铝土矿、钴土矿等风化剖面的化学组分以SiO2、Al2O3、Fe2O3为主要,三者合计在72.18%-84.58%之间。SiO2含量范围在15.46%-50.46%之间,平均为30.45%;A1203含量在7.82%-36.56%之间,平均为19.94%;Fe2O3含量在7.46%-58.19%之间,平均为28.33%。全铁含量平均为28.33%,远高于上地壳5%含量,表明区域在热带地区红土化作用强烈。与此相反,风化剖面中一些易溶组分如CaO、Na2O、K2O、MgO含量较低,均低于1%。这种铁铝富集以及伴生强烈的化学风化作用的是对地处热带地区气候条件的响应。影响岩石风化作用过程的地球化学因素主要有:元素的物理化学性质、温度和水、pH值和氧化-还原电位(Eh)。
     火山岩风化水解释放出来的二价铁离子在地表氧化环境下生成三价铁离子,而三价铁离子在pH=3时即生成氢氧化物沉积下来,最后形成针铁矿、褐铁矿等矿物。各种硅酸盐矿物如长石、辉石、角闪石、云母等可以通过风化作用转化为伊利石、高岭石、蒙脱石等粘土矿物。在热带地区,湿润炎热的气候条件,粘土矿物可以进一步风化作用发生再分解,使其中的硅铝分离,硅进入地下水淋失,铝在pH=5—9左右的弱酸性到弱碱性的环境下产生氢氧化铝沉淀,形成三水铝石型铝土矿。在造岩矿物锰主要以+2的形式存在,经风化作用,含锰矿物被水解,Mn2+从矿物中释放出来进入地表流体中。锰的沉淀主要受pH、Eh的影响。在pH小于7的环境下锰主要以离子化合物的形式溶解于水溶液中,在大于8的碱性环境下形成锰矿物沉淀下来;沉积作用过程中,铁和锰的分离主要受pH、Eh的控制。锰与氧的亲和力低于铁与氧的亲和力,因此在铁、锰溶液体系中,Mn2+氧化物比铁的同价氧化物稳定范围要大,因此在矿物水解过程中铁与锰常发生分离,在红土风化壳中铁的氧化物位于锰的氧化物的上部。氧化锰往往呈黑色皮壳状或被膜包裹于岩石的表面或充填于样式的裂隙中,这些黑色氧化物可以吸附状态的形式从风化岩石中淋滤出来的铜、钴、镍、锌等离子形成稳定的化合物或聚合体。在风化壳的上部由于pH比较低、Eh较高,在此环境中二价铁离子常被氧化为三价铁的氢氧化物发生沉淀,而后进一步脱水形成针铁矿、赤铁矿等矿物,在风化壳的顶部形成铁帽;于此同时,钴、镍、铜、锰等离子仍然以离子状态在水中向下渗透,当水溶液的pH大于8时,锰、钴、镍一起沉淀形成氧化物或含水的化合物,形成元素的垂直分带性。
     4风化过程中稀土元素地球化学特征
     在各风化剖面的稀土配分模式图上显示,表层红土层、含豆粒状褐铁矿、铝土矿层、含钴土矿层、铝土矿床、铝土质腐泥层的配分模式比较一致,仅是稀土元素含量差异,均是右倾、富集轻稀土,与本区域的火山熔岩的配分模式大体上相似。
     在剖面的中上部的表层红土层、含矿层中轻重稀土分异程度逐渐增大表现为轻稀土比重稀土易于富集,轻稀土分异程度较高、重稀土分异程度较低;在白色腐泥层、半风化层轻重稀土分异程度减弱,轻稀土内部分异程度减弱甚至没有分异、重稀土内部分异程度明显增强,在风化作用的过程中重稀土较易淋失而轻稀土较易富集。
     在剖面上部的红土层、含矿层、腐泥层以及半风化层中常发生6Ce发生正异常且从表层向深部呈先升高后下降的趋势、δEu表现为弱的负异常或无异常,说明在风化过程中剖面整体表现为氧化环境,上部表现出氧化较弱到白色腐泥层最强而后逐渐下降的变化趋势。
     稀土元素的上述特征表明,剖面各层物质成分从上到下具有一定的继承性,它们之间具有成因联系,都是基岩通过风化作用过程在不同空间阶段形成的产物。
     在铝土矿风化剖面的底部厚lm左右的全风化层中稀土总量高达2306.08ppm,达到了风化壳型稀土含量的工业品位,初步认为形成了稀土矿床,在本铝土矿区有可能也是一个大型稀土成矿远景区域,在今后的地质工作中应予以重视。
     5矿区南北矿带对比及产生的原因
     成矿元素组合不同,北矿带主要以铁为主伴生一定量的钴,主要以临高-澄迈褐铁矿为代表;南矿带主要以铝、钴为主要成矿元素,以文昌蓬莱矿产为代表。成矿母岩岩性和时代不同,北矿带成矿母岩主要为第四纪多文组火山岩;南矿带的成矿母岩新近纪中系统石马村组-石门沟组的火山岩。自然地理不同,褐铁矿成矿带多以火山岩台地为主的准平原地形,海拔30-80米,相对落差小,受台风影响较弱,降水较少且比较集中;南矿带铝、钴多金属矿带主要以火山盆地为主,相对落差较大,受台风影响频繁降水较多;同时影响地下水的活动性,而地下水的活动性决定了元素的迁移与走向。
     6区域风化成矿作用
     风化作用的开始是从造岩矿物的解体,已从鲍文反应序列的原理对玄武岩来说主要是从长石和辉石矿物的解体;其次是基质物质的脱硅作用,第三是铁、铝与硅的淋滤分离和迁移沉积的过程,残积的风化壳保留铁(三氧化二铁的水合物)、铝(三水铝石等)在地表形成铁铝质的风化壳或褐铁矿、铝土矿等。
     风化壳各层的物质成分不同,三水铝石和针铁矿呈现出没有规律的变化,表土层、结核层、腐泥层和半风化层都有三水铝石出现;针铁矿主要出现于上部,铝土矿一般出现在针铁矿的下部。高岭石出现于所有的层位,且比例较高,加上绿泥石、伊丁石等矿物较多,说明风化壳还不成熟,多水高岭石或蒙脱石、埃洛石、水铝英石等中间产物的出现说明风化作用正在进行,距离以三水铝石为主要矿物成分为主的成熟风化壳还相差甚远。
     在风化作用中元素的地球化学行为主要取决于这些元素的离子半径,相同半径的元素呈类质同相的的形式存在着痕量元素。
Cenozoic is the era of strong volcanic activity in northern Hainan Island. Duowen-periodic activities of intermittent volcanic eruption have been occurring from Paleogene Period to Holocene Epoch. Volcanic rocks are widely distributed and outcropped like a shape of "7" from north to east of Hainan Island in south Qiongzhou Strait. They are mainly basic rocks, with an area of more than4000km2which is19.5%of the whole island. In regional structure, they distributed in both sides of Wangwu-Wenjiao discordogenic fault, and mainly in the northern side.
     Northern Hainan island, locating at about20degree north latitude, belongs to the area of tropical oceanic monsoon climate. In this region, elements such as magnesium and silicon etc. are leached for strong weathering, and a mass of modern volcanic rock weathering crust composed of gibbsite, esmeraldaite, goethite, kaolinite, illite, montmorillonite, chlorite, etc. are formed. Some sectors of this region formed commercial valuable deposits such as bauxite, limonite, etc. According to related statistic data, the explored reserves of gibbsite-type bauxite, limonite, and cobalt formed in volcanic rock region in Hainan Island are25million, a hundred million, and more than ten thousand tons, respectively. Meanwhile, many valuable elements such as nickel, gallium, chromium, cooper, etc. are associated in these deposits. These mineral resources formed of weathered and leached volcanic rocks in Cenozoic, are typical and still forming. And the ore-forming process is clearer. Thus, they are natural laboratory of studying on weathering mineralization. However, researches and findings in the past mainly focused on the regional geology, environmental geology, regional mineral (mainly on combination gas), and engineering geology. Research on regional volcanic rock weathering mineralization is really rare, and some key problems are still unresolved.
     Previous studies put much empHasis on the region geology, environmental geology, regional resource (most on oil and gas) and engineering geology. However, less attention has been paid to the regional volcanic weathered mineralization and some critical issues remain unresolved. In this paper, we carry out a detailed study of the Cenozoic volcanic rocks (e.g. field geology, mineral composition, geochemistry and tectonic setting) and ore deposit related to their weathered crust (e.g. the profile characteristics, mineral and chemical composition and controlling factors of the weathering crust, and the geological, geochemical characteristic, and formation process of the weathered mineral). We also discuss the mechanism for element enrichment during the weathering, the main factors that control the formation of the weathered mineral, and establish a new model for the research and exploration of the weathering ore deposit.
     1Cenozoic volcanic activity in northern Hainan Island was most intense, and eleven stages have been recognized. Paleogene and Neogene volcanic rocks except for Shimacun Formation were buried underground, while Quaternary ones except for Pleistocene were outcropped.
     Regional volcanic rocks were weathering under the condition of tropical monsoon climate. The weathering crust generally shows an alternate distribution of thick (the older) to thin (the younger) from east to west. The thickness of weathering crusts affected by time has positive correlation with the age of volcanic rocks. In addition, results show that the weathering crust is producing formation of weathering deposits such as limonite, bauxite and asbolite, etc.
     2Based on the ore-forming element association, mineralization mother rock, microtopograpHy and microrelief etc., together with the spatial distribution of deposits (ore occurrence), the regional weathering deposits were divided into two metallogenic belts. Boundary between them is Wangwu-Wenjiao fault. The north one was represented by limonite composed of weathered volcanic rocks from Duowen Formation. And the south one was represented by aluminium, cobalt and chromium deposits composed of tertiary rocks from Shimacun Formation to Shimengou Formaion among Penglai, Juding and Nanyang.
     Limonite distribute mainly in volcanic rock weathering crust from Duowen Formation in the north metallogenic belt. And from Lingao to Chengmai it has a large scale. Ore bodies are affected by landform. Thus, on mountaintop and at hillside they are thicker, while the submontane and low-lying ones gradually thin out. Ore bodies are mainly constituted by ledges of pisolite limonite and massiveness limonite. Concentration of total iron is usually30%or so, the highest being57%.
     Bauxite distribute mainly in volcanic rock weathering crust from Shimacun Formation to Shimengou Formaion in the south metallogenic belt in Penglai of Wenchang. The ore bodies affected by landform shape like duplex dishes. Thicknesses of ledges covered with1to2m laterite layer are usually30to60cm, the thickest being4to5m. Gibbsite are the main ore, with a mineralized rate of400kg/m3or so and the highest being more than1000kg/m3.
     Asbolite usually associated with limonite and bauxite, distribute in volcanic rock weathering crust from Shimacun Formation to Shimengou Formaion in the south metallogenic belt in Penglai of Wenchang, and mainly in Anding and Wenchang. The ore bodies consist of bauxite, limonite and asbolite are affected by landform. Note that the asbolite locates at bearing bed below. The mineralized rate varies greatly from5to15kg/m3, with a minimum value of1kg/m3and a maximum value of124kg/m. In addition, the asbolite with shapes like flaky, pisolite and coralloid, colloid, concretion form are usually0.5to3cm thick. Its major mineral component is allopHytin. And concentration of cobalt is3.13to8.45%.
     3The chemical compositions of the samples of the each layers of weathering profile (such as limonite, bauxite, earthy cobalt) mainly consist of totally72.18%-84.58%SiO2, Al2O3and Fe2O3. They contain SiO2=15.46%-50.46%, Al2O3=7.82%-36.56%and Fe2O3=7.82%-36.56%, with average contents of30.45%,19.94%and28.33%, respectively. The average content (28.33%) of the Fe2O3is much higher than the content (5%) of the upper crust, suggesting that laterization in the tropic area is intense. In contrast, some soluble components (such as CaO、Na2O、K2O and MgO), with a low content, all have contents of less than1%. This Fe-Al-enriched, associated with strong chemical weathering, is responded for the climatic conditions of the tropical regions. The geochemical factors of affect the process of rock weathering mainly include pHysical and chemical properties of the elements, temperature and water, PH value and oxidation-reduction potential (Eh value).
     Ferrous iron ion released by weathering of volcanic rocks will transform into ferric iron ion in the earth's surface oxidation environment. When the pH value is less than three, the ferric iron ion will be traps in the mineralization of hydroxide, which finally switch into goethite and limonite. Silicate minerals (e.g. feldspar, pyroxene, ampHibole and micas) will be changed into clay minerals (e.g. illite, kaolinite, and montmorillonite) through weathering. In the damp and torrid tropics, these clay minerals will be further decomposed into silicon and aluminum. Silicon is washed away by underground fluids, and aluminum ions are trapped in the aluminum hydroxide when the pH values are5-9, forming gibbsite-type bauxite deposits. Bivalent manganese commonly exists in the rock-forming minerals. When they are weathered, bivalent manganese is released from the source and carried by the fluid. Manganese deposits are controlled by pH and eh values. For pH value less than seven, manganese ionic compound is carried in the fluid, and it will be leached for pH value more than eight. In the sedimentation, separation of iron and manganese is controlled by pH and eh values. Valence bond force between manganese and oxide is weaker than the one between iron and oxide. Hence, bivalent manganese ion content is more than ferrous iron ion content in the carrying fluid which makes them separate during hydrolysis. Therefore, in the red bed weathering shell, iron oxide is on the top of manganese oxide. Manganese oxide usually lye on the surface of the rocks or fill in the cracks, and they will catch the polymer of copper, cobalt, nickel, and zinc. In the top of the weathering shell, pH value is lower and eh value is higher. Ferrous iron ion is usually transformed into ferric iron ion and deposited in this oxidation environment. These minerals further form goethite and hematite through dehydration, forming iron cap on the top of the weathering shell. In contrast, reduced facies of cobalt, nickel, copper, and manganese continue to migrate downward and finally deposit, forming the vertical elements zonality.
     4REE patterns of weathering profiles show that distribution patterns of surface laterite, granular limonite layer with beans, bauxite layer, cobalt-containing soil seam, bauxite, aluminum soil sapropel layer are consistent, Only differences in REE contents, Are rightist, rich in light rare earth Substantially similar distribution patterns in the region of lava
     Light and heavy rare earth differentiation gradually increase in the profile in the upper part of the surface laterite ore beds, display LREE enrichment greater than the heavy rare earth, higher degree of differentiation between the light rare earth elements and Low level of differentiation between the heavy rare earth elements.the degree of differentiation between Light and heavy rare earthis weaken in the the white corruption clay layer, half weathered layers, Differentiation between the inside of the light rare earths is weakened or even no differentiation while Different degree of heavy rare earth is significantly enhanced. Heavy rare earth elements in the weathering process is easy and light rare earth leaching is easier enrichment.
     δCe performance trend was first increased and then decreased from the surface to the deep, δCe performance trend was first increased and then decreased from the surface to the deep,δEu is a weak negative anomaly or no anomaly in the weathering profile, Description that overall environmental performance of profile is oxidizing environment. The performance of the degree of oxidation gradually increased from the surface to the middle of the profile, and then decreased to the deep changes in trends.
     Above characteristics of rare earth elements indicate that Substances ingredients of the profile layers have certain amount of inheritance from top to bottom and Has a genetic link between them, Are the bedrock by the product formed by the weathering process at different spatial pHase.
     Penglai bauxite, in the1meter whole weathering mud at the bottom of the weathering profile, the total REE is2306.08ppm, reaching the weathering type REE content of industrial grade and considered to be a bauxite deposit. This bauxite mining area may be a large REE metallogenic prospective areas, which needs more attention in the following works.
     5Different combinations of ore-forming elements. The main ore-forming elements are iron associated with a small amount of cobalt in the North belt, Lingao-Chengmai limonite is a typical representative of the deposits of the northern ore zone. The main ore-forming elements of the South ore zone is aluminum and cobalt, the representative ore deposits are Penglai bauxite and juding cobalt soil mineral. The main factors that control differences in North and South deposit have mineralization host rock, microtopograpHic landforms, groundwater and precipitation. Mineralization parent rock lithology and era is different. Mineralization main parent rock in the North belt is Quaternary volcanic rocks of multicultural group, outh ore zone mineralization parent rock the Neogene system Shima gumi-the Shimengou group of volcanic rock. The natural and geograpHical environment between The north-south belt is not the same. monite metallogenic belt are mainly distributed in the volcanic rock mesa peneplain terrain, Altitude between30m to80m, the relative gap is small, less affected by the typHoon, with little precipitation and the distribution is more concentrated. Southern belt aluminum, cobalt polymetallic ore belt formed in a volcanic basin topograpHy, the terrain drop relatively large, affected by typHoons more and more precipitation.
     6The weathering firstly started by the disintegration of the rock-forming minerals, such as feldspar and pyroxene minerals in the basalt, according to the principle of the Bowen reaction series. Then, the desilication of matrix material began. Thirdly, the leaching, separation, migration and deposition process of Fe2O3, Al2O3and SiO2, retained residual iron (e.g. ferric oxide hydrate) and aluminum (e.g. Gibbsite) in the eluvial weathered crust and resulted in the formation of the ferrallitic weathering crust (or Limonite and bauxite).
     The different layers of weathering crust contain different material composition, and show a random distribution of the gibbsite and goethite. Gibbsite could appear in the topsoil, binding layer, sapropel layer and semi-weathered layer. Goethite occurred mainly in the upper part, and usually above the bauxite. Kaolinites occurred in all layers and occupy a higher proportion, together with larger number of chlorite and traversite, suggest that weathering crust is not yet mature. The appearance of halloysite (kaolinite), nerchinskite and allopHone indicate that the weathering is still in process and not reach the mature weathering crust that manly including gibbsite.
     In the weathering process, the geochemical behavior of elements is critically depended on the ionic radii, valence state and isomorpHism.
引文
[1]Schellmann W. Geochemical differentiation in laterite and bauxite formation[J]. Catena.1994, 21(2-3):131-143.
    [2]Norton S A. Laterite and bauxite formation[J]. Economic Geology.1973,68(3):353-361.
    [3]Nichols O G, Nichols F M. Long-Term Trends in Faunal Recolonization After Bauxite Mining in the Jarrah Forest of Southwestern Australia[J]. Restoration Ecology.2003,11(3):261-272.
    [4]Butt C, Nickel E H. Mineralogy and geochemistry of the weathering of the disseminated nickel sulfide deposit at Mt. Keith, Western Australia[J]. Economic Geology.1981,76(6):1736-1751.
    [5]Oliveira S M B, Partiti C S M, Enzweiler J. Ochreous laterite:a nickel ore from Punta Gorda, Cuba[J]. Journal of South American Earth Sciences.2001,14(3):307-317.
    [6]Foster L, Eggleton R A, Roach I C. The Marlborough nickel laterite deposits[J]. Pp.33A36 in: Regolith and Landscape in Eastern Australia (IC Roach, editor). University of Canberra, Australia.2002.
    [7]Dalvi A D, Bacon W G, Osborne R C. The past and the future of nickel laterites[C].2004.
    [8]丰成友,张德全.世界钴矿资源及其研究进展述评[J].地质论评.2002,48(6):627-633.
    [9]孙晓刚.世界钴资源的分布和应用[J].世界有色金属.2000(001):38-41.
    [10]Kelepertsis A E. Mineralogy and geochemistry of the pliocene iron-rich laterite in the Vatera area, Lesvos Island, Greece and its genesis[J]. Chinese Journal of Geochemistry.2002,21(3): 193-205.
    [11]Beukes N J, Gutzmer J, Mukhopadhyay J. The geology and genesis of high-grade hematite iron ore deposits[J]. Applied Earth Science.2003,112(1):18-25.
    [12]Beauvais A, Parisot J C, Savin C. Ultramafic rock weathering and slope erosion processes in a South West Pacific tropical environment[J]. Geomorphology.2007,83(1):1-13.
    [13]张承帅,李莉,李厚民.世界铁资源利用现状述评[J].资源与产业.2011,13(3).
    [14]张泾生.我国铁矿资源开发利用现状及发展趋势[J].中国冶金.2007(1):1-6.
    [15]侯宗林.中国铁矿资源现状与潜力[J].地质找矿论丛.2005,20(004):242-247.
    [16]Cornwall H R. UNITED STATES MINERAL RESOURCES [J]. US Geological Survey professional paper.1973:437.
    [17]陈世益,周芳.论东南省区晚新生代玄武岩的铝土矿化[J].轻金属.1994(8):1-5.
    [18]陈世益,周芳.论我国南方新生代铝土矿的成矿作用[J].中南矿冶学院学报.1991,22(5):487-492.
    [19]陈国达.中国大型三水铝土矿的找矿思路和远景[J].中国有色金属学报.1991,1(1):2-9.
    [20]吴时国,郭军华,刘展.东海南海交接带重磁场特征及新生代盆地成因[J].海洋地质与第四纪地质.2004,24(3):49-55.
    [21]夏斌,崔学军,谢建华,等.关于南海构造演化动力学机制研究的一点思考[J].大地构造与成矿学.2004,28(3):221-227.
    [22]刘瑞华,张仲英.海南岛的新构造运动特征[J].热带地理.1989,9(002):174-182.
    [23]侯威,陈惠芳.海南岛前寒武纪地层的确定及其大地构造演化[J].长春地质学院学报.1992,22(002):136-143.
    [24]吴世敏,周蒂.南海北部陆缘的构造属性问题[J].高校地质学报.2001,7(4):419-426.
    [25]孙嘉诗.南海北部及广东沿海新生代火山活动[J].海洋地质与第四纪地质.1991,11(003):45-66.
    [26]姚伯初.南海北部陆缘新生代构造运动初探[J].南海地质研究.1993(005):1-12.
    [27]黄镇国.雷琼第四纪火山[M].科学出版社,1993.
    [28]阎贫,刘海龄.南海及其周缘中新生代火山活动时空特征与南海的形成模式[J].热带海洋学报.2005,24(2):33-41.
    [29]孙建中,樊祺诚,陈文寄.琼北地区第四纪火山活动的研究[J].海南岛北部地震研究文集,北京:地震出版社.1988:26-33.
    [30]吴泽龙.雷琼火山活动与新构造运动[J].中国地震学会第六次学术大会论文摘要集.1996.
    [31]O N C. ACID LEACHING OF LATERITIC ORES[J]. UNITED STATES PATENT AND TRADEMARK OFFICE GRANTED PATENT.1973.
    [32]Wells M A, Ramanaidou E R, Verrall M, et al. Mineralogy and crystal chemistry of "garnierites" in the Goro lateritic nickel deposit, New Caledonia[J]. European Journal of Mineralogy.2009,21(2):467-483.
    [33]Santosh M, Omana P K. Very high purity gold form lateritic weathering profiles of Nilambur, southern India[J]. Geology.1991,19(7):746-749.
    [34]Hemley J J, Cygan G L, Fein J B, et al. Hydrothermal ore-forming processes in the light of studies in rock-buffered systems; I, Iron-copper-zinc-lead sulfide solubility relations[J]. Economic Geology.1992,87(1):1-22.
    [35]Zhai Y, Mu W, Liu Y, et al. A green process for recovering nickel from nickeliferous laterite ores[J]. Transactions of Nonferrous Metals Society of China.2010,20:s65-s70.
    [36]Colin F, Nahon D, Trescases J J, et al. Lateritic weathering of pyroxenites at Niquelandia, Goias, Brazil; the supergene behavior of nickel[J]. Economic Geology.1990,85(5):1010-1023.
    [37]Nahon D B, Paquet H, Delvigne J. Lateritic weathering of ultramafic rocks and the concentration of nickel in the western Ivory Coast[J]. Economic Geology.1982,77(5): 1159-1175.
    [38]Sagapoa C V, Imai A, Watanabe K, et al. Laterization Process of Ultramafic Rocks in Siruka, Solomon Islands[J]. Journal of novel carbon resource sciences ||3|| p32-39 Journal of novel carbon resource sciences.2011.
    [39]Thorne R L. Nickel laterites, origin and climate[D].2011.
    [40]Wenbo R, Zhenmin G, Zhusen Y, et al. Geology and geochemistry of the Shangmanggang red clay-type gold deposit in West Yunnan[J]. Journal of Geochemical Exploration.2004,84(3): 105-125.
    [41]Reich M, Chryssoulis S L, Deditius A, et al. Invisible silver and gold in supergene digenite (Cu 1.8 S)[J]. Geochimica et Cosmochimica Acta.2010,74(21):6157-6173.
    [42]Vasconcelos P, Richard Kyle J. Supergene geochemistry and crystal morphology of gold in a semiarid weathering environment:application to gold exploration[J]. Journal of Geochemical Exploration.1991,40(1-3):115-132.
    [43]Maclean W H, Bonavia F F, Sanna G. Argillite debris converted to bauxite during karst weathering:evidence from immobile element geochemistry at the Olmedo Deposit, Sardinia[J]. Mineralium Deposita.1997,32(6):607-616.
    [44]高灶其,樊克锋.几内亚红土型铝土矿床地质特征[J].资源调查与环境.2009,30(2):115-118.
    [45]刘发荣,田震远,李登科.老挝南部地区红土风化壳残余型铝土矿矿床成因分析及找矿(续)[J].中国非金属矿工业导刊.2009(001):49-52.
    [46]崔萍萍,黄肇敏,周素莲.我国铝土矿资源综述[J].轻金属.2008(002):6-8.
    [47]赵恒勤,赵新奋,胡四春,等.我国三水铝石铝土矿的矿物学特征研究[J].矿产保护与利用.2009(6):40-44.
    [48]刘英超,杨竹森,田世洪,等.云南省中西部红色风化壳中铂族元素分布特征[J].地质学报.2011,85(002):272-281.
    [49]Hughes M J, Carey S P, Kotsonis A. Lateritic weathering and secondary gold in the Victorian gold province[C].1999.
    [50]洪金益.论红土型金矿的矿化时间[J].黄金科学技术.1994,3.
    [51]李志群.云南红土型金矿床地质特征及成矿条件研究[J].矿产与地质.1998,12(3):160-166.
    [52]刘国平,徐勇.中国红土型金矿类型,成因和找矿[J].地质与勘探.1999,35(003):14-16.
    [53]Yang R, Wang W, Zhang X, et al. A new type of rare earth elements deposit in weathering crust of Permian basalt in western Guizhou, NW China[J]. Journal of Rare Earths.2008,26(5): 753-759.
    [54]Marker A, Friedrich G, Carvalho A, et al. Control of the distribution of Mn, Co, Zn, Zr, Ti and REEs during the evolution of lateritic covers above ultramafic complexes[J]. Journal of Geochemical Exploration.1991,40(1-3):361-383.
    [55]曾励训.贵州西部发现离子吸附型稀土矿[J].贵州地质.1989,3:10.
    [56]王伟,杨瑞东,栾进华,等.贵州西部玄武岩风化壳中稀土矿成矿机理及成矿模式[J].四川地质学报.2011,4.
    [57]关广岳.风化淋滤型富铁矿床的地球化学[J].地质与勘探.1976,8:4-24.
    [58]Morris R C.A textural and mineralogical study of the relationship of iron ore to banded iron-formation in the Hamersley iron province of Western Australia[J]. Economic Geology.1980, 75(2):184-209.
    [59]Powell C M A, Oliver N H S, Li Z X, et al. Synorogenic hydrothermal origin for giant Hamersley iron oxide ore bodies[J]. Geology.1999,27(2):175-178.
    [60]Klein C, Ladeira E A. Geochemistry and petrology of some Proterozoic banded iron-formations of the Quadrilatero Ferrifero, Minas Gerais, Brazil[J]. Economic Geology.2000,95(2):405-427.
    [61]Cabral A R, Rocha F, Jones R D. Hydrothermal origin of soft hematite ore in the Quadrilatero Ferrifero of Minas Gerais, Brazil:petrographic evidence from the Gongo Soco iron ore deposit[J]. Applied Earth Science:IMM Transactions section B.2003,112(3):279-286.
    [62]Beukes N J. Palaeoenvironmental setting of iron-formations in the depositional basin of the Transvaal Supergroup, South Africa[J]. Iron formations:facts and problems. Elsevier, Amsterdam.1983:131-209.
    [63]Ojakangas R W, Morey G B, Green J C. The Mesoproterozoic midcontinent rift system, Lake Superior region, USA[J]. Sedimentary Geology.2001,141:421-442.
    [64]廖士范,梁同荣.中国铝土矿地质学[M].贵州科技出版社,1991.
    [65]廖士范.我国铝土矿成因及矿层沉积过程[J].沉积学报.1986,4(1):1-8.
    [66]Zeissink H E. The mineralogy and geochemistry of a nickeliferous laterite profile (Greenvale, Queensland, Australia)[J]. Mineralium Deposita.1969,4(2):132-152.
    [67]萨玛玛,Samama J. C.,章锦统.矿田与大陆风化[M].中国地质大学出版社,1991.
    [68]Hongyuan L Q L. Economic Discussion Of Laterite Nickel Project [J][J]. World Nonferrous Metals.2006,6.
    [69]王瑞江,聂凤军,严铁雄,等.红土型镍矿床找矿勘查与开发利用新进展[J].地质论评.2008,54(002):215-224.
    [70]Mohanty M, Reddy K S, Probert M E, et al. Modelling N mineralization from green manure and farmyard manure from a laboratory incubation study [J]. Ecological Modelling.2011,222(3): 719-726.
    [71]Oliveira S M B, Trescases J J, Melfi A J. Lateritic nickel deposits of Brazil[J]. Mineralium Deposita.1992,27(2):137-146.
    [72]刘成忠,尹维青,涂春根,等.菲律宾吕宋岛红土型镍矿地质特征及勘查开发进展[J].江西有色金属.2009,23(002):3-6.
    [73]袁湘忻.浅说我国镍矿资源[J][J].中国金属通报.2005(45):10-12.
    [74]陈德潜,吴静淑.离子吸附型稀土矿床的成矿机制[J].中国稀土学报.1990,8(2):175-179.
    [75]潘华.广西云开地区风化壳离子吸附型稀土矿矿床特征及成矿模式[J].南方国土资源.2011(9):37-40.
    [76]吴澄宇,郭中勋.江西龙南地区花岗岩风化壳中稀土元素的地球化学研究[J].地质学报.1989,63(004):349-362.
    [77]Soler J M, Cama J, Gali S, et al. Composition and dissolution kinetics of garnierite from the Loma de Hierro Ni-laterite deposit, Venezuela[J]. Chemical Geology.2008,249(1):191-202.
    [78]Boyd R, Barnes S, De Caritat P, et al. Emissions from the copper!! nickel industry on the Kola Peninsula and at Noril'sk, Russia[J]. Atmospheric Environment.2009,43(7):1474-1480.
    [79]Dennen W H, Norton H A. Geology and geochemistry of bauxite deposits in the lower Amazon basin[J]. Economic Geology.1977,72(1):82-89.
    [80]Kassim A, Gofar N, Lee L M, et al. Modeling of suction distributions in an unsaturated heterogeneous residual soil slope[J].Engineering Geology.2012,131-132:70-82.
    [81]Freyssinet P, Butt C, Morris R C, et al. Ore-forming processes related to lateritic weathering[J]. Economic geology 100th anniversary volume.2005:681-722.
    [82]陈志明.沉积铁矿形成过程中的生物作用[J].地球科学进展.1992,6.
    [83]陈骏,杨杰东,李春雷.大陆风化与全球气候变化[J].地球科学进展.2001,16(3):399-405.
    [84]Young R W, Cope S, Price D M, et al. Character and age of lateritic weathering at Jervis Bay, southern New South Wales[J]. Australian Geographical Studies.1996,34(2):237-246.
    [85]Liu K, Chen Q, Hu H, et al. Characterization and leaching behaviour of lizardite in Yuanjiang laterite ore[J]. Applied Clay Science.2010,47(3-4):311-316.
    [86]Traore D, Beauvais A, Chabaux F, et al. Chemical and physical transfers in an ultramafic rock weathering profile:Part 1. Supergene dissolution of Pt-bearing chromite[J]. American Mineralogist.2008,93(1):22-30.
    [87]Traore D, Beauvais A, Auge T, et al. Chemical and physical transfers in an ultramafic rock weathering profile:Part 2. Dissolution vs. accumulation of platinum group minerals[J]. American Mineralogist.2008,93(1):31-38.
    [88]杨竹森,高振敏.滇西菲红超基性岩风化壳铂族元素地球化学行为[J].矿物学报.2001,21(4):625-630.
    [89]高帮飞,邓军,王庆飞,等.风化作用元素迁移与金富集机制研究——以国内外典型红土型金矿床为例[J].黄金.2006,27(005):9-12.
    [90]李伟强,顾连兴,唐俊华,等.江西武山块状硫化物矿石表生风化过程中稀土元素地球化学行为[J].中国稀土学报.2006,24(3):350-356.
    [91]Ji H, Ouyang Z, Wang S, et al. Element geochemistry of weathering profile of dolomitite and its implications for the average chemical composition of the upper-continental crust[J]. Science in China Series D:Earth Sciences.2000,43(1):23-35.
    [92]Wang Q, Deng J, Liu H, et al. Fractal models for estimating local reserves with different mineralization qualities and spatial variations [J]. Journal of Geochemical Exploration.2011.
    [93]吴进民,陈颙,王水.南海地质构造演化的若干问题[J].寸丹集——庆贺刘光鼎院士工作50周年学术论文集.1998.
    [94]魏喜,祝永军.南中国海构造框架和储层地质特征概述[J].特种油气藏.2004,11(4):1-6.
    [95]张虎男,赵希涛.雷琼地区新构造运动的特征[J].地质科学.1984,3:276-286.
    [96]陈哲培,海南省,地质矿产勘查开发局.全国地层多重划分对比研究:海南省岩石地层[M].中国地质大学出版社,1997.
    [97]龙文国,丁式江,马大铨,等.海南岛前寒武纪基底组成及演化[J].地球科学:中国地质大学学报.2005,22(4):421-429.
    [98]符国祥.海南省东方—琼中地区上古生界的划分与对比[J].广东地质.1990,5(002):35-45.
    [99]龙文国,童金南,朱耀河,等.海南儋州-屯昌地区二叠纪地层的发现及其意义[J].华南地质与矿产.2007,1.
    [100]张志存.海南岛二叠系研究的进展[J].科学通报.1988,9.
    [101]张业明,徐安武.海南岛几个重大基础地质问题的探讨[J].地质论评.1998,44(006):568-575.
    [102]符国祥,符策锐,汪迎平.海南岛乐东盆地白垩系研究新进展[J].地层学杂志.2001,25(1):63-68.
    [103]张仁杰,胡宁,冯少南.海南岛泥盆纪地层研究进展[J].地质论评.2000,46(5):454.
    [104]谢才富,朱金初,丁式江,等.海南岛晚二叠世-中三叠世镁铁质-超镁铁质侵入岩:后碰撞阶段岩石圈减薄的证据[J].2004年全国岩石学与地球动力学研讨会论文摘要集.2004.
    [105]彭晓秋,郭峰,侯威.海南岛中生代金矿成矿特征及成矿类型[J].黄金科学技术.1995,3(5):25-28.
    [106]胡久常,郭明瑞,刘伟,等.海口地区火山活动初步研究[J].地震地质.2009,31(4).
    [107]龙文国,林义华,朱耀河,等.海南岛北部第四纪早中更新世多文组的建立[J].地质通报.2006,25(3):408-414.
    [108]张仲英,刘瑞华.海南岛第四系火山岩的分期[J].地质科学.1989(001):67-76.
    [109]陈哲培,钟盛中.海南省海口地区第四纪火山盆地沉积特征[J].中国区域地质.1991(4):313-322.
    [110]陈沐龙,黄正壮,陈哲培.海南省洋浦地区第四纪火山地层划分对比[J].海南地质地理.1997,1:18-24.
    [111]邵磊,庞雄,张功成,等.南海北部渐新世末的构造事件[J].地球科学:中国地质大学学报.2009,34(005):717-724.
    [112]孙谦.琼北第四纪火山活动与岩浆演化[D].中国地震局地质研究所,2003.
    [113]汪啸风,马大铨.海南岛地质:岩浆岩[M].地质出版社,1991.
    [114]付建明.琼北新生代火山作用与构造环境[J].桂林工学院学报.1997,17(1):26-29.
    [115]张家友,周芳芳,傅杨荣,等.海南岛北部红土型褐铁矿开发问题探讨[J].金属矿山.2012(2):162-165.
    [116]黄香定,陈哲培.海南蓬莱地区火山岩地质特征及其与蓝宝石矿床形成的关系[J].华南地质与矿产.1997(3):39-45.
    [117]海南年鉴社.海南年鉴2009[M].2010.
    [118]韩中元,张仲英,刘瑞华.海南岛北部火山地貌[J].热带地理.1987,7(1):43-53.
    [119]符国祥.海南岛北西向断裂构造特征[J].广东地质.1990,5(004):59-64.
    [120]胡久常.琼北马鞍岭地区第四纪火山活动期次划分[J].地震地质.2003.
    [121]汪寿松李康韩秀玲.海南岛第四纪玄武岩的红土化作用[J].地质科学.1983,1:56-70.
    [122]刘丛强,解广轰.中国东部新生代玄武岩的地球化学:I.主元素和微量元素组成:岩石成因…[J].地球化学.1995,24(1):1-19.
    [123]刘丛强,解广轰.中国东部新生代玄武岩的地球化学(Ⅱ)Sr,Nd,Ce同位素组成[J].地球化学.1995,24(3):203-214.
    [124]郭旭东,盛学斌.我国海南岛第四纪玄武岩凤化壳的地球化学特征[J].地理学报.1980,2.
    [125]冯锦江,胡碧菇.海南岛第四纪玄武岩风化壳中次生矿物转变与时间的关系[J].岩石学报.1991,3.
    [126]汪寿松,李康,韩秀伶,等.海南岛红土风化壳的矿物成分及其形成机理[J].中国科学B辑.1983,3.
    [127]朱照宇,郑洪汉,张国梅,等.华南热带红土期及风化矿物初步研究[J].第四纪研究.1991, 1:18-28.
    [128]查慕陶.广东—海南成矿带成矿系列地质特征及其演化规律[J].地球化学.1998,27(004):391-399.
    [129]蔡周荣,刘维亮,万志峰,等.南海北部新生代构造运动厘定及与油气成藏关系探讨[J].海洋通报.2010,29(002):161-165.
    [130]梁德华,刘宗惠.南海成因及其含油气盆地[J].石油与天然气地质.1987,3:244-252.
    [131]姚伯初,万玲,刘振湖.南海海域新生代沉积盆地构造演化的动力学特征及其油气资源[J].地球科学:中国地质大学学报.2004,29(5):543-549.
    [132]林起玉,廖香俊.海南长昌高岭土矿矿石物质成分及其利用[J].广东地质.1994,9(002):81-87.
    [133]王振海,林起玉.海南岛金牛岭的沸石矿床[J].中国地质.1985,8.
    [134]翟裕生.成矿系统研究与找矿[J].地质调查与研究.2003,26(2):65-71.
    [135]翟裕生.论成矿系统[J].地学前缘.1999,6(1):13-27.
    [136]葛坦,韩江伟.涠洲岛和斜阳岛红色风化壳粘土矿物和化学特征及成土环境研究[J].中国地质.2009,26(001):203-213.
    [137]冯锦江,胡碧菇.海南岛第四纪玄武岩风化壳中次生矿物转变与时间的关系[J].岩石学报.1991,3.
    [138]冯锦江,胡碧茹.琼北第四纪玄武岩化学风化速率的初步研究[J].地质科学.1992(A12):295-301.
    [139]李文达,华南红土化作用地球化学及红土型金矿形成的可能性[M].地质出版社,1995.
    [140]程忠富,李文达.华南玄武岩红土化过程中微量元素地球化学[J].四川地质科技情报.1997(001):30-38.
    [141]朱照宇,罗树文.华南雷州半岛第四纪多旋回火山岩—红土系列的层序与年代[J].第四纪研究.2001,21(3):270-276.
    [142]于蕾,侯恩刚,高亦文.中国铝土矿勘查研究进展[J].资源与产业.2011,13(3):27.
    [143]欧阳坚,卢寿慈.我国铝土矿资源特征与选矿加工研究[J].矿产综合利用.1995,2:24-26.
    [144]夏楚林,张起钻,高莉.桂西堆积型铝土矿矿物组成及地球化学特征探析[J].轻金属.2011(5):6-9.
    [145]刘云华,黄同兴,谌建国,等.桂西堆积型铝土矿中三水铝石成因矿物学研究[J].中国地质.2005,31(4):413-419.
    [146]柳建春,黄宝贵.红土型铝土矿中三水铝石的分离方法研究[J].岩矿测试.1995,14(003):161-165.
    [147]李启津.铝土矿成矿理论研究时展及三水型铝土矿找矿方向[J].轻金属.1989(007):1-3.
    [148]卢文华,韦永坚,黎乾汉,等.试论平果三水铝石成因,富集规律及工业价值[J].广西地质.2001,14(2):15-18.
    [149]袁杨森,高灶其,张成学,等.几内亚博凯地区红土型铝土矿成矿机理和控矿因素研究[J].河南理工大学学报(自然科学版).2010,29(3).
    [150]成功,高光明,陈松岭.老挝波罗芬高原铝土矿地质特征与成矿规律[J].中南大学学报自然科学版.2008,39:2.
    [151]杨社锋,方维萱,胡瑞忠,等.云南和老挝锡及铝土矿表生成矿作用对比研究[J].云南地质.2006,25(004):429-431.
    [152]马在平.我国热带亚热带部分长石风化产物研究[J].石油大学学报:自然科学版.1998,22(005):14-18.
    [153]张乃娴.粘土矿物与风化作用[J].中国非金属矿工业导刊.1992,6.
    [154]殷子明.漳浦沿海新生代玄武岩的风化成矿作用[J].中南矿冶学院学报.1989,20(1):9-17.
    [155]陈炳辉,俞受望.华南风化壳中稀土元素的分异作用及其影响因素[J].中山大学学报:自然科学版.1998,37(2):92-96.
    [156]马英军,霍润科,徐志方,等.化学风化作用中的稀土元素行为及其影响因素[J].地球科学进展.2004,19(1):87-94.
    [157]王新平,季宏兵,王世杰.黔中白云岩风化剖面淋溶实验及其元素地球化学特征[J].地质论评.2007,53(006):830-838.
    [158]张立娟.热带土壤剖面风化成壤过程中的元素地球化学特征[D].南京大学,2011.
    [159]王浩,刘志飞,李建如,等.马来半岛和婆罗洲北部的化学风化作用:来自河流表层沉积物的黏土矿物和元素地球化学记录[J].中国科学:地球科学.2011,41(2):205-215.
    [160]冯锦江,胡碧茹.琼北第四纪玄武岩化学风化速率的初步研究[J].地质科学.1992(A12):295-301.
    [161]朱显谟.中国南方的红土与红色风化壳[J].第四纪研究.1993(001):75-84.
    [162]Valeton I. Element concentration and formation of ore deposits by weathering[J]. Catena.1994, 21(2-3):99-129.
    [163]Stallard R F, Edmond J M. Geochemistry of the Amazon 3. Weathering chemistry and limits to dissolved inputs[J]. Journal of geophysical Research.1987,92(C8):8293-8302.
    [164]Hagedorn B, Cartwright I, Raveggi M, et al. Rare earth element and strontium geochemistry of the Australian Victorian Alps drainage system:Evaluating the dominance of carbonate vs. aluminosilicate weathering under varying runoff[J]. Chemical Geology.2011,284(1-2): 105-126.
    [165]Mcfarlane M J, Eckardt F D, Coetzee S H, et al. An African surface weathering profile in the Kalahari of North West Ngamiland, Botswana:processes and products[J]. Zeitschrift f&# 252; r Geomorphologie.2010,54(3):273-303.
    [166]童胜琪,刘志飞,Le K.P.,等.红河盆地的化学风化作用:主要和微量元素地球化学记录[J].矿物岩石地球化学通报.2006,25(003):218-225.
    [167]张立娟,李德成,李徐生,等.成土年龄对雷琼地区玄武岩母质土壤剖面中常量元素迁移的影响①[J].土壤(Soils).2012,44(2):274-281.
    [168]朱丽东,周尚哲,李凤全,等.金衢盆地TX红土剖面元素迁移特征[J].海洋地质与第四纪地质.2007,27(1):117-123.
    [169]Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications. 1989,42(1):313-345.
    [170]杨社锋,方维萱,胡瑞忠,等.老挝南部Antoun地区花岗闪长岩风化壳中常量和稀土元 素分布[J].土壤学报.2009,46(002):201-209.
    [171]黄成敏,王成善,邓景元.变性土发育过程中稀土元素地球化学特征和行为[J].中国稀土学报.2004,21(6):706-710.
    [172]杨学明,张培善.江西大吉山花岗岩风化壳稀土矿床稀土元素地球化学[J].稀土.1999,20(1):1-5.
    [173]池汝安,田君,李中军,等.风化淋积型稀土矿稀土赋存状态及配分研究[J].中国稀土学报.2005,23(006):774.
    [174]宋云华,沈丽璞.酸性火山岩类风化壳中稀土元素的地球化学实验研究[J].地球化学.2004(3):225-234.
    [175]杨瑞东.贵阳地区碳酸盐岩风化红粘土剖面稀土,微量元素分布特征[J].地质论评.2008,54(3):409-418.
    [176]吴澄宇,黄典豪,郭中勋.江西龙南地区花岗岩风化壳中稀土元素的地球化学研究[J].地质学报.1989,63(4):349-362.
    [177]Wang H, Liu Z F, Sathiamurthy E, et al. Chemical weathering in Malay Peninsula and North Borneo:Clay mineralogy and element geochemistry of river surface sediments[J]. SCIENCE CHINA Earth Sciences.2011,54(2):272-282.
    [178]李冬,杨宏,张杰.生物滤层同时去除地下水中铁,锰离子研究[J].中国给水排水.2001,17(8):1-5.
    [179]Muller J P, Calas G. Mn2+-bearing kaolinites from lateritic weathering profiles:geochemical significance[J]. Geochimica et cosmochimica acta.1993,57(5):1029-1037.
    [180]陈振楼,黄荣贵,万国江.红枫湖沉积物—水界面Fe,Mn的分布和迁移特征[J].科学通报.1992,37(21):1974-1977.
    [181]毛龙江,莫多闻,周昆叔,等.澧阳平原黑褐色土壤剖面常量元素地球化学特征[J].环境化学.2009,28(5):734-738.
    [182]叶玮,朱丽东,李凤全,等.中国中亚热带网纹红土的地球化学特征与沉积环境[J].土壤学报.2008,45(3):385-391.
    [183]叶玮,杨立辉,朱丽东,等.中亚热带网纹红土的稀土元素特征与成因分析[J].地理科学.2008,28(001):40-44.
    [184]徐金鸿,徐瑞松,夏斌,等.广东红壤中稀土元素的含量及分布特征[J].中国土壤与肥料.2007,1:18-21.
    [185]朱照宇,谢久兵,王彦华,等.华南沿海地表红土地球化学特性变异的自然因素与人类活动干预[J].第四纪研究.2004,24(4):402-408.
    [186]续海金,马昌前.地壳风化速率研究综述[J].地球科学进展.2002,17(5):670-678.
    [187]杨金玲,张甘霖.土壤风化速率研究及其应用[J].土壤.2011(6):882-888.
    [188]唐鹏,徐则民.岩石结构体风化前锋扩展机理分析初探[J].矿业研究与开发.2008(4):9-11.
    [189]陈素华,孙铁珩.土-岩界面重金属行为的研究进展[J].土壤与环境.2002,11(1):75-78.
    [190]徐争启,倪师军,滕彦国,等.矿业活动固体废弃物中重金属元素释放机理的浸出实验[J].地质通报.2012,1.
    [191]黄艳.黔西南与玄武岩有关的铜矿及其表生成矿过程的实验研究[D].中国科学院研究生 院(地球化学研究所),2006.
    [192]郎银生,李建威,邓晓东,等.广西钦州-防城地区次生氧化锰矿床矿物学和地球化学研究及矿床成因意义[J].矿床地质.2007,26(005):527-540.
    [193]颜代蓉,李建威,胡明安,等.广西下雷氧化锰矿床矿石特征及成因分析[J].地质科技情报.2006,25(3):61-67.
    [194]王伟.贵州西部二叠系玄武岩风化壳及其中稀土富集规律研究[D].贵州大学,2008.
    [195]陈天虎,徐晓春.苏皖四处凹凸棒石粘土矿床稀土元素地球化学研究[J].中国稀土学报.2002,20(5):463-467.
    [196]李伟强,顾连兴,唐俊华,等.江西武山块状硫化物矿石表生风化过程中稀土元素地球化学行为[J].中国稀土学报.2006,24(3):350-356.
    [197]张成龙,邬光剑,高少鹏.青藏高原砂质表土样品稀土元素特征的初步探讨[J].冰川冻土.2008,2.
    [198]杨元根,刘丛强,袁可能,等.南方红土形成过程及其稀土元素地球化学[J].第四纪研究.2000,20(5):469-480.
    [199]杨元根,袁可能.淋滤条件下红壤中稀土元素的环境化学行为研究[J].环境保护科学.1999,25(4):25-28.
    [200]彭淑贞,郭正堂.西峰地区晚第三纪红土稀土元素的初步研究[J].海洋地质与第四纪地质.2000,20(002):39-43.
    [201]Mclennan S M. Rare earth element geochemistry and the[J]. Geochimica et Cosmochimica Acta. 1994,58(9):2025-2033.
    [202]Mclennan S M, Fryer B J, Young G M. Rare earth elements in Huronian (Lower Proterozoic) sedimentary rocks:composition and evolution of the post-Kenoran upper crust[J]. Geochimica et Cosmochimica Acta.1979,43(3):375-388.
    [203]黄镇国,张伟强.中国热带气候地貌几个问题的讨论[J].热带地理.2006,26(3):197-201.
    [204]高灶其,樊克锋.几内亚红土型铝土矿床地质特征[J].资源调查与环境.2009,30(2):115-118.
    [205]袁建平,余龙师,邓广强,等.海南岛地貌分区和分类[J].海南大学学报:自然科学版.2006,24(4):364-370.
    [206]尹秋珍,郭正堂.中国南方的网纹红土与东亚季风的异常强盛期[J].科学通报.2006,51(2):186-193.
    [207]刘长龄,覃志安.论中国岩溶铝土矿的成因与生物和有机质的成矿作用[J].地质找矿论丛.1999,14(4):24-28.
    [208]张实,张惠芬.关于长石→高岭石动态形成过程的讨论[J].矿物学报.1992,12(4):374-379.
    [209]Angelucci A, de Gennaro M, de Magistris M A, et al. Mineralogical, geochemical and sedimentological analysis on recent and quaternary sands of the littoral region between Mogadishu and Merka (Southern Somalia) and their economic implication[J]. Geologica Romana.1995,31:249-263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700