用户名: 密码: 验证码:
西藏米拉山高寒草甸土壤微生物多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原是世界上海拔最高的高原,其平均海拔在4 000米以上,高寒、缺氧、降水少、日照长、辐射强,独特的自然地理环境使其富含特殊的微生物资源。但是由于全球气候的变化导致青藏高原气温不断升高,加之人类过度放牧的影响使得高寒草甸逐年退化,微生物生态系统被严重破坏。此外,由于能够利用培养技术获得的微生物种类不足自然环境中存在的1%,目前对该类型土壤的微生物多样性和资源调查存在很大的不足,阻碍了这些特殊微生物资源的开发应用。提取环境微生物宏基因组DNA及构建文库是研究未培养微生物的重要方法。因此,本研究利用宏基因组学技术首次对西藏米拉山高寒草甸土壤的微生物群落结构、功能微生物及微生物基因资源多样性进行了系统的研究,主要结果与结论如下:
     (1)针对高寒草甸土壤中腐植酸和有机质含量高、DNA提取非常困难的特点,首次选择和优化了适合该类型土壤样品不同分子量DNA提取及纯化的技术路线。通过对比不同DNA提取和纯化方法的研究表明:直接法提取的DNA片段小、杂质含量高,但是由于其提取效率高,结合操作简便的柱纯化方法,适合于微生物多样性研究;结合低速离心和Nycodenz密度梯度离心先分离出微生物细胞的间接法虽然DNA产率降低,但是纯度高、片段长,结合电泳纯化法更适合于构建大插入片段文库。
     (2)分别以pUC19质粒载体和pCC2FOS?载体构建了西藏米拉山高寒草甸土壤微生物宏基因组文库,为进一步开发利用其微生物资源奠定了基础。其中两个pUC19质粒文库(ZMp-1和ZMp-2)的平均插入片段长度分别为1 kb和4 kb;Fosmid文库(ZMf-vsmfba)包含30 624个克隆,平均插入片段为35 kb左右,库容量超过1 Gb;部分文库克隆末端测序结果表明,尽管构建两种文库的DNA提取和纯化方法不同,但是文库插入片段序列多样性丰富,都含有大量的未知微生物物种。
     (3)在直接提取宏基因组DNA的基础上,采用16S rRNA基因克隆文库技术研究表明:西藏米拉山高寒草甸土壤中细菌和古菌多样性具有一定特殊性;但是由于受到气候变化和人类活动的影响,退化草甸土壤的微生物群落结构发生了改变。古菌文库中与GenBank中序列相似性很低的未分类古菌类型占有很大比例,但是古菌类型非常单一,仅发现了嗜泉古菌界(Crenarchaeota)的未分类热变形菌纲门(Unclassified_Thermoprotei),其余为未分类古菌(Unclassified_Archaea),没有发现广域古菌界(Euryarchaeota)克隆;相比之下细菌类型丰富,基本涵盖了大部分土壤细菌基本类群。
     (4)由于草甸的退化使储藏在土壤中的大量碳氮加速释放将造成严重的环境问题,本研究进一步以氨单加氧酶(ammonia monooxygenase, amoA)基因为分子标记比较了不同退化程度草甸土壤样品中的氨氧化微生物(ammonia-oxidizing microorganisms, AOM)多样性发现:氨氧化古菌(ammonia-oxidizing archaea, AOA)在伴随草甸退化的硝化作用增强过程中的作用高于氨氧化细菌(ammonia-oxidizing bacteria, AOB),并且退化草甸土壤的硝化作用模式类似于温室保护地土壤。
     (5)根据已报道许多微生物能够分泌胞外蛋白酶降解线虫体壁及卵鞘的原理,新型蛋白酶的开发和利用在植物病原线虫的生物防治中具有重要作用。本研究在西藏高寒草甸土壤微生物的宏基因组DNA和文库的基础上,以蛋白酶为靶标对其微生物基因资源进行了调查,结果根据同源克隆方法得到了75条新丝氨酸蛋白酶基因片段;通过pUC19质粒文库克隆末端测序分析得到了7条新的类蛋白酶基因片段;利用Fosmid文库的大插入片段表达特性筛选到了2个新蛋白酶基因序列,表明西藏高寒草甸中蕴含着丰富的可利用新基因资源,具有极高开发利用价值。
     综合以上结果,本研究表明西藏高寒草甸土壤微生物群落的组成具有特殊性,其中有大量的未知微生物及其基因信息有待挖掘和开发利用。但是由受到环境和人为活动的影响,高寒草甸的退化导致微生物群落为适应环境压力而通过改变其活性、生物量和结构来进行调整。无论是从资源角度还是环境角度来看,对西藏高寒草甸的保护及恢复都至关重要。
Qinghai-Tibetan Plateau is the highest and largest plateau on the Earth, which is frequently referred to as an extreme environment for special microbial resources. But most of them could not be utilized for their unculturable property. And togather with the global climate change and human impact, the microbial ecosystem of the Plateau is being destroyed. Extraction of total microbial DNA with cultured-in-dependent method and construction of metagenomic library is an alternative method to exploit uncultured microorganisms. To exploiting new microbial resources and investigating ecological changes on the Plateau, meadow soil from Tibetan Mila mountain was collected as alpine soil type. And this dissertation first systematically studied the microobial diversity of the alpine meadow soil in Tibetan Plateau with metagenomic method.
     A pre-experiment indicated that the alpine meadow soil has high organic matter and humic acid content, which resulted in a great difficulty in DNA extraction. We compared different extraction and purification methods, the result showed that the DNA obtained by directly extraction from the soil was in small DNA fragments with high contamination. For its easy operating and high efficiency, it is suitable for mircrobial diversity research after column purification step. Comparison with direct extraction, the DNA extracted from cells separated from combing low speed centrifugation and Nycodenz gradient centrifugation has larger molecular weigh and higher purity with comparative diversity.
     Metagenomic libraries were constructed by pUC19 and pCC2FOS? vector respectively. The average insert fragments of the two constructed pUC19 libraries (ZMp-1 and ZMp-2) were 1 kb and 4 kb individually, and the Fomisd library (ZMf-vsmfba) contained 30 624 clones of 35 kb average insert fragments, which made it has a total genomic storage capacity over 1 Gb. Bioassay demonstrated that both of the constructed libraries have large capability of insert DNA with unkown species. The method for constructing library provides a powerful tool for soil samples from extreme environment and the constructed library provides resources for finding and utilizing new functional genes from Tibetan altiplano.
     As 16S rRNA and its gene has proven to be useful and powerful markers for the presence of microorganisms in environmental samples, we determined the diversity of 16S rRNA gene of Archaea and Bacteria with library method. The result showed that the microorganisms, especially Archaea, have special characteristics. Taxonomic analysis recovered only Unclassified_Thermoprotei of Crenarchaeota and Unclassified_Archaea, no Euryarchaeota clone was found. Comparing to the Archaea, the bacterial group covered most of the basic soil bacteria types. But for the climate change and human effective, the microbial structure of degrading alpine meadow soil sample was changed.
     And with the meadows’retrogressing, the carbon/nitrogen are releasing and affecting environment severely. Much study has been focused on the process of biogeochemical cycle, whereas none was done with the ammonia-oxidizing microorganisms (AOM), whose diversity and factors influencing them are keys to understanding the movement of nitrogen. We estimated the amoA (ammonia monooxygenase subunits A) gene diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in two soil samples with different human and climate impact. The result suggested that AOA might play more important role in the degenerated grassland than AOB, and the opposite was true in undegraded sample. Besides, the amoA sequences from degenerated sample were closest to protected lands’sequences, which indicated that the model of nitrification in degenerated grassland of the alpine meadow soil in Tibetan Plateau is likely to that of protected lands in greenhouse.
     Furthermore, for exploring new protease, which was considered to be important nematode biocontrol reagent, we designed PCR amplification primers according to the serine proteases isolated from nematophagous fungi, which could decompose nematode body wall and egg cuticle. The amplified result with metagenomic DNA of alpine meadow soil showed that no achieved sequences were close to target genes, but the high diversity implicated rich available resources. Moreover, partial bidirectional-terminal sequencing of pUC19 plasimid library (ZMp-2) clones resulted into three protease-like genes with double-ends and four with single-end liking protease genes, and functional screening of the Fosmid library resulted into two new genes similar to protease. But the retrieved nine protease-like genes from two metagenomic libraries had very low similarity to reported sequences in GenBank (30~62%), we deduced they are brand-new protease genes.
     To sum up, there are much undiscovered special microbes and their gene information in the alpine meadow soil of the Tibetan Plateau. But with the environmental and anthropic impacts, the alpine meadows were degenerating and the microbial communities were adapting by changing their activity, biomass and structure. Therefore, the alpine meadows require our protection and recover for further utilizing and environmental protection purpose.
引文
[1].陈灏,唐小树,林洁,张伯生,任大明.不经培养的农田土壤微生物生物种群构成及系统分类的初步研究.微生物学报, 2002, 42(4): 477-483.
    [2].陈三凤.现代微生物遗传学.北京:化学工业出版社, 2003.
    [3].东秀珠,洪俊华.原核微生物的多样性.生物多样性, 2001, 9(1): 18-24.
    [4].冯瑞华.慢生性大豆根瘤菌的遗传多样性的研究.应用与环境生物学报, 2000, 6(2): 176-181.
    [5].洪义国,孙谧,郑家声,王跃军,张云波,郝建华,王瑞娟,向悟生.黄海黄杆菌YS-9412-130低温碱性蛋白酶的基因克隆和序列测定.海洋水产研究, 2000, 21(4): 6-13.
    [6].胡元森,刘亚峰,吴坤.黄瓜连作土壤微生物区系变化研究.土壤通报, 2006, 37(1): 126-129.
    [7].黄金玲,刘志明,刘纪霜,陆秀红,潘萍红.植物寄生线虫生防细菌的研究进展. 2008, 27(3): 288-293.
    [8].姬广海,魏兰芳,张世光. PCR技术在植物病原细菌研究中的应用.微生物学通报, 2002, 29(4): 77-81
    [9].解宪丽,孙波,周慧珍,李忠佩.不同植被下中国土壤有机碳的储量与影响因子.土壤学报, 2004, 41(5): 687-688.
    [10].康兴成.青藏高原地区近40年来气候变化的特征.冰川冻土, 1996 , 18 (增刊): 281-288.
    [11].林超峰,陈占全,薛泉宏,来航线,陈来生,张登山.青海三江源区植被退化对土壤养分和微生物区系的影响.应用与环境生物学报, 2007, 13(6): 788-793.
    [12].刘玮琦,茆振川,杨宇红,谢丙炎.应用16S rRNA基因文库技术分析土壤细菌群落的多样性.微生物学报, 2008, 48 (10): 1344-1350.
    [13].鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社, 1999.
    [14].彭岳林,蔡晓布,薛会英.退化高寒草原土壤微生物变化特性研究.西北农业学报, 2007, 16 (4): 112-115.
    [15].任书杰,曹明奎,陶波,李克让.陆地生态系统氮状态对碳循环的限制作用研究进展.地理科学进展, 2006, 25(4): 58-67.
    [16].沈菊培,张丽梅,郑袁明,朱永官,贺纪正.土壤宏基因组学技术及其应用.应用生态学报. 2007, 18(1): 212-8.
    [17].孙漫红,高利,刘杏忠.根结线虫卵、雌虫寄生菌物的分离及致病性测定.第三届会员代表大会暨全国第六届菌物学学术讨论会菌物系统. 2003, 22(增刊).
    [18].孙鸿烈.青藏高原的形成演化.上海:上海科学技术出版社, 1996. 168-192.
    [19].王根绪,程国栋,沈永平.青藏高原草地土壤有机碳库及其全球意义.冰川冻土, 2002, 24(6): 693-700.
    [20].王光华, Jos M.Raaijmakers.生防细菌产生的拮抗物质及其在生物防治中的作用.应用生态学报, 2004, 15(6): 1100-1104.
    [21].王慧春,赵修堂,王启兰.青海高寒草甸不同植被土壤微生物生物量的测定.青海草业, 2006, 15(4): 2-5.
    [22].王启基,王文颖,邓自发.青海海北地区高山嵩草草甸植物群落生物量动态及能量分配.植物生态学报, 1998, 22(3): 222-230.
    [23].王启兰,曹广民,王长庭.高寒草甸不同植被土壤微生物数量及微生物生物量的特征.生态学杂志, 2007, 26(7): 1002-1008.
    [24].王全富,缪锦来,李光友,侯艳华,王国栋.南极微生物产低温蛋白酶菌株的筛选、分子鉴定及部分酶活特性.中国水产科学, 2005, 12(4): 437-444.
    [25].王绍强,周成虎.中国陆地土壤有机碳库的估算.地理研究, 1999, 18 (4): 349-356.
    [26].王啸波,唐玉秋,王金华,黄仪秀,陈润生,黄力.环境样品中DNA的分离纯化和文库的构建.微生物学报, 2001, 4: 133-140.
    [27].袁飞,冉炜,胡江.变性梯度凝胶电泳法研究我国不同土壤氨氧化细菌群落组成及活性.生态学报, 2005, 25(6): 1318-1324.
    [28].曾胤新,俞勇,李会荣,陈波.北极海洋细菌BSw20353的胞外蛋白酶性质.极地研究, 18(3): 206-214.
    [29].张金霞,曹广民.高寒草甸生态系统氮素循环.生态学报, 1999, 19(4): 509-513.
    [30].张萍,刀志灵,郭辉军.高黎贡山不同土地利用方式对土壤微生物数量和多样性的影响.云南植物研究, 1999, (增刊Ⅺ): 84-89.
    [31].张薇,魏海雷,高洪文,胡跃高.土壤微生物多样性及其环境影响因子研究进展.生态学杂志, 2005, 24(1): 48-52.
    [32].赵勇,周志华,李武,刘彬彬,潘迎捷,赵立平.土壤微生物分子生态学研究中总DNA的提取.农业环境科学学报, 2005, 24(5): 854-860.
    [33].郑爱萍,李平.微生物生物防治存在的问题及发展方向.中国农学通报, 2000, 16(6): 82-92.
    [34].周兴民.中国嵩草草甸.北京:科学出版社, 2001.
    [35]. Ahman J, Ek B, Rask L, Tunlid A. Sequence analysis and regulation of a gene encoding a cuticle-degrading serine protease from the nematophagous fungus Arthrobotrys oligospora. Microbiology, 1996, 142: 1605-1616.
    [36]. ?hman J, Johanson T, Olsson M, Punt PJ, van den Hondel CAMJJ, Tunlid AS. Improving the pathogenicity of a nematodetrapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl Environ Microbiol, 2002, 689: 3408-3415.
    [37]. Ali NI, Siddiqui IA, Shahid Shaukat S, Zaki MJ. Nematicidal activity of some strains of Pseudomonas spp. Soil Biology and Biochemistry, 34(8): 1051-1058.
    [38]. Alzerreca JJ, Norton JM, Klotz MG. The amo operon in marine, ammonia-oxidizingγ-proteobacteria. FEMS Microbiol Lett, 1999, 180: 21-29.
    [39]. Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev, 1995, 59(1): 143-169.
    [40]. Arp DJ, Sayavedra-Soto LA, Hommes NG. Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Arch Microbiol, 2002, 178: 250-255.
    [41]. Avrahami S, Conrad R.. Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures. Appl Environ Microbiol, 2003,69: 6152-6164.
    [42]. Bakken LR, Lindahl V. Evaluation of methods for extraction of bacteria from soil. FEMS Microbiol Ecol, 1995, 16(2): 135-142.
    [43]. Bakken LR, Lindahl V. Recovery of bacterial cells from soil. In: Trevors JT, van Elsas JD, editors. Nucleic acids in the environment. Berlin, Germany: Springer-Verlag. 1995, pp. 9-27.
    [44]. Bakken LR. Separation and purification of bacteria from soil. Appl Environ Microbiol, 1985, 49: 1482-1487.
    [45]. Barker KR, Koenning SR. Developing sustainable systems for nematode management. Annu Rev Phytopathol. 1998, 36: 165-205.
    [46]. Bertrand H, Poly F, Van V T, Lombard N, Nalin R, Vogel T M, Simon P. High molecular weight DNA recovery from soils prerequisite for biotechnological metagenomic library construction. J Microbial Meth, 2005, 62(1): 1-11.
    [47]. Bird AF, McClure MA. The tylenchid (nematode) egg shell: structure, composition and permeability. Parasitology, 1976, 72: 19-28.
    [48]. Bintrim SB, Donohue TJ, Handelsman J, Roberts GP, Goodman RM. Molecular phylogeny of Archaea from soil. Proc Natl Acad Sci USA. 1997, 94, 277-282.
    [49]. Blow N. Exploring unseen communities. Nature, 2008, 453(29): 687-690.
    [50]. Bohannan BJM, Hughes J. New approaches to analyzing microbial biodiversity data. Curr Opin Microbiol, 2003, 6: 282-287.
    [51]. Bohner J, Lehmkuhl F. Environmental change modelling for central and high Asia: Pleistocene, present and future scenarios. Boreas, 2005, 34(2): 220-231.
    [52]. Bonants PJM, Fitters PFL, Thijs H, den Belder E, Waalwijk C, Henfling JWDM. A basic serine protease from Paecilomyces lilacinus with biological activity against Meloidogyne hapla eggs. Microbiology, 1995, 141: 775-784.
    [53]. Borneman J, Skroch PW, Palus JA. Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol, 1996, 62: 1935-1943.
    [54]. Briones AM, Okabe S, Umemiya Y, Ramsing NB, Reichardt W, Okuyama H. Influence of different cultivars on populations of ammonia-oxidizing bacteria in the root environment of rice. Appl Environ Microbiol, 2002, 68: 3067-3075.
    [55]. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA, 1978, 75(10): 4801-4805.
    [56]. Buchanan RE, Gibbons NE. Bergey’s Manual of Determinative Bacteriology. 8th Ed. Baltimore: The Williams and Wilkins Company, 1974.
    [57]. Burgmann H, Pesaro M, Widmer F, Zeyer J. A strategy for optimizing quality and quantity of DNA extracted from soil. J Microbiol Methods, 2001, 45: 7-20.
    [58]. Buther SS, Challson RJ, Orians GH. Global Biochemical Cycles. San Diego: Academic Press.1992, 263-284.
    [59]. Casas V, Rohwer F. Phage metagenomics. Meth Enzymology. 2007, 421: 259-68.
    [60]. Castignetti D, Hollocher TC. Heterotrophic nitrification among denitrifiers. Appl Environ Microbiol, 1984, 47: 620-623.
    [61]. Chao A. Nonparametric estimation of the number of classes in a population. Scand J Stat, 1984, 11: 265-270.
    [62]. Chung EJ, Lim HK, Kim JC, Choi GJ, Park EJ, Lee MH, Chung YR, Lee SW. Forest soil metagenome gene cluster involved in antifungal activity expression in Escherichia coli. Appl Environ Microbiol, 2008, 74(3): 723-730.
    [63]. Cohan FM. What are bacterial species? Annu Rev Micrbiol, 2002, 56: 457-487.
    [64]. Courtois S, Frostegard A, Goransson P, Depret G, Jeannin P, Simonet P. Quantification of bacterial subgroups in soil: comparison of DNA extracted directly from soil or from cells previously released by density gradient centrifugation. Environ Microbiol, 2001, 3: 431-439.
    [65]. Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, JD, Moran NA, Quan PL, Briese T, Hornig M, Geiser DM, Martinson V, Vanengelsdorp D, Kalkstein AL, Drysdale A, Hui J, Zhai J, Cui L, Hutchison SK, Simons JF, Egholm M, Pettis JS, Lipkin WI. A metagenomic survey of microbes in honey bee colony collapse disorder. Science, 2007, 318(5848): 283-7.
    [66]. Cronin D, Moenne-Loccoz Y, Dunne C, O'Gara F. Inhibition of egg hatch of the potato cyst nematode Globodera rostochiensis by chitinase-producing bacteria. Eur J Plant Pathol, 1997, 103: 433-440.
    [67]. Culley AI, Lang AS, Suttle CA. Metagenomic analysis of coastal RNA virus communities. Science, 2006, 312(5781): 1795-8.
    [68]. Daniel R. The metagenomics of soil. Nat Rev Microbiol, 2005, 3: 470-478.
    [69]. Daniel R. The soil metagenome-a rich resource for the discovery of novel natural products. Curr Opin Biotechnol, 2004, 15(3): 199-204.
    [70]. DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA, 1992, 89(12): 5685-5689.
    [71]. Delwart EL. Viral metagenomics. Rev Med Virol, 2007, 17(2): 115-31.
    [72]. Dijkmans R, Jagers A, Kreps S, Collard JM, Mergeay M. Rapid method for purification of soil DNA for hybridization and PCR analysis. Microb Releases, 1993, 2(1): 29-34.
    [73]. Ding H, Wang YS, Xiang HY. Nitrification and denitrification potential in different types of Paddy soils in Fujian Province. Journal of Agro-Environment Science, 2003, 22 (6): 715-719.
    [74]. Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, Brulc JM, Furlan M, Desnues C, Haynes M, Li L, Vega Thurber R, Reid RP, Siefert J, Souza V, Valentine DL, Swan BK, Stevens R, Valentine DL, Thurber RV, Wegley L, White BA, Rohwer F. Functional metagenomic profiling of nine biomes. Nature, 2008, 452: 629-632.
    [75]. Dong H, Zhang G, Jiang H, Yu B, Chapman LR, Lucas CR, Fields MW. Microbial diversity in sediments of saline Qinghai Lake, China: linking geochemical controls to microbial ecology,Microb Ecol, 2006, 51(1): 65-82.
    [76]. Du MY, Kawashima S, Yonemura S, Zhang XZ, Chen SB. Mutual influence between human activities and climate change in the Tibetan Plateau during recent years. Global and Planetary Change, 2004, 41(3-4): 241-249.
    [77]. Du Y, Cui Y, Xu X, Liang D, Long R, Cao G. Nitrous oxide emissions from two alpine meadows in the Qinghai-Tibetan Plateau. Plant Soil, 2008, 311: 245-254.
    [78]. Dunbar J, Takala S, Barns SM. Levels of bacterialcommunity diversity in four arid soils compared by bacterial groups from soils of the arid southwestern united states that are present in many geographic regions. Appl Environ Microbiol, 1997, 63: 3614-3621.
    [79]. Egli K, Fanger U, Alvarez PJJ, Siegrist H, Meer JR, Zehnder AJB. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch Microbiol, 2001, 175: 198-207.
    [80]. Faegri A, Torsvik VL, Goksoyr J. Bacterial and fungal activities in soil: separation of bacteria and fungi by a rapid fractionated centrifugation technique. Soil Biol Biochem, 1977, 9: 105-112.
    [81]. Falush D, Wirth T, Linz B, Pritchard JK, Stephens M, Kidd M, Blaser MJ, Graham DY, Vacher S, Perez-Perez GI, Yamaoka Y, Mégraud F, Otto K, Reichard U, Katzowitsch E, Wang X, Achtman M, Suerbaum S. Traces of human migrations in Helicobacter pylori populations. Science, 2003, 299: 1582-1585.
    [82]. Felske A, Wolterink A, van Lis R, Akkermans ADL. Phylogeny of the main bacterial 16S rRNA sequences in Drentse A grassland soils (The Netherlands). Appl Environ Microbiol, 1998, 64: 871-879.
    [83]. Ferrer M, Golyshina O, Beloqui A, Golyshin PN. Mining enzymes from extreme environments. Curr Opin Microbiol, 2007, 10(3): 207-214.
    [84]. Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Martins dos Santos VAP, Elborough K, Jarvis G, Neef A, Yakimov MM, Timmis KN, Golyshin PN. Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol, 2005, 7(12): 1996-2010.
    [85]. Ferris MJ, Muyzer G, Ward DM. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial community. Appl Environ Microbiol, 1996, 62: 340-346.
    [86]. Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA, 2005, 102: 14683-14688.
    [87]. Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, Delong EF. Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci USA, 2008, 105(10): 3805-3810.
    [88]. Gabor EM, Vries EJ, Janssen DB. Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiol Ecol, 2003, 44: 153-163.
    [89]. Glausiusz J. Extreme culture. Narure, 2007, 447(21): 905-906.
    [90]. Granda WV. The next meta-challenge for bioinformatics. Bioinformation, 2008, 2(8): 358-362.
    [91]. Grant S, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S. Identification of eukaryotic open reading frames in metagenomic cDNA libraries made from environmental samples. Appl Environ Microbiol, 2006, 72: 135-143.
    [92]. Halda-Alija L, Hendricks SP, Johnston TC. Spatial and temporal variation of enterobacter genotypes in sediments and the underlying hyporheic zone of an agricultural stream. Microb Ecol, 2001, 42: 286-294.
    [93]. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products. Chem Biol, 1998, 5: R245-R249.
    [94]. He JZ, Shen JP, Zhang LM, Zhu YQ, Zheng YM, Xu MG, Di H. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol. 2007, 9 (9): 2364-2374.
    [95]. Heck KL, Belle GV, Simberloff D. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology, 1975, 56: 1459-1461.
    [96]. Hochstein LI, Tomlinson GA. The enzymes associated with denitrification. Annu Rev Microbiol, 1988, 42: 231-261.
    [97]. Holben, WE, Jansson JK, Cheim BK, Tiedje JM. DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl Environ Microbiol, 1988, 54: 703-711.
    [98]. Holt JG, Krieg NR, Sneath PHA, Stalely JT, Williams ST. Bergey’s Manual of Determinative Bacteriology. 9th Ed. Baltimore: The Williams and Wilkins Company, 1994, 447-450.
    [99]. Hooper AB, Vannelli T, Bergmann DJ, Arciero DM. Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie van Leeuwenhoek, 1997, 71: 59-67.
    [100]. Huang XW, Zhao NH, Zhang KQ. Extracellular enzymes serving as virulence factors in nematophagous fungi involved in infection of the host. Res Microbiol, 2004, 115: 811-816.
    [101]. Hugenholtz P, Goebel BM, Pace NR. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol, 1998, 180(18): 4765-4774.
    [102]. Hugenholtz P, Tyson GW. Microbiology: Metagenomics. Nature, 2008, 455: 481-483.
    [103]. Hugenholtz P. Exploring prokaryotic diversity in the genomic era. Genome Biol, 2002, 3(2): 1-8.
    [104]. Ibekwe AM, Kennedy AC, Frohne PS. Microbial diversity along a transsect of agronimic zones. FEMS Microbiol Ecol, 2002, 39(3): 183-191.
    [105]. Jackson CR, Happer JP, Churchil PF. A Simple, effect method for the separation of humic subsatances and DNA from environmental samples. Appl Environ Microbiol, 1997, 12: 4993-4995.
    [106]. Jasson HB, Friman E. Infection-related surface proteins on conidia of the nematophagous fungusDrechmeria coniospora. Mycol Res, 1999, 103(2): 249-256.
    [107]. Jetten MSM, Strous M, Pas-Schoonen KT, Schalk J, Dongen UGJM, Graaf AA, Logemann S, Muyzer G, Loosdrecht MCM, Kuenen JG. The anaerobic oxidation of ammonium. FEMS Microbiol Rev, 1999, 22: 421-437.
    [108]. Jiang H, Dong H, Yu B, Lv G, Deng S, Berzins N, Dai M. Diversity and abundance of ammonia-oxidizing Archaea and Bacteria in Qinghai lake, northwestern China. Geomicrobiol J, 2009, 26:199-211.
    [109]. Johansson JF, Paul LR, Finlay RD. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol, 2004, 48: 1-13.
    [110]. Kennedy J, Marchesi JR, Dobson AD. Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments. Microb Cell Fact, 2008, 7: 27.
    [111]. Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT. Methods of studying soil microbial diversity. J Microbiol Meth, 2004, 58: 169-188.
    [112]. Kirstein K, Bock E. Close genetic relationship between Nitrobacter hamburgensis nitrite oxidoreductase and Escherichia coli nitrate reductases. Arch Microbiol, 1993, 160: 447-453.
    [113]. Klotz MG, Norton JM. Multiple copies of ammonia monooxygenase(amo) operons have evolved under biased AT/GC mutational pressure in ammonia-oxidizing autotrophic bacteria. FEMS Microbiol Lett, 1998, 168: 303-311.
    [114]. Klotz MG, Norton JM. Sequence of an ammonia monooxygenase subunit A-encoding gene from Nitrosospira sp. NpAV. Gene, 1995, 163: 159-160.
    [115]. Kowalchuk GA, Stephen JR.Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol, 2001, 55: 485-529.
    [116]. Kuske CR, Banton KL,Adorada DL, Stark PC Hill KK Jackson PJ. Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Appl Environ Microbiol, 1998, 64(7): 2463-2472.
    [117]. Lee DG, Jeon JH, Jang MK, Kim NY, Lee JH, Lee JH, Kim SJ, Kim GD, Lee SH. Screening and characterization of a novel fibrinolytic metalloprotease from a metagenomic library. Biotechnol Lett. 2007, 29(3): 465-72.
    [118]. Leff LG, Dana JR, McArthur JV, Shimkets LJ. Comparison of methods of DNA extraction from stream sediments. Appl Environ Microbiol, 1995, 61(3): 1141-143.
    [119]. Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 2006, 442: 806-809.
    [120]. Lesaulnier C, Papamichail D, McCorkle S, Ollivier B, Skiena S, Taghavi D, Zak D, van der Lelie D. Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol, 2008, 10 (4): 926-941.
    [121]. Li J, Yang JK, Huang XW, Zhang KQ. Purification and characterization of an extracellular serineprotease from Clonostachysrosea and its potential as a pathogenic factor. Process Biochem, 2006, 41: 925-929.
    [122]. Limpiyakorn T, Kurisu F, Sakamoto Y, Yagi O. Effects of ammonium and nitrite on communities and populations of ammonia-oxidizing bacteria in laboratory-scale continuous-flow reactors. FEMS Microbiol Ecol, 2007, 60: 501-512.
    [123]. Liolios K, Mavromatis K, Tavernarakis N, Hugenholtz P, Kyrpides NC. The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res, 2008, 36: D475-D479.
    [124]. Liu Y, Yao T, JiaoN, Kang S, Xu B, Zeng Y, Huang S, Liu X. Bacterial diversity in the snow over Tibetan Plateau Glaciers. Extremophiles, 2009, 13 (3): 411-423.
    [125]. Liu Y, Yao T, Zhu L, Jiao N, Liu X, Zeng Y, Jiang H. Bacterial Diversity of Freshwater Alpine Lake Puma Yumco on the Tibetan Plateau. Geomicrobiol J, 2009, 26(2): 131-145.
    [126]. Lo I, Denef VJ, Verberkmoes NC. Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria. Nature, 2007, 446(7135): 537-41.
    [127]. Lopez-Llorca LV. Purification and properties of extracellular proteases produced by the nematophagous fungus Verticillium suchlasporium. Can J Microbiol, 1990, 36: 530-537.
    [128]. Lopez-Llorca LV, Robertson WM. Immumocytochemical localization of a 32-kDa protease from the nematophagous fungus Verticillium suchlasporium in infected nematode eggs. Exp Mycol, 1992, 16: 261-267.
    [129]. Luo HF, Qi HY, Xue K. Influence of application of GC-clamp on study of soil microbial diversity by PCR-DGGE. Acta Ecologica Sinica, 2003, 23(10): 2170-2175.
    [130]. Maarit Niemi R, Heiskanen I, Wallenius K, Lindstrom K. Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia. J Microbiol Methods, 2001, 45(3): 155-165.
    [131]. Mader P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U. Soil fertility and biodiversity in organic farming. Science, 2002, 296: 1694-1697.
    [132]. Maidak BL, Cole JR, Lilburn TG., Parker CT, Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt, TM, Tiedje JM. The RDP-II (ribosomal database project). Nucl Acid Res, 2001, 29: 173-174.
    [133]. Majernik A, Gottschalk G, Daniel R. Screening of environmental DNA libraries for the presence of genes conferring Nat(Lit)/Ht antiporter activity on Escherichia coli: characterization of the recovered genes and the corresponding gene products. J Bacteriol, 2001, 183: 6645-6653.
    [134]. Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet, 2008, 24(3): 133-141.
    [135]. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Buell CR, Wing RA, Gu M, Jiang J. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005, 437: 376-380.
    [136]. Martinez A, Kolvek SJ, Yip CLT, Hopke J, Brown KA, MacNeil IA, Osburne MS. Geneticallymodified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts. Appl Environ Microbiol, 2004, 70: 2452-2463.
    [137]. Mavromatis K, Ivanova N, Barry K, Shapiro H, Goltsman E, McHardy AC, Rigoutsos I, Salamov A, Korzeniewski F, Land M, Lapidus A, Grigoriev I, Richardson P, Hugenholtz P, Kyrpides NC. Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nat Methods, 2004, 4: 495-500.
    [138]. Mazzola M. Assessment and management of soil microbial community structure for disease suppression. Annu Rev Phytopathol, 2004, 42:35-59.
    [139]. Miller DN. Evaluation of gel filtration resins for the removal of PCR-inhibitory substances from soils and sediments. J Microbiol Methods, 2001, 44: 49-58.
    [140]. Miller JE, Brayant EL, Madsen WC, Ghiorse WC. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol, 1999, 9: 4715-4724.
    [141]. Miller PM, Sands DC. Effects of hydrolytic enzymes on plant-parasitic nematodes. J Nematol, 1977, 9: 182-197.
    [142]. Morton CO, Hirsch PR, Kerry BR. Infection of plantparasitic nematodes by nematophagous fungi: a review of the application of molecular biology to understand infection processes and to improve biological control. Nematology, 2004, 62: 161-170.
    [143]. Mou X, Sun S, Edwards RA, Hodson RE, Moran MA. Bacterial carbon processing by generalist species in the coastal ocean. Nature, 2008, 451(7179): 708-11.
    [144]. Nakano, M., Shimizu, Y., Okumura, H., Sugahara, I. and Maeda, H. (2008) Construction of a consortium comprising ammonia-oxidizing bacteria and denitrifying bacteria isolated from marine sediment. Biocontrol Sci. 13 (3), 73-89.
    [145]. Nemergut DR, Townsend AR, Sattin SR, Freeman KR, Fierer N, Neff JC, Bowman WD, Schadt CW, Weintraub MN, Schmidt SK. The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling. Environ Microbiol, 2008, 10 (11): 3093-3105.
    [146]. Newman DK, Banfield JF. Geomicrobiology: how molecular-scale interactions underpin biogeochemical systems. Science, 2002, 296: 1071-1077.
    [147]. Niu QH, Huang XW, Tian BY, et a1. Bacillu ssp. B16 kills nematodes with a serine protease identified as a pathogenic factor. Appl Microbiol Biotechnol, 2006, 69 (6): 722-730.
    [148]. Norton JM, Alzerreca JJ, Suwa Y, Klotz MG. Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Arch Microbiol, 2002, 177: 139-149.
    [149]. Ogram A, Sayler GS, Barkay T. The extraction and purification of microbial DNA from sediments. J Microbiol Methods, 1987, 7: 57-66.
    [150]. Ottesen EA, Hong JW, Quake SR, Leadbetter JR. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science, 2006, 314(5804): 1464-7.
    [151]. ?vre?s L, Torsvik V. Microbial diversity and community structure in two different agricultural soil community. Microb Ecol, 1998, 36: 303-315.
    [152]. Pace NR, Stahl DA, Lane DJ, Olsen GJ. Analyzing natural microbial populations by rRNA sequences. ASM News, 1985, 51: 4-12.
    [153]. Papatheodorou E M. Responses of soil microbial communities to climatic and human impacts in Mediterranean regions. In: Soil Ecology Research Developments. Nova Publishers, Editors: Tian-Xiao Liu, 2008, pp. 63-98.
    [154]. Patra AK, Abbadie L, Clays-Josserand A, Degrange V, Grayston SJ,. Loiseau P, Louault F, S. Mahmood, Nazareth S, Philippot L, Poly F, Richaume A, Roux XL. Effects of grazing on microbial functional groups involved in soil N dynamics. Ecol Monogr. 2005, 75: 65-80.
    [155]. Perry RN, Trett MW. Ultrastructure of the eggshell of Heterodera schachtii and H.glycines (Nematoda: Tylenchida). Revue Nématol, 1986, 9: 399-403.
    [156]. Pontes DS, Lima-Bittencourt CI, Chartone-Souza E, Nascimento AMA. Molecular approaches: advantages and artifacts in assessing bacterial diversity. J Ind Microbiol Biotechnol, 2007, 34(7): 463-473.
    [157]. Prosser JI, Nicol GW. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol. 2008, 10(11): 2931-2941.
    [158]. Purkhold U, Pommerening-Roser A, Juretschko S. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol, 2000, 66: 5368-5382.
    [159]. Purkhold U, Wagner M, Timmermann G., Pommerening-Roser A, Koops HP. 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. Int J Syst Evol Microbiol, 2003,53(Pt5): 1485-1494.
    [160]. Quaiser A, Ochsenreiter T, Klenk HP, Kletzin A, Treusch AH, Meurer G, Eck J, Sensen C, Schleper C. First insight into the genome of an uncultivated crenarchaeote from soil. Environ Microbiol, 2002, 4(10): 603-11.
    [161]. Rappe MS, Giovannoni SJ. The uncultured microbial majority. Annu Rev Microbiol, 2003, 57: 369-94.
    [162]. Riesenfeld CS, Goodman RM, Handelsman J. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol, 2004, 6: 981-989.
    [163]. Robe P, Nalin R, Capellano C, Vogel T M, Simonet P. Extraction of DNA from soil. Eur J Soil Biol, 2003, 39(4): 183-190.
    [164]. Ronaghi M. Pyrosequencing sheds light on DNA sequencing. Genome Res, 2001, 11: 3-11.
    [165]. Roose-Amsaleg CL, Garnier-Sillam E, Harry M. Extraction and purification of microbial DNA from soil and sediment samples. Appl Soil Ecol, 2001, 18: 47-60.
    [166]. Rotthauwe JH, Witzel KP, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. ApplEnviron Microbiol, 1997, 63: 4704-4712.
    [167]. Samuel BS, Hansen EE, Manchester JK. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci USA. 2007, 104(25):10643-10648.
    [168]. Sayavedra-Soto LA, Hommes NG, Alzerreca JJ. Transcription of the amoC, amoA, and amoB genes in Nitrosomonas europaea and Nitrosospira sp. NpAV. FEMS Microbiol Lett, 1998, 167: 81-88.
    [169]. Sayavedra-Soto LA, Hommes NG, Arp DJ. Characterization of the gene encoding hydroxylamine oxidoreductase in Nitrosomonas europaea. J Bacteriol, 1994, 176: 504-510.
    [170]. Schleper C, Jurgens G, Jonuscheit M. Genomic studies of uncultivated archaea. Nat Rev Microbiol, 2005, 3: 479-488.
    [171]. Schloss PD, Handelsman J. Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol, 2005, 6: 229.
    [172]. Schloss PD, Handelsman J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol. 2005, 71: 1501-1506.
    [173]. Schloss PD, Handelsman J. Introducing SONS, a tool for operational taxonomic unit-based comparisons of microbial community memberships and structures. Appl Environ Microbiol, 2006, 72: 673-679.
    [174]. Schloss PD, Handelsman J. Introducing TreeClimber, a test to compare microbial community structures. Appl Environ Microbiol, 2006, 2379-2384.
    [175]. Schloss PD, Handelsman J. Toward a census of bacteria in soil. PLoS Comput Biol, 2006, 2(7): 786-793.
    [176]. Schloss PD, Larget BR, Handelsman J. Integration of microbial ecology and statistics: a test to compare gene libraries. Appl Environ Microbiol, 2004, 70: 5485-5492.
    [177]. Schmidt TM, DeLong EF, Pace NR. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol. 1991, 173 (14): 4371-4378
    [178]. SchneiderS, Roessli D, Excoffier L. Arlequin: Ver. 2.000. A software for population genetic analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland, 2000.
    [179]. Segers R, Butt TM, Kerry BR, Peberdy JF. The nematophagous fungus Verticillium chlamydosporium produces a chymoelastase-like protease which hydrolyses host nematode proteins in situ. Microbiology, 1994, 140, 2715-2723.
    [180]. Sela S, Schickler H, Chet I, Spiegel Y. Purification and characterization of a Bacillus cereus collagenolytic/proteolytic enzyme and its effect on Meloidogyne javanica cuticular proteins. Eur J Plant Pathology, 1998, 104 (1): 59-67.
    [181]. Smith KA, Thomson PE, Clayton H, McTaggart IP, Conen F. Effects of temperature, water content, and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmos Environ, 1998, 32 (19): 3301-3309.
    [182]. St.Leger RJ. The role of cuticle-degrading proteases in fungal pathogenesis of insects. Can J Bot,1995, 73(S1): 1119-1125.
    [183]. Stach JEM, Bathe S, Clapp JP, Burns RG. PCR-SSCP comparison of 16S rDNA sequence diversity in soil DNA obtained using different isolation and purification methods. FEMS Microbiol Ecol, 2001, 36: 139-151.
    [184]. Stach JEM, Maldonado LA, Ward AC, Goodfellow M, Bull AT. New primers specific for Actinobacteria: application to marine and terrestrial environments. Environ Microbiol, 2003a, 5: 828-841.
    [185]. Stackebrandt E, Goebel BM. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol, 1994, 44(4): 846-849.
    [186]. Steffan RJ, Goksoyr J, Bej AK, Atlas RM. Recovery of DNA from soils and sediments. Appl Environ Microbiol, 1988, 54: 2908-2915.
    [187]. Stein LY, Sayavedra-Soto LA, Hommes NG, Arp DJ. Differential regulation of amoA and amoB gene copies in Nitrosomonas europaea. FEMS Microbiol Lett, 2000, 192: 163-168.
    [188]. Steit WR, Schmitz RA. Metagenomics: the key to the uncultured microbes. Curr Opin Microbiol, 2004, 7: 492-498.
    [189]. Sun MH, Gao L, Shi YX, Li BJ, Liu XZ. Fungi and actinomycetes associated with Meloidogyne spp. eggs and females in China and their biocontrol potential. J Invertebr Pathol, 2006, 93(1): 22-28.
    [190]. Sundermeyer-Klinger H, Meyer W, Warninghoff B, Bock E. Membrane-bound nitrate oxidoreductase of Nitrobacter: evidence for a nitrate reductase system. Arch Microbiol, 1984, 140: 153-158.
    [191]. Tatsunori Nakagawa, Kiji Mori, Chiaki Kato. Distribution of cold-adapted ammonia-oxidizing microorganism in the deep-ocean of the northeastern Japan sea. Microbes Environ, 2007, 22(4): 365-372.
    [192]. Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology and biotechnological potential. Microbiol Mol Biol Rev, 2007, 71(2): 295-347.
    [193]. Tebbe CC, Vahjen W. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. App1 Environ Microbiol, 1993, 59 (8): 2657-2665.
    [194]. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acid Res, 1994, 22(22): 4673-80.
    [195]. Tian H, Riggs RD, Crippen DL. Control of soybean cyst nematode by chitinolytic bacteria with chitin substrate. J Nematol. 2000, 32: 370-376.
    [196]. Toh SK, Webb RI, Ashbolt NJ. Enrichment of autotrophic anaerobic ammonium-oxidizing consortia from various wastewaters. Microb Ecol, 2002, 43: 154-167.
    [197]. Torsvik VJ, Goks?yr J, Daae FL. High diversity in DNA of soil bacteria. Appl Environ Microbiol,1990, 56: 782-787.
    [198]. Tress ML, Cozzetto D, Tramontano A, Valencia A. An analysis of the Sargasso Sea resource and the consequences for database composition. BMC Bioinformatics, 2006, 7: 213.
    [199]. Tringe SG, Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM. Comparative metagenomics of microbial communities. Science, 2005, 308: 554-557.
    [200]. Tsai YL, Olson BH. Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction. Appl Environ Microbiol, 1992, 58: 2292-2295.
    [201]. Tunlid A, Jansson S. Proteases and their involvement in the infection and immobilization of nematodes by the nematophagous fungus Arthrobotrys oligospora. Appl Environ Microbiol, 1991, 57(10): 2868-2872.
    [202]. Tunlid A, Johansson T, Nordbring-Hertz B. Surface polymers of the nematode-trapping fungus Arthrobotrys oligospora. J Gen Microbiol, 1991, 137: 1231-1240.
    [203]. Tunlid A, Rosen S, Ek B, Rask L. Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Arthrobotrys oligospora. Microbiology, 1994, 140: 1687-1695.
    [204]. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444(7122): 1027-31.
    [205]. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature, 2004, 428: 37-43.
    [206]. Vainio EJ, Hantula J. Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res, 2000, 104: 927-936.
    [207]. Van Veen JA, Van Overbeek LS, Van Elsas JD. Fate and activity of microorganisms introduced into soil microbiology. Microbiol Mol Biol Rev, 1997, 61(2): 121-135.
    [208]. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO. Environmental genome shotgun sequencing of the Sargasso Sea. Science, 2004, 304: 66-74.
    [209]. Wang B, Wu WP, Liu XZ. Purification and characterization of a neutral serine protease with nematicidal activity from Hirsutella rhossiliensis. Mycopathologia, 2007, 163(3):169-176.
    [210]. Wang B, Liu XY, Wu WP, Liu XZ, Li SD. Purification, characterization, and gene cloning of an alkaline serine protease from a highly virulent strain of the nematode-endoparasitic fungus Hirsutella rhossiliensis. Microbiol Res, 2009, in press.
    [211]. Wang M, Yang JK, Zhang KQ. Characterization of an extracellular protease and its cDNA from the nematode-trapping fungus Monacrosporium microscaphoides. Can J Microbiol, 2006a, 52: 130-139.
    [212]. Wang RB, Yang JK, Lin C, Zhang KQ. Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Dactylella shizishanna. Lett Appl Microbiol, 2006b, 42: 589-594.
    [213]. Wang Q, Garrity GM, Tiedje JM, Cole JR. Na?ve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol, 2007, 73(16): 5261-7.
    [214]. Webster G, Embley TM, Prosser JI. Grassland management regimens reduce small-scale heterogeneity and species diversity ofβ-Proteobacterial ammonia oxidizer populations. Appl Environ Microbiol, 2002, 68(1): 20-30.
    [215]. Wei JZ, Hale K, Carta L, et a1. Bacillus thuringiensis crystal proteins that target nematodes. Microbilogy, 2003, 100: 2760-2765.
    [216]. Weissburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol, 1991, 173: 697-703.
    [217]. Weller DM, Raaijmakers JM, McSpadden GBB, Thomashow LS. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol, 2002, 40: 309-48.
    [218]. Wenzel SC, Müller R. Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways. Curr Opin Microbiol, 2005, 16(6): 594-606.
    [219]. Wharton D. Nematode egg-shells. Parasitology. 1980, 81(2):447-63.
    [220]. Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998, 95: 6578-6583.
    [221]. Woese CR. Bacterial evolution. Microbiol Rev, 1987, 51: 221-271.
    [222]. Woyke T, Teeling H, Ivanova NN, Huntemann M, Richter M, Gloeckner FO, Boffelli D, Anderson IJ, Barry KW, Shapiro HJ, Szeto E, Kyrpides NC, Mussmann M, Amann R, Bergin C, Ruehland C, Rubin EM, Dubilier N. Symbiosis insights through metagenomic analysis of a microbial consortium. Nature, 2006, 443(7114): 925-7.
    [223]. Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GJ, Middelburg JJ, Schouten S, Sinninghe Damste JS. Archaeal nitrification in the ocean. Proc Natl Acad Sci USA, 2006, 103: 12317-12322.
    [224]. Xiang S R, Yao TD, An LZ, Xu BQ, Li Z, Wu GJ, Wang YQ, Ma S, Chen XR. Bacterial diversity in Malan ice core from the Tibetan Plateau. Folia Microbiol, 2004, 49 (3): 269-275.
    [225]. Yang JK, Huang XW, Tian BY, Sun H, Duan JX, Wu WP, Zhang KQ. Characterization of an extracellular serine protease gene from the nematophagous fungus Lecanicillium psalliotae. Biotechnol Lett, 2005b, 27: 1329-1334.
    [226]. Yang JK, Tian BY, Liang LM, Zhang KQ. Extracellular enzymes and the pathogenesis of nematophagous fungi. Appl Microbiol Biotechnol, 2007, 75: 21-31.
    [227]. Yang MX, Wang SL, Yao TD, Gou XH, Lu AX, Guo XJ. Desertification and its relationship with permafrost degradation in Qinghai-Xizang (Tibet) plateau. Cold Reg Sci Technol, 2004, 39(1):47-53.
    [228]. Yang Y, Yao J, Hu S. Effects of agricultural chemicals on DNA sequences diversity of soil microbial community: A study with RAPD marker. Microbiol Ecol, 2000, 39: 72-79.
    [229]. Yang LL, Zhang FS, Mao RZ, Ju XT, Cai XB, Lu YH. Conversion of natural ecosystems to cropland increases the soil net nitrogen mineralization and nitrification in Tibet. Pedosphere, 2008, 18(6): 699-706.
    [230]. Yim LC, Hongmei J, Aitchison JC, Pointing SB. Highly diverse community structure in a remote central Tibetan geothermal spring does not display monotonic variation to thermal stress. FEMS Microbiol Ecol, 2006: 57 (1): 80-91.
    [231]. Zhang G, Niu F, Ma X, Liu W, Dong M, Feng H, An L, Cheng G. Phylogenetic diversity of bacteria isolates from the Qinghai-Tibet Plateau permafrost region. Can J Microbiol, 2007, 53 (8): 1000-1010.
    [232]. Zhang X, Ma X, Wang N, Yao T. New subgroup of Bacteroidetes and diverse microorganisms in Tibetan plateau glacial ice provide a biological record of environmental conditions. FEMS Microbiol Ecol, 2009, 67(1): 21-29.
    [233]. Zhao ML, Mo MH, Zhang KQ. Characterization of a neutral serine protease and its full-length cDNA from the nematode-trapping fungus Arthrobotrys oligospora. Mycologia, 2004, 96(1): 16-22.
    [234]. Zhou JZ, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition. Appl Environ Microbiol, 1996, 62(2): 316-322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700