用户名: 密码: 验证码:
金刚石锯片的组织结构及锯切力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从影响金刚石锯片性能的若干因素(金刚石与胎体之间的结合强度、锯切过程中金刚石的受力及失效等问题)着手,比较深入地研究了金刚石与其表面镀钛层、钛与胎体的作用规律,揭示了镀钛金刚石的四层结构模型;借鉴复合材料的强度公式,提出了计算金刚石节块抗弯强度的公式;运用定量金相学的基本原理,提出了计算锯切弧区内参与切割过程的金刚石工作刃数量的数学模型;提出了锯片中金刚石参数的设计准则,比较详细地分析了锯片中金刚石失效的原因,主要工作包括:
     1.通过镀钛金刚石的X-Ray衍射图谱,钛板与胎体之间扩散层的扫描电镜分析及各种金刚石的失重分析,研究了金刚石表面镀钛对金刚石锯片性能的影响。从理论上分析了金刚石表面镀钛工艺及随后的热压工艺,对金刚石表面钛层及其与胎体之间相互作用的影响,提出了镀钛金刚石的四层结构模型,借用复合材料的强度公式,定量地描述了金刚石节块的抗弯强度与金刚石添加量及表面处理之间的关系,在此基础上,比较了化学复合镀镍和铜与添加混合稀土对锯片性能的影响。
     2.用正交试验,揭示了铁、WC、铝、混合稀土、镍含量、金刚石粒度以及烧结温度和保温时间等参数对金刚石节块三点弯曲强度和切割性能的影响规律,从中优化出了一些适合Cu-10Sn基胎体的配方和烧结工艺,通过扫描电镜对锯片节块表面形貌的分析,分析了锯片性能差异产生的根源,并找到了胎体硬度与锯片寿命之间的对应关系。
     3.对锯切弧区内参与切割过程的金刚石切削刃数量进行了建模计算,得出了目前为止较为精确的工作刃数量的计算公式,为分析金刚石磨粒的真实受力提供了依据,从金刚石的静压强度角度出发,提出了锯片中金刚石三参数的设计准则,从锯片中金刚石的突出高度与磨粒的平均切入深度这一角度出发,系统地阐述了混装金刚石的工作原理,并分析了锯切工艺对砂浆浓度的影响。
     4.用压电晶体测力仪和功率测量仪测量了金刚石锯片在锯切603#花岗岩时的受力及功率状况,从理论上探讨了F_x小于零所需的临界α角(或临界切深A_p)与锯切过程中摩擦系数的关系,并对金刚石磨粒的主要失效机制进行了分析。
     5.通过不同胎体的硬度、密度及三点弯曲强度测试和X-Ray衍射相分析,研究了部分预合金化对胎体烧结致密的动力学过程及合金均匀化过程的影响规律,从扩散等理论出发,分析了部分预合金化的作用机制。
     6.就福建603#花岗岩为例,提出了金刚石锯片的优化设计步骤及准则,优
    
    中南大学博士学位论文
    化设计后的锯片性能全面超过某商用锯片。
Some factors influencing the performance of diamond saw blade, for example, the bonding strength between diamond and matrix, the average force exerted on the diamond during cutting and the failure of the diamond were studied in this thesis. It was revealed that there exists a four-layer structure in the segment with Ti-coated diamond. By analogy to the fracture strength formula of composite materials, a formula calculating transverse-rupture strength of diamond segment was proposed. According to the basic principles of Quantitative Metallography, a model for estimating the number of diamond truly cutting the object in the contact zone during the cutting process of saw blade was suggested. The preliminary design principles on the diamond characteristics (size, strength, concentration) were proposed. The main factors of diamond failure of the saw blade were analyzed in detail. The main contents of this dissertation include:
    1.By mean of x-ray diffraction of Ti-coated diamond, scanning electron microscope analysis of diffusion layer between Ti and bonds , and weight loss analysis of some kinds of diamonds, the effect of titanium coated on the diamond on the performance of the saw blade was studied systematically. The effect of titanium-coating parameters and subsequent hot-pressing parameters on the interaction between the titanium layer and the bond was discussed in theory, then a four-layer model for the bonding structure of the diamond coated with Ti was proposed, which was examined by diffusion theory and experiments. By analogy to the fracture strength formula of composite materials, the TRS formula of diamond segment was suggested. The effect of electroless plating nickel ant copper on the titanium layer and the effect of mixed rare earth metal additives were further compared .
    2.The influence rules of iron, WC, aluminum, mixed rare earth metal additives, nickel, d iamond s ize, s intering temperature and holding t ime o n t he TRS o f diamond segment and cutting performance of the saw blade were revealed by the orthogonal experiment. Some appropriate technical parameters of diamond saw blade for cutting concrete were determined. Performance difference among diamond saw blades were explained by SEM photographs of used diamond segments. The corresponding relationship between the segment hardness and tool life was revealed.
    
    
    
    3. A model estimating the number of diamond in the contact zone truly cutting the object was established. A more accurate equation was suggested which can calculate the true forces exerted on the diamond in the contact zone, In the light of static compressive strength, the design criterion for three diamond parameters was suggested. The work mechanism of the saw blade with mixed diamonds was expounded by comparing the protrusion height of small-size diamonds with the mean penetration depth of working diamonds.
    4.The forces on the diamond saw blade and the power of it while cutting No.603 granite were measured by the force-measurement system Lilster 9257 BA and power-measurement system. The critical angle a (or cutting depth Ap) while Fx less than zero is closely related to the friction efficiency theoretically. Main failure mechanisms of diamond abrasives were analyzed in this thesis.
    5.By means of measuring the hardness, density and TRS of some kinds of bonds and analyzing the existing phases using X-Ray diffraction, the effect of prealloying on dynamics of densification and diffusion homogenization was examined. The mechanism of prealloying was discussed on diffusion theory.
    6.Taking No.603 granite in Fujian for example, the optimal design steps and criteria for diamond saw blade were proposed. The diamond saw blade after technical optimization exceeds some commercial saw blade in almost all performance.
引文
1.肖鸿.中国硅酸盐学会房建材料分会装饰石材专业委员会第五次学术会议论文集.中国广州,1998, 10.
    2. F.H.Hughes. Industrial Diamond Review, 1980 (40): 16-19.
    3. F.P.Bundy et al. Nature, 1955 (176): 213.
    4. S.R.Peacock, R.Garrard, M.Hori et al. INTERTECH 2000, Vancouver, Canada, July 17-21, 2000.
    5. C. Owers. Industrial Diamond Review, 2000(3): 176-181.
    6.朱永伟,张新明,贺德胜,谢光灼.材料导报,2000(10):29~31
    7.朱永伟.高品级金刚石锯片的研究与开发(长沙矿冶研究院内部报告).2001,4.
    8. http: //www.diamond-saw-blade.com/
    9. D.N.Wright, W.R.Jagg. Industrial Diamond Review, 1998(4): 113-120.
    10. G.West. Review of rock abrasiveness testing for tunneling, Proc. Int. Symp. on Weak Rock, Tokyo, September 1981 (Vol.1): 222-231.
    11. G.Wijk. Geotechnical and Geological Engineering, 1992(10): 19-40.
    12. S.I.Ameen, M.D.Waller. Geotechnical Testing Journal, 1993(4): 525-533.
    13. K.Spink. Industrial Diamond Review, 1972(6): 230-242.
    14. J.Moller, K.Spink. Industrial Diamond Review, 1973(9): 348-352.
    15.胡焕校.金刚石锯片刀头优化设计的研究及应用[D].长沙:中南工业大学博士学位论文.1998,9.
    16.陈先.石材,1998(1):5-7.
    17. R.B.Burgess.Proceedings of the 5th Industrial Diamond Seminar, May 1978: 3-10
    18. P.Hausberger. Industrial Diamond Review, 1989(3): 1-25.
    
    
    19. D.N.Wright. Industrial Diamond Review, 1985(2): 84-87.
    20.胡焕校,刘静.中国有色金属学报,1998(1):170-173.
    21. J.Konstanty. Industrial Diamond Review, 2000(1): 55-65.
    22. E.J.Bullen, M.W.Bailey. Industrial Diamond Review, 1979(39): 352-355.
    23. J.Wilks, E.Wilks. Properties and Applications of Diamond. Butterworth Heinemann, Oxford, 1991.
    24. H.K.Tonshoff, G.Wamecke. Advance in ultrahard materials application technology, 1980(Vol.1). De Beers Industrial Diamond Division, London: 36-49.
    25. D.N.Wright, H.Wapler. Annals of the CRIP, 1986(35): 239-244.
    26. D.N.Wright. Ultrahard materials application technology, 1982(Vol.4), De Beers Industrial Diamond Division, London: 47-60.
    27. G.E Superabrasives. MBS~* diamond product property and characterization update. 1995, 11.
    28. http: //www.ge.com/superabrasives.
    29. P.R.Davis, M.L.Fish, S.Peacock et al. Industrial Diamond Review, 1996(3): 78-87.
    30.臧建兵,赵玉成,王明智.金刚石与磨料磨具技术,2000(4):8~14.
    31. J.G.Field. The properties of natural and synthetic diamond. Academic Press, London, 1992.
    32. D.Borse. US patent, 5035771.
    33.王明智,王艳辉.’93郑州国际坡硬材料研讨会文集.河南,郑州.
    34. H.&T. Grüneis. Industrial Diamond Review, 1998(2): 45~47.
    35. C.-M.Sung. Diamond and Related Materials, 1998(4): 134~136.
    36.臧建兵,王艳辉,王明智.金刚石与磨料磨具工程,1997(2):6~9.
    37. G.Brauniger, S.C.Hayden. MBS~*-960Cr2 and Ti2 Chromium- and Titaniumcoated manufactured diamonds for sawing and drilling application. G.E公司超通讯磨料部.
    38.G.E Superabrasives.The MBS~* 900 diamond series coated crystals.GE公司超级磨料部.
    39.S.Hayden. Dimensional Stone, 1997(9): 10~14.
    40.New Ti Coated Generation.江信有限公司资料,2000,11.
    41. P.A.Chalus. Industrial Diamond Review, 1994(4): 170-172.
    42.朱永伟,张新明,谢光灼.中国有色金属学报,2000(2):258~263.
    43.姜荣超.超硬材料发展35周年研讨会文集:74-79,1998,杭州.
    
    
    44. H.K.Tonshoff, J.Asche. Industrial Diamond Review, 1997(1): 7-13.
    45. Metal Powders for the diamond tool industry. Enrutungstene 公司资料, 2000, 11. 参见http: //www.eurotungstenepoudres.com/
    46. Sintering metal powder for the diamond tool industry. Dr.Fritsch 公司资料,参见http: //www.dr-fritsch.de/
    47.臧建兵,赵玉成,王明智等.金刚石与磨料磨具工程.2000(3):8-12.
    48. Y.V.Nadich. Industrial Diamond Review, 1984(6): 327-331.
    49.姜荣超.工业金刚石,2000(5,6):54-60.
    50.郭志猛.超硬材料与工具(M).北京:冶金工业出版社,1996.
    51.宋月清,甘长炎,夏志华等.金刚石与磨料磨具工程,1997(1):2~7.
    52. EURO PM99: hard materials and diamond-tooling. Powder Metallurgy, 1999(4): 291~297.
    53. S.Y.Chen, T.N. Farris, S.Chandrasekar. STLE Tribology Transaction, 34(2): 161~163.
    54. S.W.Webb, W.E.Jackon. ASME Journal of Manufacturing Science and Engineering, 1982(2): 84~92.
    55. W.Etringshausen. Industrial Diamond Review, 1985(4): 254~258.
    56. K.Brack, D.M P ai, F.Ratterman et al. ASME Journal of Engineering for Industry, 1988 (Vol. 110): 25~31.
    57. G.Swersky. Industrial Diamond Review, 1976(3): 84.
    58.黄辉,徐西鹏.金刚石与磨料磨具工程,1999(4):7~10.
    59. H.K.Tonshoff, J.Asche. Industrial Diamond Review, 1997(1): 7~13.
    60.徐西鹏,沈剑云,黄辉.摩擦学学报,1998(2):162~166.
    61. Y.S.Liao., S.Y.Luo. Wear, 1992(157): 325~337.
    62.章兼植.金刚石与磨料磨具工程,2000(5):29~34.
    63. Noritake Diamond Industries Co. Ltd. Industrial Diamond Review, 1999(3): 173-176.
    64.无锡宏德超硬材料公司资料,见http: //www.hongder.com/
    65.海恩锯业有限公司基体资料,详见http: //www.chinahein.com/
    66.何艳艳,唐霞辉,朱国富.金刚石与磨料磨具工程,2001(3):12-15.
    67. H.S.Cho, C.D.Mote. Journal of the Acoustical Society of Am, 65(3): 662-671.
    68. W.D.Collin. Industrial Diamond Review, 1977(2): 48-54.
    69. China Grinding wheel corporation. Industrial Diamond Review, 1984(4): 134~136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700