用户名: 密码: 验证码:
天然牙和牙科全瓷饰面瓷的摩擦磨损性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然牙的磨耗是一个自然过程,但是天然牙的过度磨损可以引起机体自身器官的损伤。全瓷修复体美观、颜色和层次感好,生物相容性高,已成为牙科修复的发展趋势。理想的修复体应该具有和牙体组织接近的磨损率,既可以很好地发挥修复功能,又不对天然牙造成过度磨损。研究天然牙和全瓷饰面瓷材料的摩擦磨损特性并探讨有关影响因素,具有重要的理论意义和实际临床应用价值。
     目的:通过体外摩擦磨损实验,观察天然牙磨损特性及增龄性变化;观察三种全瓷饰面瓷材料(Vintage-al,Vita-alpha,Cercon)与天然牙的磨损性能差异,并对其有关力学指标包括断裂韧性、三点弯曲强度、以及维氏显微硬度进行检测;观察载荷和频率的变化对天然牙和饰面瓷的磨损特性的影响;观察制作工艺对全瓷饰面瓷磨损特性的影响,以探讨影响其摩擦磨损行为的因素,为临床应用及材料优化提供摩擦理论依据。
     材料和方法:采用改进后的MM-200摩擦磨损实验机,观察天然牙牙釉质/牙本质的摩擦磨损行为(人工唾液润滑/干摩擦);观察天然牙磨损性能的增龄性改变;观察全瓷饰面瓷材料(Vintage-al,Vita-alpha,Cercon)与天然牙釉质的摩擦磨损行为;进一步观察不同的载荷/频率下天然牙和全瓷饰面瓷的磨损行为;探讨制作工艺对全瓷饰面瓷磨损性能的影响,包括表面处理、烧结温度、烧结真空度以及烧结次数四种制作因素的影响。实验参数依据实验的要求设定。记录摩擦力矩数,计算摩擦系数,绘制摩擦系数-时间变化曲线;测量磨斑宽度;(扫描电镜)(scanning electron microscopy,SEM)/原子力显微镜(atomic force microscopy,AFM)观察;能谱分析(energy dispersion spectrometry,EDS)分析实验前后样品元素变化。检测有关力学指标包括显微硬度,断裂韧性和弯曲强度。
     结果:1在两种实验条件下,牙釉质和牙本质人工唾液润滑状态下磨斑均较干摩擦小(p<0.05);牙釉质的磨斑宽度值小于牙本质(p<0.05)。牙釉质的维氏显微硬度高于牙本质(p<0.05)。SEM结果发现牙釉质和牙本质磨斑形貌特征主要为犁沟和磨粒,其中牙釉质的变化较牙本质明显。不同年龄组的天然牙,磨斑宽度最小的是中年组天然牙,其次是年轻恒牙组,最大的是老年恒牙组,老年组和其他两组比较存在统计学差异(p<0.05);硬度值成年组与其他两组存在统计学差异(p<0.05)。3D-AFM结果发现年轻恒牙的磨痕犁沟粗大清晰均匀,犁沟内可见到颗粒状磨屑;中年恒牙磨斑观察发现主要是犁沟为主,犁沟内少见颗粒状物质;老年恒牙磨斑形貌结果,犁沟不如前两组清晰,缺损和磨粒均明显增多。
     2 Enamel、Cercon、Vita-alpha和Vintage-al四种样本维氏显微硬度值比较存在显著差异(p<0.05);饰面瓷强度具有统计学意义(p<0.05);在断裂韧性比较中,Cercon与另外两种全瓷饰面瓷存在统计学差异(p<0.05)。四种材料摩擦系数趋势由高到低排列如下:Vintage-al,Cercon,Vita-alpha,Enamel。磨斑宽度比较由高到低排列顺序依次为:Enamel、Vita-alpha、Cercon、Vintage-al,结果具有统计学意义(p<0.05)。AFM结果Vita-alpha摩擦面可见大量的磨粒,犁沟效应较小;Vintage-al的犁沟效应却很明显,犁沟粗大而深,磨粒相对较少;Cercon的饰面瓷磨斑结果显示为磨斑清晰,犁沟均匀可见,磨粒散在分布,界于Vita-alpha和Vintage-al之间。EDS结果发现饰面瓷摩擦前后试件表面检测发现Al和Si降低,O元素增多;Cercon饰面瓷的Zr元素比例在摩擦后有所加大,说明Zr元素有较强的抗磨损特性。
     3天然牙在四种实验条件98N/200rpm、98N/400rpm、137N/200rpm和137N/400rpm进行摩擦磨损实验,高载荷高频率组的摩擦系数明显高于其他组。前三组实验状态实验进行平稳,磨斑表面比较光滑,牙釉质早期可以看到小的白色磨屑,后期可看到片状剥离块,局部见组织烧焦,偶伴随较大的黑色组织块出现,褐色磨屑出现,润滑液变浑浊;137N/400rpm组的牙釉质组织的摩擦学行为发生了较大的变化,磨斑增长速度加快,磨屑增多,颜色加深,磨斑表面有明显的氧化物覆盖,出现组织裂块。同一载荷不同频率和同一频率组不同载荷组磨斑宽度进行检验,除频率为200rpm在不同载荷时比较不具有统计学意义外,其他各组均具有统计学差异(p<0.05)。磨斑表面形貌SEM观察天然牙在137N/400rpm组,磨斑表面出现了大量的组织裂片剥脱后形成的坑状结构及裂纹。
     Cercon饰面瓷在不同载荷不同频率时的摩擦系数-时间变化曲线图可以看出,高载荷组曲线变化较大,低频率组时在实验的40-50分钟左右达到峰值,然后再稳定在相对较低水平;高载荷高频率组则曲线直到70分钟左右才达到峰值,然后保持在相对高的水平。137N组的摩擦系数明显大于98N组;同一载荷时高频率组的摩擦系数值大于低转速组。高载荷高频率磨屑出现最早最多,润滑液最先浑浊,磨斑扩展最快。磨斑宽度由高到低排列顺序依次为137N/400rpm组,137N/200rpm组,98N/400rpm组,98N/200rpm组,同一载荷不同频率和同一频率不同载荷组间比较磨斑差异均具有统计学意义(p<0.05)。磨斑形貌表面观察137N/400rpm组则除犁沟磨粒外,可见大量裂纹,提示在高载荷高频率组饰面瓷的疲劳磨损逐渐成为主要磨损类型。
     4在实验的最初阶段,上釉组磨斑扩展较快,表面形成的磨屑出现较早,润滑液较早变浑浊;在实验进行到一定时间,约30分钟左右,抛光组和上釉组的磨斑表面扩展和磨屑生成基本同步,到实验的最后阶段,材料的表面均可见到较均匀的摩擦磨损面,表面附着褐色的磨屑。上釉组的磨斑大于抛光组,但经SPSS 12.0软件,配对t检验(Paired Samples Statistics),α=0.05为检验水准,进行统计分析,差异不具有统计学意义(p=0.056,p>0.05),说明两种表面处理方式对陶瓷材料的磨损性能的总体影响不大。
     烧结温度改变实验中磨斑扩展基本相同,但是烧结温度变化最大的两组820℃和860℃出现磨屑较早,润滑液浑浊早。磨斑宽度值间比较不具有统计学差异(p>0.05);说明在本实验范围内,温度的升降不能影响摩擦磨损性能的改变。形貌观察发现正常烧结的试件,磨斑清晰、犁沟和磨粒明显;温度降低者试件表面可见大的孔状结构,犁沟粗大,有中断;温度升高可见组织缺损,犁沟不明显。
     不同真空度烧结的试件在磨损实验中发现,随着实验的进行,磨斑扩展速度不一致,真空度低的试件扩展快,尤其是真空度为零时,实验中可见组织的崩脱,大片磨屑,摩擦表面不均匀,润滑液较快出现浑浊。磨斑宽度比较由高到低依次为:0Kpa组、37Kpa组、67Kpa组和97Kpa组,具有统计学差异(p<0.05);随着真空度的降低,磨斑宽度加大,经Pearson线性相关分析,二者之间存在着显著负性相关,相关系数为-0.773(p<0.01)(2-tailed);组间存在统计学差异(p<0.05)。LSD法比较,发现除真空度为0Kpa和37Kpa,67Kpa和97Kpa两组比较不具有统计学意义(p>0.05),其他各组两两比较,差异均具有统计学意义(p<0.05)。金相显微镜对烧结完成的试件进行观察,发现在不同真空度烧结下的试件最大差别,就是孔隙的比例和直径大小。真空度越低,孔隙比例越高,直径越大。形貌观察结果发现真空度低试件表面不均匀,犁沟深而且粗大,犁沟以及周围存在坑状结构;真空度高的试件组犁沟清晰,均匀,磨粒散在分布。
     烧结次数的增加,摩擦系数依次增大,摩擦系数由高到低顺序排列:饰面瓷烧结7次组,烧结5次组,烧结3次组,烧结1次组。磨斑宽度随着烧结次数的增加而增加,经Pearson线性相关分析,两者间存在正性相关,相关系数为0.584(p<0.01);磨斑结果经One-wayANOVY分析,差异具有统计学意义(p<0.05);LSD法比较发现烧结5次和5次以下的样品间,磨斑宽度差异不存在统计学意义(p>0.05);但是烧结7次组的磨斑比较与其他3组均存在统计学意义(p<0.05)。扫描电镜发现随着烧结次数的增多,烧结3次、5次和7次的试件,则犁沟慢慢少见,组织裂隙较大。
     结论:牙釉质和牙本质具有良好的摩擦磨损性能,磨损类型主要为磨粒磨损、疲劳磨损和粘着磨损,牙釉质的耐磨性优于牙本质,唾液发挥着重要减摩耐磨作用。天然牙摩擦磨损性能呈现明显的增龄性,而且同天然牙表面硬度密切相关;成年恒牙的耐磨性最佳,年轻恒牙的耐磨性次之,老年恒牙的耐磨性最差。
     Vintage-al、Cercon、Vita-alpha三种全瓷饰面瓷呈现良好的摩擦磨损性能,耐磨性由高到低排列为:Vintage-al、Cercon、vita-alpha。磨损类型主要为磨粒磨损、粘着磨损和疲劳磨损,磨损模式属温和磨损;磨损能力与其力学性能(如硬度、断裂韧性和强度)有一定的相关性。
     载荷/频率增加可以促进天然牙和全瓷饰面瓷磨损。天然牙由简单的二体磨损变成复杂的三体磨损,磨损类型由磨粒磨损和粘着磨损为主,转化为疲劳磨损、磨粒磨损和粘着磨损。饰面瓷磨损类型由磨粒磨损和粘着磨损为主,转化为疲劳磨损为主,其次是磨粒磨损和粘着磨损。
     制作工艺可以影响饰面瓷磨损行为:上釉和抛光影响早期陶瓷材料的磨损性能;实验温度跨度内烧结对饰面瓷的磨损性能无明显影响;烧结真空度的降低可以降低饰面瓷的抗磨损性能,磨斑宽度增大,二者间存在负线性相关;烧结次数增多可以降低全瓷饰面瓷的抗磨损性能,两者间存在正线性相关。
Objective: The aim was to study and explore the friction and wear behavior between the enamel/dentine, three types of dental decoration porcelains for all-ceramic restorations against the same counter sample. Materials & Methods: The study of friction and wear behavior of enamel and dentine was done under dry/artificial saliva lubrication. And the aging change of natural tooth was also investigated, as well as load/frequency and manufacture factors. A variety of factors including Vickers hardness, fracture toughness, flexural strength, friction coefficients, wear scar width, element concentrations and wear surface evolution were considered relative to the tribology of that in vivo situation. The wear scars of the samples were characterized by means of scanning electron microscopy (SEM) and atomic force microscopy (AFM). The different element concentrations of the surface before/after the wear test were determined with energy dispersion spectrometry (EDS).
     Results:
     1. Results showed that there existed statistical significance in enamel and dentine. The statistical differences were observed both in wear width and hardness of materials in different groups (p<0.05). Enamel and dentine displayed good wear resistances. The wear ability of enamel is better than that of dentine, both two materials displayed better resistance with artificial lubrication instead of dry friction. SEM/AFM results showed wear surface natural tooth full of abrasive particles and denaturation of dental texture. The wear resistance ability ranked from high to low as follows: adult group, young group, old group.
     2. Enamel, Vita-alpha, Cercon and Vintage-al displayed good wear resistances. The statistical differences between materials were observed in wear width and properties of materials (p<0.05). The wear ability among four materials ranked from highest to lowest as follows: Vintage-al, Cercon, Vita-alpha, enamel. SEM/AFM results demonstrated the wear patterns of tested veneering ceramics consisted mainly of abrasive wear, adhesion and fatigue wear. The EDS results showed that antagonist substance had been transferred to the porcelain surface, the element concentration of Fe was obviously found on the samples.
     3. With the load/frequency increasing, the friction and wear behavior of natural tooth and veneering were worse than lower level.
     4. The wear behavior of veneering samples with glazing or polishing was different at first stage, but difference didn't exist after the whole experiment. There was no difference among veneering with different sintering temperature. The wear behavior of veneering with different vacuum was different. The wear scar width widened, while the vacuum pressure decreasing. There existed a negative correlation between the vacuum pressure and wear behavior. Firing times could weaken the wear ability of veneering with the wear scar width increasing. There existed positive correlation between them.
     Conclusion:
     The wear resistances of enamel and dentine are good and stable. The artificial saliva plays an important role in the wear behavior of enamel and dentine. The main underlying mechanisms of natural teeth wear are abrasive, and denaturation of dental texture. The wear resistance ability of enamel against wear is better than that of dentine. The wear resistance ability ranked from high to low as follows: adult group, young group, old group.
     Veneering ceramics wear ability is better than natural human teeth. The resistance ability of veneering ceramics against wear may have some correlation with the ceramics mechanical properties such as hardness, fracture toughness and flexural strength. The wear patterns of veneering ceramics can be described as mild wear. Abrasive wear, adhesion and fatigue of veneering ceramics characterize the wear patterns.
     Load and frequency can influence the wear behavior of all-ceramic veneering porcelains.
     Glazing can influence the wear ability against wear at first stage. There isn't a statistical difference among veneering porcelains wear resistance during the temperature range. Sintering vacuum can significantly influence the ability. Firing times can change the behavior.
引文
[1] Smith BG, Bartlett DW, Robb ND. The prevalence, etiology and management of tooth wear in the United Kingdom. J Prosthet Dent,1997,78:367-372
    [2] Gregory-Head B, Curtis DA. Erosion caused by gastroesophageal reflux: diagnostic consideration. J Prosthodont, 1997, 6:278-285
    [3] Bauer W, Vanden Hoven F, Diedrich P. Wear in the upper and lower incisors in relation to incisal and condylar guidance. J Orofac Orthop, 1997, 58:306-319
    [4] Wedel A, Borrman H, Carlsson GE. Tooth wear and temporomandibular joint morphology in a skull material from the 17~(th) century.Swed Dent J, 1998, 22:85-95
    [5] Seghi,RR, Rosenstiel SF, Bauer P. Abrasion of human enamel by different dental ceramics in vitro. J Dent Res, 1991, 70:221-225
    [6] Wiley MG.Effects of porcelain on occluding surfaces of restored teeth. J Prosthet Dent, 1989,61:133-137
    [7] Jacobi R.Shillingburg HT Jr,Duncanson MG Jr.A comparison of six ceramic surfaces and gold.J Prosthet Dent,1991,66:303-309
    [8] Krejci I,Lutz F,Reimer M, et al.Wear of ceramic inlays,their enamel antagonists,and luting cements.J Prosthet Dent,1993,69:425-430
    [9] Olin PS, Clay DJ, Look JO.Current prosthodontic practice:a dental laboratory survey. J Prosthet Dent, 1989,61:742-745
    [10] Christensen GJ.The use of porcelain-fused-to-metal restorations in current dental practiceL: a survey.J Prosthet Dent, 1986, 56:1-3
    
    [11] Won-Suck Oh, Ralph Delong, Kenneth J, Anusavice. Factors affecting enamel and ceramic wear. J Prosthet Dent, 2002, 87:451-458
    [12] Hudson JD,Goldstein GR,Georgescu M.Enamel wear caused by three different restorative materials.J Prosthet Dent,1995,74;647-654
    [13] Jagger DC, Harrison A. An in vitro investigation into the wear effects of selected restorative materials on dentine. J Oral Rehabilitation 1995,22:349-354
    [14] Eugeniusz Sajewicz. On evaluation of wear resistance of tooth enamel and dental materials. Wear, 2006,260:1256-1261
    [15]Magne P., Won-Suck Oh , Pintado M.R.. Wear of enamel and veneering ceramics after laboratory and chairside finishing procedures. J Prosthet Dent, 1999, 82: 669-679.
    [16] Derand P., Vereby P. Wear of low-fusing dental porcelains. ProsthetDent, 1999, 82: 460-463
    [17] Buckley D H, MiyoshiK. Friction and wear and ceramics. Wear, 1984, 100: 333-353
    [18] Kalin Mitjan, Jahanmir S. Influence of roughness on wear transition in glass-infiltrated alumina. Wear, 2003, 255: 669-676
    [19] Heintze S. D., Zappini G., Rousson V. Wear of ten dental restorative materials in five wear simulators-Results of a round rodin test. Dental Mterials, 2005, 21: 304-317
    [20] Kato. Koji, Adachi. Koshi. Wear of advanced ceramics. Wear, 2002, 3: 1097-1104
    [21] Scurria MS, Powers JM. Surface roughness of two polished ceramic materials. J Prosthet Dent 1994, 71: 174-177
    [22] H. Y. Yu, Z. B. Cai, P. D. Ren, et al. Friction and wear behavior of dental feldspathic porcelain. Wear 2006, 261: 611-621
    [23] 马军萍,姚月玲,宋应亮,等.牙釉质与5种牙用烤瓷材料间磨耗性能测试研究.实用口腔医学杂志,2001,17:206-208
    [24] Rosenblem MA, Schulman A. A review of all-ceramic restorations. J Amer Dent Assoc 1997, 128: 297-307
    [25] BinningG, Quate CF, Gerber C. Atomic force microscope. Phys Reviett, 1986, 56: 930-933
    [26] 骆小平,钟斌.原子力显微镜在口腔医学中的应用:综述.中华口腔医学杂志,2002,37:480-481
    [27] 王晓广,马万云.应用原子力显微镜观测牙齿充填材料的表面结构.电子显微镜学报.2002,23:594-597
    [28] Holland R. I. Galvanic current between gold and amalgam, Scand. J Dent Res, 1980, 88: 269-272
    [29] Gohring T. N., Besek M. J., Schmidlin P. R. Attritional wear and abrasive surface alterations of composite resin materials in vitro. J Dentistry, 2002, 30: 119-126
    [30] Hu XQ, Harrington E, Marquis PM. Research on the tribology experimental system for dental materials. Materials Review, 1996 supplement: 163-168
    [31] Kumagai H., Suzuki T., Hamada T., et al. Occlusal force distribution on the dental arch during various levels of clenching. J Oral Rehabilitation. 1999, 26: 932-935
    [32] Jahnmir S. Wear behavior of dental ceramics [M]. In: Proceedings of the 7th Portuguese Conference on Tribology, Porto, 2000
    [33] 何立弘.SHOFU长石质陶瓷疲劳性能研究:[博士学位论文],成都:四川大学,2005
    [34] Mair LH, Stolarski TA, Vowles RW, etal. Wear: mechanisms, manifestations and measurement. Report of a workshop. Journal of Dentistry 1996, 24, 141-148
    [35] 于世凤主编.口腔组织病理学,第5版,北京:人民卫生出版社,2003
    [36] 黎红,张杰,周仲荣,等.新型牙科修复材料.钛与天然牙摩擦学特性匹配的研究.生物医学工程学杂志,2001,18:561-564
    [37] Mecholsky JJ. Fracture mechanics pricinples. Dent Mater 1995, 11: 111-112
    [38] Ekfeldt A, Oilo G. Occlusal contact wear of prosthodontic materials. An in vivo study. Acta Odontol Scand 1988, 46: 159-169
    [39] Jung YG, Peterson IM, Pajares A, et al. Comact damage resistance and strength degradation of glass-infiltrated alumina and spinel ceramics. J Dent Res 1999, 77: 804-814
    [40] Ai-Hiyasat AS, Saunders WP, Smith GM. Three-body wear associated with three ceramics and enamel. J Prosthet Dent 1999, 82: 476-481
    [41] Metzler KT, Woody RD, Miller AW 3rd, et al. In vitro investigation of the wear of human enamel by dental porcelain. J Prosthet Dent 1999, 81: 356-364
    [42] Yu. H. Y, Zhou. Z. R, He. L. H. The friction and wear behavior of dental porcelains with different surface strengthing techniques. Key Engineering Materials, 2005, 288: 637-640
    [43] Kato. Koji. Adachi. Koshi. Wear of advanced ceramics Wear, 2002, 3: 1097-1104
    [44] Wang Yushu, Hsu Stephen M. The effects of operating parameters and environment on the wear and wear transition of alumina. Wear, 1996, 195: 90-99
    [45] Ward MT, Tate WH, Powers JM. Surface roughness of opalescent porcelains after polishinh. Oper Dent, 1995, 20: 106-110
    [46] Sulik WD, Plekavich EJ. Surface finishinh of dental porcelain. J Prosthet Dent, 1981, 46: 217-221
    [47] Klausner LH, Cartwright CB, Charbeneau GT. Polished versus autoglazed porcelain surfaces. J Prosthet Dent, 1982, 47: 157-162
    [48] Scurria MS, Powers JM. Surface roughness of two polished ceramic materials. J Prosthet Dent 1994, 71: 174-177
    [49] Korber KH, Ludwig K, Dunner P. Experiment studies of the abrasion effect between dental enamel and dental ceramic. Dtsch Zahnarzti Z, 1984, 39: 2-11
    [50] Krejci. I, Lutz F, Reimer M, et al. Wear of ceramic inlays, their enamel antagonists, and luting cements. J Prosthet Dent, 1993, 69: 425-430
    [51] Jagger DC, Harrison A. An in vitro investigation into the wear effects of unglazed, glazed, and polished porcelain on human enamel. J Prosthet Dent, 1994, 72: 320-323
    [52] AI-Hiyasat AS, Saunders WP, Sharkey SW, et al. The abrsive effect of glazed, unglaged, and polished on the wear of human enamel, and the influence of carbonated soft drinks on the rate of wear. Int J Prosthodont, 1997, 10: 269-282
    [53] 孙蕾综述.氧化锆应用于全瓷修复的研究进展.国外医学口腔分册,2005,32:145-147
    [54] Claus H. The structure and microstructure of dental porcelain in relationship to the firing conditions. Int J Prosthodont 1989, 2: 376-384
    [55] Wang, HL. Hon MH. Temperature dependence of ceramics hardness. Ceramics Tnternational, 1999, 25: 267-271
    [56] Delong R, Sasik C, Pintado, et al. The wear of enamel opposing shaded ceramic restorative materials: an intro study. J Prosthet Dent, 1992, 68: 42-48
    [1] 黎红,黄楠,周仲荣.生物摩擦学及表面工程的研究现状和进展.中国表面工程,2000,13:6—10
    [2] Hudson JD, Georgescu M. Enamel wear caused by three different restorative materials. J prosthet Dent, 1995, 72: 647-654
    [3] Seghi, RR, Rosenstiel SF, Bauer P. Abrasion of human enamel by different dental ceramics in vitro. J Dent Res 1991, 70: 221-225
    [4] E. D. Rekov, P. van Thompson, S. Jahanmir, etal. Wear in the unique environment of the mouth, in Second Joint American-Eastern European Conference on New Materials and Technologies in Tribology, Abstract of Papers, Infotribo, Gomel, Belarus, 1997, 12: 45
    [5] Smith B. G., Bartlett D. W, Robb N. D. The prevalence, etiology and management of tooth wear in the United Kingdom. J Prosthet Dent, 1997, 78: 367-372
    [6] Ratledge DK, Smith BG, Wilson RF.The effect of restorative materials on the wear off human enamel. J Prosthet Dent, 1994, 72: 194-203
    [7] Bauer W, vanden Hoven F, Diedrich P. Wear in the upper and lower incisors in relation to incisal and condylar guidance. J Orofac Orthop, 1997, 58: 306-19
    [8] Wedel A, Borrman H, Carlsson GE.Tooth wear and temporomandibular joint morphology in a skull material from the 17th century. Swed Dent J, 1998, 22: 85-95
    [9] Stolarski TA. Types of wear and their mechanisms. In: Tribology in Machine Design. Oxford: Heinemann, 1990, 19-23
    [10] Mair LH, Stolarski TA, Vowles RW, etal. Wear: mechanisms, manifestations and measurement. Report of a workshop. Journal of Dentistry 1996, 24, 141-148
    [11] Abebe M and Appl FC. Theoretical analysis of the basic mechanics of the abrasive processes. Part 1: General model. Wear 1988, 126: 251-266
    [12] Zum Gahr K-H. Classification of wear processs. In: Microstructure and Wear of Materials. Amsterdam: Elsevier, 1987, 80-131
    [13] Hu X, Sho rtall A C, Marquis P M. Wear of three dental compo sites under different testing conditions. Journal of Oral Rehabilitation, 2002, 29: 756-757
    [14] Yap AU. J, Teoh SH. Comparative wear ranking of dental restorative materials utilizing different wear simulation models. Journal of oral rehabilitation, 1997, 24: 574-580
    [15] 张杰,黎红,周仲荣,等.人体天然牙不同深度层次的显微硬度与耐磨性的研究.生物医学工程学杂志,2002,19:621-623
    [16] 郑靖,沙伟,周仲荣.不同年龄段天然牙的摩擦磨损行为研究.摩擦学学报,2004,24:471-475
    [17] 黎红,周仲荣,张杰.天然牙及几种牙科修复材料摩擦磨损性能的比较研究.摩擦学学报,2001,21:172—176
    [18] ManhartJ, Chen H, Hamm G, et al. Buonocore memorial lecture: review of the clinical survival of direct and indirect restorations in posterior teeth of the permanent dentition. Operative Dentistry 2004, 29: 481-508
    [19] Shillingburg Jr HT. Conservative preparations for cast restorations. Dental Clinics of North America 1976, 20: 259-71
    [20] Chadwick RG, Linklater KI. A retrospective observational study of the effect of surface treatments and cementing media on the durability of gold palatal veneers. Operative Dentistry 2004, 29: 608-613
    [21] Monasky GE, Jaylor DF. Studies on the wear of porcelain, enamel, and gold. J Prosthet Dent 1971, 25: 299-306
    [22] Darbar UR. The treatment of palatal erosive wear by using oxidized gold veneers: a case report. Quintessence International 1994, 25: 195-7
    [23] Miya DM. Gold inlays bonded with a resin cement: a clinical report. Journal of Prosthetic Dentistry 1997, 78: 233-235
    [24] Mitsuo Niinomi. Corrosion wear fracture of new B type biomedical titanium alloys. Materials Science and Engineering, 1999, 263: 193-199
    [25] Ohkubo C, Shimura I, AokiT, et al. Wear resistance of experimental T i-Cu alloys. Biomaterials, 2003, 24: 3377-3381
    [26] 黎红,张杰,周仲荣,等.新型牙科修复材料——钛与天然牙摩擦学特性匹配的研究.生物医学工程学杂志,2001,18:561-564
    [27] 黎红,张孟平,冯洁琳,李娟.钛修复体的口腔生物摩擦学特性研究.中华口腔医学杂志,2004,39,63—65
    [28] 姚月玲,马军萍,宋应亮,等.不同牙用非贵金属材料与牙釉质間磨耗性能的测试研究.中国美容医学,2004,11:135-136
    [29] Nagarajan V. S., Jahanmir S, Thompson V. P. In vitro contact wear of dental composites. Dental Materials, 2004, 20: 63-71
    [30] 郑靖,周仲荣,于海洋,等.口腔环境因素对树脂牙摩擦学特性的影响.摩擦学学报,2003,23:504-508
    [31] Eduardo Carlos Bianchi. Development of new standard procedures for the evaluation of dental composite abrasive wear. Wear, 2002, 253: 533-540
    [32] 徐恒昌,王同,奚廷斐.牙科复合树脂的磨损及测试方法的研究.中国生物医学工程学报,1983,2:216—222
    [33] Ruddell DE, Maloney MM, Thompson JY. Effect of novel filler particles on the mechanical and wear properties of dental composites. Dental Materials, 2002, 18: 72-80
    [34] Koczorowski R, loch S. Evaluation of wear selected prosthetic materials in contact with enamel and dentin. J Prosthet Dent, 1999, 81: 453-459
    [35] VaziriM, SpurRT, StottFH. An investigation into the wear of polymeric materials. Wear, 1988, 122: 329-342
    [36] K. J. -M. S"oderholm, D. Sarrett, Y. Abe, M. C. K. Yang, R. Labella, E. Yildiz, G. Willems, Clinical wear performance of eight experimental dental composites over three year determined by two measuring methods, Eur. J. Oral. Sci. 2001, 109: 273-281
    [37] Wiley MG. Effects of porcelain on occluding surfaces of restored teeth. J Prosthet Dent, 1989, 61: 133-137
    [38] Jacobi R. Shillingburg HT Jr, Duncanson MG Jr. A comparison of six ceramic surfaces and gold. J Prosthet Dent, 1991, 66: 303-309
    [39] Krejci I, Lutz F, Reimer M, et al. Wear of ceramic inlays, their enamel antagonists, and luting cements. J Prosthet Dent, 1993, 69: 425-430
    [40] Olin PS, Clay D J, Look JO. Current prosthodontic practice: a dental laboratory survey. J Prosthet Dent 1989, 61: 742-745
    [41] Christensen GJ. The use of porcelain-fused-to-metal restorations in current dental practiceL: a survey. J Prosthet Dent, 1986, 56: 1-3
    [42] Won-Suck Oh, Ralph Delong, Kenneth J, Anusavice. Factors affecting enamel and ceramic wear. J Prosthet Dent, 2002, 87: 451-458
    [43] Hudson JD, Goldstein GR, Georgescu M. Enamel wear caused by three different restorative materials. J Prosthet Dent, 1995, 74; 647-654
    [44] Jagger DC, Harrison A. An in vitro investigation into the wear effects of selected restorative materials on dentine. J Oral Rehabili, 1995, 22: 349-354
    [45] Eugeniusz Sajewicz. On evaluation of wear resistance of tooth enamel and dental materials. Wear, 2006, 260: 1256-1261
    [46] P. Magne, Oh. Won-Suck, M. R. Pintado. Wear of enamel and veneering ceramics after laboratory and chairside finishing procedures. J Prosthet Dent, 1999, 82: 669-679
    [47] P. Derand, P. Vereby. Wear of low-fusing dental porcelains. Prosthet. Dent, 1999, 82: 460-463
    [48] Buckley D H, Miyoshi K. Friction and wear and ceramics. Wear, 1984, 100: 333-353
    [49] Mitjan Kalin, Said Jahanmir. Influence of roughness on wear transition in glass-infiltrated alumina. Wear, 2003, 255: 669-676
    [50] Heintze S. D., Zappini G., Rousson V. Wear of ten dental restorative materials in five wear simulators-Results of a round robin test. Dental Materials, 2005, 21: 304-317
    [51] Kato. Koji, Adachi. Koshi. Wear of advanced ceramics. Wear, 2002, 3: 1097-1104
    [52] Scurria MS, Powers JM. Surface roughness of two polished ceramic materials. J Prosthet Dent, 1994, 71: 174-177
    [53] Evans AG, Marshall PB. Wear mechanism in ceramics. Proc. Of Int. Conf. on Fundamentals of Friction and Wear of Materials. Pittsburgh: ASME, 1980, 439-452
    [54] Buckley D H, MiyoshiK. Friction and wear and ceramics. Wear, 1984, 100: 333-353
    [55] Kalin Mitjan, Jahanmir S. Influence of roughness on wear transition in glass-infiltrated alumina. Wear, 2003, 255: 669-676
    [56] 马军萍,姚月玲,宋应亮,等.牙釉质与5种牙用烤瓷材料间磨耗性能测试研究.实用口腔医学杂志,2001,17:206-208
    [57] Yu H. Y., Cai Z. B., Ren P. D., et al, Friction and wear behavior of dental feldspathic porcelain. Wear 2006, 261: 611-621
    [58] Smith BGN, KnightJK. An index for measuring tooth wear. Br Dent J, 1984, 156: 435-438
    [59] Teaford M F, Tylenda C A. A new approach to the study of tooth wear. J Dent Res, 1990, 70: 204
    [60] John R Condon, Jack L Ferracane. Evaluation of composite wear with a new multimode oral wear simulator. Dental Materials, 1996, 12: 218-226
    [61] Verran J, RoweD L. The use of the atomic force microscope to visualize and measure wear of food contact surfaces. International Bio- deterioration &Biodegradation, 2000, 46: 99-105
    [62] De Gee A J, Pallav P. Occlusal wear simulation with the ACTA wear machine. J Dent, 1994, 22: S21-S7
    [63] Condon J R, Ferracane J L. Evaluation of composite wear with a new multi-mode oral wear simulator. Dent Mater, 1996, 12: 218-226
    [64] Delong R, Douglas W H. An artificial oral environment for testing dental materials. J IEEE Trans Biomed Eng, 1991, 38: 339-345
    [65] 吕晓迎.应用新型体外实验系统对牙科修复材料抗磨损性的研究.中华口腔医学杂志,2000,35:88-390

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700