用户名: 密码: 验证码:
涂层/基体界面的断裂行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热喷涂层的可靠性关系到构件的安全运行,对涂层特性的了解和把握是其工业应用的关键条件。本文从探讨涂层/基体系统完整性评定的方法出发,对LX88A涂层的力学性能、涂层的断裂行为基本特性、涂层与基体间界面的断裂参量以及基于局部法评定涂层/基体的界面断裂行为等几个方面进行了研究。
     本文通过三点弯曲试验测量了LX88A涂层的弹性模量(E),结果表明涂层的孔隙率对涂层E具有很大的影响,E的测量值随孔隙率的减小而增大。随着涂层厚度的增加,整个涂层的平均孔隙率变小,使得E随之增大。另外,发现相同厚度涂层的显微硬度和孔隙率均具有较大的分散性,并且涂层E随显微硬度的增大而减小,因此,相同厚度涂层的E具有较大的分散性。
     通过对三点弯曲试样中LX88A涂层断裂行为的观察,发现涂层中某位置所受力矩达到一定值时,该处会产生垂直于界面的裂纹,故可将力矩是否达到临界值作为该位置产生裂纹的条件。有限元分析结果也证明了上述结论,对于三个不同位置的裂纹,当裂纹产生时该位置处界面附近的应力水平基本接近。
     本文将断裂力学实验和有限元分析相结合获得界面断裂时裂纹尖端的应力场,并根据界面复应力强度因子(K)的定义计算了对LX88A涂层与Q345钢界面裂纹的K。结果表明,在三点弯曲试样中拉伸载荷和剪切载荷共同主导界面裂纹尖端附近区域,甚至剪切效果大于拉伸效果。研究发现只有部分试样的界面裂纹尖端附近存在K主导区,即K有效。另外,由于七个试样发生界面断裂时的J积分值分散很大,所以不适合使用单一断裂参量J积分来评价界面断裂行为。
     本文推导了将局部法用于界面断裂分析的理论基础。提出了两种断裂控制区的定义,一种将界面作为断裂控制区,一种将靠近界面的涂层薄层和基体薄层作为断裂控制区。对应两种定义提出了两种统计学分析的微观力学模型,对应两种模型讨论了界面裂纹的断裂准则,并根据最薄弱环节理论将局部法用于界面断裂行为分析。另外,制定了界面裂纹威布尔参数的估计方法和步骤,并编制了估计界面威布尔参数的程序。
     本文将局部法用于分析界面断裂行为对试样几何形式的依赖性。发现不同几何形式的试样发生界面断裂时,在相同断裂概率下其威布尔应力基本相同,并基于局部法通过预制裂纹试样的试验结果成功预测了两种缺口试样断裂数据的分布,说明局部法可以用来描述界面断裂行为,并用于界面完整性评定。
The reliability of thermal spraying coatings was related to safe operation of the components, and the knowledge of coatings’characteristics was critical for the widespread application of coatings. For the purpose of seeking a method to evaluate the integrity of coating/substrate system, the mechanical property of coatings, fracture behavior characteristics of coatings, interface fracture parameters and evaluation of interface fracture behavior based on the local approach had been studied in this paper.
     The 3-point bend test had been used to measure the Young’s modulus (E) of the LX88A coating produced by HAVS. The test results showed the coating’s porosity had important effect on E. E increased with the increase of porosity of coatings. It was found that the average porosity of whole coating decreased with the increase of coating thickness, so E increased. In addition, the microhardness and porosity of coatings with same thickness had notable dispersity, and E decreased with the increase of microhardness. Therefore, E of coatings with same thickness have large dispersity.
     The fracture behavior of LX88A coating in 3-point bend specimen had been observed. It was found that the crack normal to the interface in the coating occurred where a fixed moment of force was reached. So whether the moment reached to the critical value can be used as the condition of crack occurrence. The FEA results proved the previous conclusion. The stress levels at the different locations where the cracks occurred near the interface almost were same.
     The fracture mechanics experiment and FEA had been used to compute the complex stress intensity factor (K) of the interface between LX88A coating and Q345 steel in the paper. The result showed that phase angle (ψ) of K for the 3-point bend specimen was more than 45°. It indicated that both the tensile load and shear load near the crack tip were dominant, even the shear load had higher effect than the tensile load. The research found the K-dominant zone did not existed near the crack tip for total specimens, but for some specimens. In addition, the JC values of the total specimens when the interface fracture occurred were very dispersive. Therefore, JC can not be used as the single fracture parameter to evaluate the interface fracture behavior.
     The theory of the local approach applied to analysis the interface fracture had been deduced in the paper. In the theory, two different methods were proposed to define the fracture process zone. In one method, the interface was fracture process zone. In another method, the fracture process zone consisted of a thin layer of coating and a thin layer of substrate adjacent to the interface. Subsequently, two micromechanics models for statistics analysis were built corresponding to the two definitions, and the different fracture criterions for interface crack were proposed corresponding to the two models. Lastly, the local approach was developed to analyze the interface crack based on the weakest link theory. In addition, the estimation procedure of the interfacial Weibull parameter was determined.
     The local approach was used to analyze the geometry dependence of coating specimens for interface brittle fracture initiation. It was found that the Weibull stress (σW) for all specimen geometries almost were identical under the same fracture probability when the interface fracture initiation occurred for different specimen geometries. Moreover, the interface fracture behavior of two types of specimens with notch had been predicted from the test results of pre-crack specimens based on the local approach for interface brittle fracture, and the predicted distribution of the critical load for the notched specimens gave a good agreement with the test results. In a word, the geometry dependence of the interface brittle fracture toughness data can be reduced through the local approach’s application. It showed that the local approach not only can be used to describe the interface fracture behavior, but also can be used in the integrity evaluation for interface between different materials.
引文
[1]C633-79 Standard Test Method for Adhesion of Cohesive Strength of Flame-Sprayed Coatings, Annual Book of ASTM Standards, Vol.03.01, 1993, P.665.
    [2]Eaton H E, Novak R C. A study of the effects of variations in parameters on the strength and modulus of plasma sprayed zirconia. Surface and Coatings Technology, 1986, 27(3): 257-267.
    [3]川濑, 前原, 日本溶射协会, 第 47 回学术讲演大会讲演论文集,1987.11.
    [4]寺崎, 秋山. 溶接学会全国大会讲演概要, 1990, 47.
    [5]刘家浚. 评价涂层结合强度的单摆冲击划痕法通过技术鉴定. 中国表面工程. 1991, 3: 43-43.
    [6]Kawase R. Proceedings of 4th National Thermal Spray Conference. USA. 1991. 187-191.
    [7]Suga Y. Proceedings of 13th ITSC. USA. 1992: 247-252.
    [8]Nicholson E D, Field J E. Mechanical and thermal properties of thin films. Journal of Hard Materials, 1994, 5(3): 89-132.
    [9]Torok E, Perry A J, Chollet L et al. Young’s modulus of TiN, TiC, ZrN and HfN. Thin Solid Films. 1987, 153: 37-43.
    [10]Hardwick D A. The mechanical propertites of thin films: a review. Thin Solid Films, 1987, 154: 109-124.
    [11]Spinner S, Teft W E. Proc. ASTM, 1961, 61: 1221.
    [12]Chiu C-C, Case E D. Elastic modulus determination of coating layers as applied to layered ceramic composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, A132 (1-2): 39-47.
    [13]Rouzaud A, Barbier E, Ernoult J et al. Method for elastic modulus measurements of magnetron sputtered thin films dedicated to mechanical applications. Thin Solid Films, 1995, 270(1-2): 270-274.
    [14]Li H, Khor K A, Cheang P. Young’modulus and fracture toughness determination of high velocity oxy-fuel-sprayed bioceramic coatings. Surface and Coatings Technology, 2002, 155(1): 21-32.
    [15]Fatima M, Silva Vales, Hancock P et al. An improved three-point bending method by nanoidentation. Surface and Coatings Technology, 2003, 169-170 (1): 748-752.
    [16]Emmanuelle Harry, Andre Rouzaud, Michel Ignat et al. Mechanical properties of W and W(C) thin films: Young’s modulus, fracture toughness and adhesion. Thin Solid Films, 1998, 332(1-2): 195-201.
    [17]Vancoille E, Celis J P, Roos J R. Dry sliding wear of TiN based ternary PVD coatings. Wear, 1993, 165(1): 41-49.
    [18]Chen Jiann-Shiung, Duh Jenq-Gong. Indentation behavior and Young’s Modulus evaluation in electroless Ni Modified CrN coating on mild steel. Surface and Coatings Technology, 2001, 139(1): 6-13.
    [19]Blakely J M. Mechanical Properties of Vacuum-Deposited Gold film. Journal of applied physics, 1964, 35: 1756-1759.
    [20]Hoffman R W. Nanomechanics of thin films: emphasis: tensile properties. Thin Films: Stresses and Mechanical Properties Symposium, 1989. 295-306.
    [21]Hollman Patrik, Larsson Mats, Hedenqvist Per et al. Tensile testing as a method for determining the Young’s modulus of thin hard coatings. Surface and Coatings Technology, 1997, 90(3): 234-238.
    [22]Ollendorf H, Schneider D, Schwarz Th et al. A comparative study of the mechanical properties of TiN coatings using the non-destructive surface acoustic wave method, scratch test and four-point bending test. Sruface and Coatings Technology, 1996, 84(1-3): 458-464.
    [23]Schneider Dieter, Schultrich Bernd. Elastic modulus: a suitable quantity for characterization of thin films. Surface and Coatings Technology, 1998, 98(1-3): 962-970.
    [24]Tran M D, Poublan J, Dautzenberg J H. A practical method for the determination of the Young’s modulus and residual stresses of PVD thin films. Thin Solid Films, 1997, 308-309: 310-314.
    [25]Oliver W C, Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 1992, 7(6): 1564-1583.
    [26]Vales da Silva M F, Hancock P, Nicholls J R. A Nanoindentation Technique for Accurate Measurements of Mechanical Properties on Bilayer Coatings. Advanced Engineering Materials, 2000, 2(10): 671-675.
    [27]Jaccodine R J, Schlegel W A. Measurement of Stains at Si-SiO2 Interface. Journal of applied physics, 1966, 37: 2429- 2434.
    [28]Yang W M C, Tsakalakos T, Hilliard J E. Enhanced elastic modulus in composition-modulated gold-nickel and copper-palladium foils. Journal of applied physics, 1977, 48(3): 876- 879.
    [29]Schneider D, Schwarz Th, Schultrich B. Determination of elastic modulus and thickness of surface layers by ultrasonic surface waves. Thin Solid Films, 1992, 219(1-2): 92-102.
    [30]Perry Anthony J, Albert Sue J, Martin Philip J. Practical measurement of the residual stress in coatings. Surface and Coatings Technology, 1996, 81(1): 17-28.
    [31]Chiu Chin-Chen. Determination of the Elastic Modulus and Residual stresses in Ceramic Coatings Using a Strain Gage. Journal of the American Ceramic Society, 1990, 73(7): 1999-2005.
    [32]Fawcett N. Novel method for the measurement of Young's modulus for thick-film resistor material by flexural testing of coated beams. Measurement Science & Technology, 1998, 9(12): 2023-2026.
    [33]Williams M L. The stress around a fault or crack in dissimilar media. Bulletin of the seismological society of America, 1959, 49(2): 199-204.
    [34]Williams M L. On the stress distribution at the base of a stationary crack. Journal of applied mechanics. Trans. ASME, 1957,79: 109-114.
    [35]Zak A R, Williams M L. Crack point stress singularities at a bi-material interface. Transactions of the ASME, 1963, 30: 142-143.
    [36]Erdogan Fazil. Stress Distribution in a Nonhomogeneous elastic plane with cracks. Transactions of the ASME, 1963, 30: 232-236.
    [37]Sih G C, Rice J R. The bending of plates of dissimilar materials with cracks. Journal of applied mechanics, 1964, 31: 477-482.
    [38]Rice J R, Sih G C. Plane problems of cracks in dissimilar media. Transactions of the ASME, 1965, 32: 418-423.
    [39]Park J H, Earmme Y Y. Application of conservation integrals to interfacial crack problems. Mechanics materials, 1986(5): 261-276.
    [40]Shih C F, Asaro R. Elastic-plastic analysis of crack on bimaterial interfaces; Part I: Small scale yielding. Journal of applied mechanics. Transactions ASME, 1988, 55(2): 299-313.
    [41]Hutchinson J W, Wear M, Rice J R. Crack paralleling an interface between dissimilar materials. Journal of applied mechanics. Transactions ASME 1987, 54(4): 828-832.
    [42]Rice JR, Sih G C. Mathematical analysis in the mechanics of fracture. Fracture: An advance treatise. H.Liebowitz, ed., 1968, l2: 17-26.
    [43]Cherepanov G P. The stress state in a heterogeneous plate with slits. In Russian, Izvestia AN SSSR, OTN, Mekhan. i Mashin. 1962, Vol.1: 131-137.
    [44]Cherepanov G P. Mechanics of brittle fracture. McGraw-Hill, New York, 1979.
    [45]England A H. A crack between dissimilar media. Journal of applied mechanics, 1965(32): 400-402.
    [46]Erdogan F. Stress distribution in bonded dissimilar materials with cracks. Journal of applied mechanics, 1965(32): 403-410.
    [47]Rice J R. Elastic fracture mechanics concepts for interfacial cracks. Journal of applied mechanics.Transactions of the ASME, 1988, 55 (1): 98-103.
    [48]Comninou M. The interface crack. Journal of applied mechanics. Transactions of the ASME, 1977, 44(4): 631-636.
    [49]Comninou M. Interface crack with friction in the contact zone. Journal of applied mechanics.Transactions of the ASME, 1977, 44 (4): 780-781.
    [50]Comninou M, Schmueser D. The interface crack in a combined tension-compression and shear field. Journal of applied mechanics. Transactions of the ASME, 1979, 46(2): 345-348.
    [51]Malyshev B M, Salgnik R L. The strength of adhesive joints using the theory of crack. International journal fracture mechanics, 1965, 1: 114-128.
    [52]Smelser R E. Evaluation of stress intensity factors for bimaterial bodies using numerical crack flank displacement data. Interational journal of fracture, 1979, 15(2): 135-143.
    [53]Matos P P L, McMeeking R M, Charalambides P G. et al. Method for calculating stress intensities in bimaterial fracture. International Journal of Fracture, 1989, 40(4): 235-254.
    [54]Muller D, Cho YR, Berg S. et al. Fracture Mechanics Tests for Measuring the Adhesion of Magnetron Sputtered TiN coatings. International Journal of Refractory Metals & Hard Materials, 1996(14): 207-211.
    [55]Qian G., Nakamura T, Berndt C.C. Tensile Toughness Test and High Temperature Fracture Analysis of Thermal Barrier Coatings. Acta Materialia, 1997, 45 (4): 1767-1784.
    [56]Eshelby J D, Read W T, Shockley W. Anisotropic elasticity with applications to dislocation theory. Acta Metallurgica, 1953, 1: 251-259.
    [57]Stroh A N. Dislocations and cracks in anisotropic elasticity. Philosophical Magazine, 1958, 7: 625-646.
    [58]Tang T C T. Explicit solution and invariance of the singularities at an interface crack in anisotropic composites. International Journal of Solids and Structures, 1986, 22(9): 965-83.
    [59]Qu J, Li Q. Interfacial dislocation and its applications to interface cracks in anisotropic bimaterials. Journal of Elasticity, 1991, 26(2): 169-195.
    [60]Atkinson C, Eftaxiopoulos D A. Interaction between a crack and a free or welded boundary in media with arbitrary anisotropy. International Journal of Fracture, 1991, 50(3): 159-182.
    [61]Civelek M B, Erdogan F. Crack problems for a rectangular plate and an infinite stripSource: International Journal of Fracture, 1982,19(2): 139-59.
    [62]Suo Zhigang. Delamination specimens for orthotropic materialsSource: Transactions of the ASME. Journal of Applied Mechanics, 1990, 57(3): 627-634.
    [63]Suo Zhigang, Hutchinson J W. Interface crack between two elastic layersSource. International Journal of Fracture, 1990, 43(1): 1-18.
    [64]Jagannadham K, Marcinkowski M J. Surface dislocation model of a finite stressed solid. Material Science and Engineering, 1979, 38(3): 259-270.
    [65]Huang Haiying, Kardomateas G A. Single-edge and double-edge cracks in a fully anisotropic strip.Transactions of the ASME. Journal of Engineering Materials and Technology, 1999, 121(4): 422-429.
    [66]O’Brien T K, Hooper S J. Local delamination in laminates with angle ply matrix cracks, Part I: Tension tests and stress analysis. In: Stinchcomb, W.W., Ashbaugh, N.E.(Eds.), Composite Materials: Fatigue and Fracture, vol,4, ASTM STP 1156, American Society for Testing and Materials, Philadelphia, 491-506.
    [67]Qian W, Sun C T. Calculation of stress intensity factors for interlaminar cracks in composite laminates. Composites Science and Technology, 1997, 57(6): 637-650.
    [68]Cao H C, Evans A G. An experimental study of the fracture resistance of bimaterial interfaces. Mechanics of materials. 1989, 7(4): 295-304.
    [69]Evans A G., Hutchinson J W. Effects of non-planarity on the mixed mode fracture resistance of bimaterial interfaces. Acta Metallurgica. 1989, 37(3): 909-916.
    [70]Charalambides P G, Lund J, Evans A G. et al. A test specimen for determining the fracture resistance of bimaterial interfaces. Journal of applied mechanics. Transactions of the ASME, 1989, 56(1): 77-82.
    [71]Chung H G.P, Swain M V, Mori T. Evaluation of the Strain Energy Release Rate for the Fracture of Titanium-porcelain Interfacial Bonding. Biomaterials. 1997, 18 (23): 1553-1557.
    [72]G.C. Shih. Mechanics of Fracture Initiation and Propagation, Kluwer Academic, USA, 1991.
    [73]O'Dowd N P, Shih C F, Stout M G. Test geometries for measuring interfacial fracture toughness. International Journal of Solids and Structures, 1992, 29(5): 571-589.
    [74]Becker Jr T L, McNaney J M, Cannon R M et al. Limitations on the use of the mixed-mode delaminating beam test specimen: effects of the size of the region of K-dominance. Mechanics of Materials, 1997, 25(4): 291-308.
    [75]Oh Tae Sung, Cannon R M, Ritchie R O. Subcritical crack growth along ceramic-metal interfaces. Journal of the American Ceramic Society, 1987, 70(12): C352-C355.
    [76]Cannon R M, Dalgleish B J, Dauskardt R H et al. Cyclic fatigue-crack propagation along ceramic/metal interfaces. Acta Metallurgica et Materialia, 1991, 39(8): 2145-2156.
    [77]Thun G, Schneider G A, Bahr H-A et al. Toughness Anisotropy and Damage Behavior of Plasma Sprayed ZrO2 Thermal Barrier Coatings. Surface and Coatings Technology, 2000, 123(2-3): 147-158.
    [78]Shih C F, Asaro R J. Elastic-plastic analysis of cracks on bimaterial interfaces. I. Small scale yielding. Transactions of the ASME. Journal of Applied Mechanics, 1988, 55(2): 299-313.
    [79]Pan J, Shih C F. Elastic-plastic analysis of crack-tip fields under combined mode I and III loading conditions. AMD (Symposia Series) (American Society of Mechanical Engineers, Applied Mechanics Division), v91, Analytical, Numerical, and Experimental Aspects of Three Dimensional Fracture Processes, 1988. 255-265.
    [80]Shih C F, Moran B, Nakamura T. Crack tip integrals and domain integral representations for three-dimensional crack problems. AMD (Symposia Series) (American Society of Mechanical Engineers, Applied Mechanics Division), v 91, Analytical, Numerical, and Experimental Aspects of Three Dimensional Fracture Processes, 1988. 125-139.
    [81]Barsoum R S. On the separability of the asymptotic field at an elastic-plastic crack on bimaterial interface. International Journal of Fracture, 1988, 38(2): R41-43.
    [82]Barsoum R S. Application of the finite element iterative method to the eigenvalue problem of a crack between dissimilar media. International Journal for Numerical Methods in Engineering, 1988, 26(3): 541-554.
    [83]Shih C F, Asaro R J. Elastic-plastic analysis of cracks on bimaterial interfaces. II. Structure of small-scale yielding fields. Transactions of the ASME. Journal of Applied Mechanics, 1989, 56(4): 763-779.
    [84]Shih C F, Asaro R J. Elastic-plastic analysis of a collinear array of cracks on a bimaterial interface. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, A107 (1-2): 145-157.
    [85]Wang T C. Elastic-plastic asymptotic fields for cracks on bimaterial interfaces. Engineering Fracture Mechanics, 1990, 37(3): 527-538.
    [86]Shigeru Aoki, Kikuo Kishimoto, Noriyasu Takeuchi. Elastic-plastic finite element analysis of a crack on a bimaterial interface. Nippon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, 1990, Part A, 56(523): 638-645.
    [87]Zywicz E, Parks D M. Elastic-plastic analysis of frictionless contact at interfacial crack tips. International Journal of Fracture, 1990, 42(2): 129-143.
    [88]Shih C F, Asaro R J, O'Dowd N P. Elastic-plastic analysis of cracks on bimaterial interfaces. III. Large-scale yielding. Transactions of the ASME. Journal of Applied Mechanics, 1991, 58(2): 450-463.
    [89]Luo X F, Aoki S. Crack growth on elastic-plastic bimaterial interfaces. International Journal of Fracture, 1992, 57(4): 365-379.
    [90]Aoki S, Luo Xue-Fu. Elastic-plastic analysis on the growth of an interfacial crack. Journal of the Society of Materials Science, 1992, 41(465): 887-891.
    [91]Aoki S, Luo X F. Three-dimensional analyses of interface crack front fields. Engineering Fracture Mechanics, 1992, 42(1): 87-96.
    [92]Luo X F, Aoki S. Crack growth on elastic-plastic bimaterial interfaces Source: International Journal of Fracture, 1992, 57(4): 365-379.
    [93]Aoki S, Kishimoto K, Takeuchi N. An elastic-plastic finite element analysis of a blunting interface crack with microvoid damage. International Journal of Fracture. 1992, 55(4): 363-374.
    [94]Asaro R J, O'Dowd N P, Shih C F. Elastic-plastic analysis of cracks on bimaterial interfaces: interfaces with structure. Materials Science & Engineering A (Structural Materials: Properties, Microstructure and Processing), 1993, A162 (1-2): 175-192.
    [95]Aoki S, Ishii N. An interface crack under mixed-mode loading. Modelling and Simulation in Materials Science and Engineering, 1994, 2(3A): 473-482.
    [96]Delfin P, Gunnars J, Stahle P. Effect of elastic mismatch on the growth of a crack initially terminated at an interface in elastic plastic bimaterials. Fatigue and Fracture of Engineering Materials & Structures, 1995, 18(10): 1201-1212.
    [97]Aoki S, Ishii N, Luo X F. 3-D elastic-plastic finite element analysis of interface cracks under mixed mode load. International Journal of Pressure Vessels and Piping, 1995, 63(3): 327-338.
    [98]Yuan H. Plane stress near-tip field analysis of steady-state crack growth along a linear-hardening elastic-plastic interface. Acta Mechanica, 1995, 109(1-4): 207-226.
    [100]Wang Shiwen, Guo Wanlin, Shen Yapeng. Elastic-plastic asymptotic analysis of cracks on bimaterial interface under three dimensional constraint. Acta Mechanica Sinica, 1996, 28(3): 352-358.
    [101]Wang Shiwen, Guo Wanlin, Shen Yapen. Effects of three-dimensional constraint on cracks on bimaterial interfaces. Engineering Fracture Mechanics, 1996, 55(3): 471-483.
    [102]Omprakash S, Narasimhan R. A finite element analysis of mode III quasi-static crack growth at a ductile-brittle interface. Transactions of the ASME. Journal of Applied Mechanics, 1996, 63(1): 204-209.
    [103]Sundararaman V, Sitaraman S K. Determination of Fracture Toughness for Metal/Polymer Interfaces. Journal of Electronic Packaging, Transactions of the ASME, 1999, 121(4): 275-281.
    [104]Omiya M, Kishimoto K, Shibuya T. Influence of plastic deformation on interface fracture behavior. Key Engineering Materials, 2000,183 (1): 541-546.
    [105]Lee H, Kim Y-J. Interfacial crack-tip constraints and J-integrals in plastically mismatached bi-materials. Engineering Fracture Mechanics, 2001, 68(8): 1013-1031.
    [106]Simha N K, Shan G X, Kolednik O et al. Influence of a bimaterial interface on the crack driving force in elastic and elastic-plastic materials. Modelling the Performance of Engineering Structural Materials III. Proceedings of a Symposium, 2002. 149-160.
    [107]Dornowski Wojciech, Perzyna Piotr. Numerical analysis of macrocrack propagation along a bimaterial interface under dynamic loading processes. International Journal of Solids and Structures, 2002, 39(19): 4949-4977.
    [108]Moran B, Shih C F. A General Treatment of crack Tip Integrals. International Journal of Fracture, 1987, 35 (4): 295-310.
    [109]Moran B, Shih C F. Crack Tip and Associated Domain Integrals from Momentum and Energy Balance. Engineering Fracture Mechanics, 1987, 27 (6): 615-642.
    [110]Li F Z, Shih C F, Needleman A. A Comparison of Methods for Calculating Energy Release rates. Engineering Fracture Mechanics, 1985, 25 (2): 405-421.
    [111]Shih C F, Moran B, Nakamura T. Energy Release Rate along a Three-dimensional Crack Front in a Thermally Stressed Body. International Journal of Fracture, 1986, 30 (2): 79-102.
    [112]Nikishkov G P, Atluri S N. Calculation of Fracture Mechanics Parameters for an Arbitrary Three-dimensional Crack by the ‘Equivalent Domain Integral Method’. International Journal for Numerical Methods in Engineering, 1987, 24 (9): 1801-1821.
    [113]Shih C F, Asaro R J. Elastic-plastic Analysis of Cracks on Bimaterial Interfaces: Part I-Small Scale Yielding. Transactions of the ASME. Journal of Applied Mechanics, 1988, 55(2): 299-316.
    [114]Nakamura T. Three-dimensional Stress Fields of Elastic Interface Cracks. Transactions of the ASME. Journal of Applied Mechanics, 1991, 58 (4): 939-946.
    [115]Nakamura T, Parks D M. Determination of Elastic T-stress along Three-dimensional Crack Front Using Interaction Integral. International Journal of Solids and Structures. 1992, 29(13): 1597-1611.
    [116]Charalambides P G, Evans AG. Debonding Properties of Residually Stressed Brittle-matrix Composites. Journal of the American Ceramic Society. 1989, 72(5): 746-753.
    [117]Nahta R, Moran B. Domain integrals for axisymmetric interface crack problems. International Journal of Solids and Structures, 1993, 30(15): 2027-2040.
    [118]胡互让,吴承平. 带裂纹层合板能量释放率分析. 应用数学和力学, 1995,16(6):527-541.
    [119]杨庆生,杨卫. 界面裂纹的路径选择与数值模拟. 力学学报, 1997, 29(3): 355-358.
    [120]陈梦成,高闯,汤任基. 三维界面裂纹的奇性应力场和应力强度因子分析. 固体力学学报, 1999, 20(1): 8-15.
    [121]黄佩珍,师俊平,李中华. 求解界面裂纹应力强度因子的高次权函数法. 固体力学学报, 2000, 21(2): 166-170.
    [122]贾普荣,张光,王锋会等. 双材料界面裂纹应力强度因子计算. 机械科学与技术( 增刊), 2001, 20: 15-17,34.
    [123]刘刘,杨晓光,耿瑞. TBC界面裂纹K因子的有限元求解方法. 航空动力学报, 2001, 16(2): 771-174.
    [124]张硕英,陈宜亨. 关于界面下裂纹对界面裂纹的屏蔽参数. 应用力学学报, 2001, 18(3): 61-63.
    [125]娄路亮,曾攀. 双材料界面裂纹应力强度因子的无网格分析. 航空材料学报, 2002, 22(4): 31-35.
    [126]肖万伸,唐国金,周建平. 双材料界面裂纹的弹塑性问题. 固体火箭技术, 2002, 25(1): 55-57.
    [127]刘刘,杨晓光. 功能梯度热障涂层材料断裂参数的求解. 航空发动机, 2003, 29(4): 22-24.
    [128]祝伟荣,常红,姚河省等. 双材料界面裂纹断裂参数的实验测定. 太原重型机械学院学报, 2003, 24(3): 219-222.
    [129]肖洪天,岳中琦. 用边界元方法分析复合材料中的裂纹问题. 计算力学学报, 2003, 20(6): 721-724.
    [130]师俊平,莫宵依,刘协会. 界面裂纹问题中的弹性T项和应力强度因子. 力学学报, 2003, 35(1): 95-99.
    [131]马开平,柳春图. 应用半权函数法计算界面裂纹的应力强度因子. 应用力学学报, 2004, 21(1): 44-49.
    [132]Howard S J , Phillipps A J, Clyne T W. The interpretation of data from the four-point bend delamination test to measure interfacial fracture toughness. Composites, 1993, 24(2): 103-112.
    [133]Fett T, Munz D. Fracture mechanical treatment of bridging stresses. Ceramics, KfK-Report 5256, Forschungszentrum, Karlsruhe, 1993.
    [134]Fett T. An analysis of the three-point bending bar by use of the weight function method. Engineering Fracture Mechanics, 1991, 40 (3): 683-686.
    [135]Elssner G, Suga T, Turwitt M. Fracture of ceramic-to-metal interfaces. Journal de Physique Colloque, 1985, 46 (C-4): 597-612.
    [136]Han W, Rybicki E F, Shadley J R. In Thermal Spray Coating: Research, Design and Application (edited by C.C. Berndt and T.E. Bernecki), 1993. 55.
    [137]Leigh S H, Berndt C C, Wu C L et al. in Thermal Spray Industrial(edited by C.C. Berndt and S. Sampath), 1994. 655.
    [138]Wang J-S, Suo Z. Experimental Determination of Interfacial Toughness Curves Using Brazil-Nut Sandwiches. Acta Metallurgica et Materialia, 1990, 38 (7): 1279-1290.
    [139]Shaw Leon L, Barber Brent, Jordan Eric H et al. Measurements of the Interfacial Fracture Energy of Thermal Barrier Coatings. Scripta Materialia, 1998, 39(10): 1427-1434.
    [140]Komvopoulos K. Elastic-plastic finite element analysis of indented layered media. Journal of Tribology, Transactions of the ASME, 1989, 111(3): 430-439.
    [141]Montmitonnet P, Edlinger M L, Felder E. Finite element analysis of elastoplastic indentation: Part II - Application to hard coatings. Journal of Tribology, Transactions of the ASME, 1993, 115(1):15-19.
    [142]Swain M V, Mencik J. Mechanical property characterization of thin films using spherical tipped indenters. Thin Solid Films, 1994, 253(1-2): 204-211.
    [143]Pajares A, Lanhua Wei, Lawn B R et al.Contact damage in plasma-sprayed alumina-based coatings. Journal of the American Ceramic Society, 1996, 79(7): 1907-1914.
    [144]Wuttiphan S, Pajares A, Lawn B R et al. Effect of substrate and bond coat on contact damage in zirconia-based plasma-sprayed coatings. Thin Solid Films, 1997,293(1-2): 251-60.
    [145]Fischer-Cripps A C, Lawn B R, Pajares A et al. Stress analysis of elastic-plastic contact damage in ceramic coatings on metal substrates. Journal of the American Ceramic Society, 1996, 79(10): 2619-2625.
    [146]Care G, Fischer-Cripps A C. Elastic-plastic indentation stress fields using the finite-element method. Journal of Materials Science, 1997, 32(21): 5653-5659.
    [147]Nygards C M, White K W, Ravi-Chandar K. Strength of HVOF coating-substrate interfaces. Thin Solid Films, 1998, 332(1-2): 185-188.
    [148]Thornton J A, Hoffman D W. Stress-related effects in thin films. Thin Solid Films, 1989, 171(1): 5-31.
    [149]Perry A J, Albert S J, Martin P J. Practical measurement of the residual stress in coatings. Surface and Coatings Technology, 1996, 81(1): 17-28.
    [150]O'Neil D A, Wayne S F. Numerical simulation of fracture in coated brittle materials subjected to tribo-contact. Transactions of the ASME. Journal of Engineering Materials and Technology, 1994, 116(4): 471-478.
    [151]Knapp J A, Follstaedt D M, Myers S M et al. Finite-element modeling of nanoindentation for evaluating mechanical properties of MEMS materials. Surface and Coatings Technology, 1998, 103-104(1): 268-75.
    [152]Souza R M, Mustoe G G W, Moore J J. Finite-element modeling of the stresses and fracture during the indentation of hard elastic films on elastic-plastic aluminum substrates. Thin Solid Films, 1999, 355-356: 303-310.
    [153]Choulier 7 D, Fluzin P, Coddet C et al. 1st PlasmaTechnik Symposium. Lucerne, 1988, 2: 293-305.
    [154]Souza R M, Mustoe G G W, Moore J J. Finite element modeling of the stresses, fracture and delamination during the indentation of hard elastic films on elastic-plastic soft substrates. Thin Solid Films, 2001, 392(1): 65-74.
    [155]Drory M D, Hutchinson J W. Measurement of the Adhesion of a Brittle Film on a Ductile Substrate by Indentation. Proceedings of the Royal Society of London, Series A (Mathematical, Physical and Engineering Sciences). 1996, 452(1953): 2319-2341.
    [156]Vasinonta A, Beuth J L. Measurement of interfacial toughness in thermal barrier coating systems by indentation. Engineering Fracture Mechanics, 2001, 68(7): 843-860.
    [157]Vlassak J J, Drory M D, Nix W D. A simple technique for measuring the adhesion of brittle films to ductile substrates with application to diamond-coated titaniumSource: Journal of Materials Research, 1997, 12(7): 1900-1910.
    [158]Begley M R, Mumm D R, Evans A G et al. Analysis of A Wedge Impression Test For Measuring the Interface Toughness Between Films/Coatings and Ductile Substrates. Acta Materialia. 2000, 48(12): 3211-3220.
    [159]Hainsworth S V, McGurk M R, Page T F. The effect of coating cracking on the indentation response of thin hard-coated systems. Surface and Coatings Technology. 1998, 102(1-2): 97-107.
    [160]Sanchez J M, El-Mansy S, Sun B et al. Cross-sectional nanoindentation: A new technique for thin film interfacial adhesion characterizationSource. Acta Materialia, 1999, 47(17): 4405-4413.
    [161]Crandall S H, Dahl N C, Lardner T J. An introduction to the mechanics of solids. McGraw-Hill, New York, 2nd edn, 1989.
    [162]Tada H, Paris PC, Irwin G .R. The stress analysis of cracks handbook. Del Research Corporation. 1973.
    [163]Liechti K M, Chai Y-S. Biaxial loading experiments for determining interfacial fracture toughness. Transactions of the ASME. Journal of Applied Mechanics, 1991, 58(3): 680-687.
    [164]Malyshev B M, Salganik R L. The strength of Adhesive Joints Using the Theory of Cracks. International Journal of Fracture, 1965(1): 114-128.
    [165]Takashi N, Yamazaki K, Natsume T et al. Debonding of an Al-Epoxy System by Blister Method. 21st Japan Congress on Materials Research-Non-Metallic Materials, 1972: 260-264.
    [166]Trantina G C. Combined Mode Crack Extension in Adhesive Joints. Journal of Composite Material, 1972, 6: 371-385.
    [167]Anderson G P, DeVries K L, Williams M L. Mixed Mode Stress Field Effect in Adhesive Fracture. International Journal of Fracture, 1974, 10 (4): 565-583.
    [168]Anderson G P, DeVries K L, Williams M L. The Influence of Loading Direction Upon the Character of Adhesive Bonding. Journal of Colloid and Int. Sci, 1974, 47: 600-609.
    [169]Mulville D R, Hunston D L, Mast P W. Developing Failure Criteria for Adhesive Joints under Complex Loading. Journal of Engineering Materials and Technology. Transactions of the ASME, 1978, 100 (1): 25-31.
    [170]Liechti K M, Hanson E C. Nonlinear Effects in Mixed-Mode Interfacial Delaminations. International Journal of Fracture, 1988, 36 (3): 199-217.
    [171]Liechti K M, Knauss W G.. Crack Propagation at Material Interfaces: I. Experimental Technique to Detemine Crack Profiles. Experimental Mechanics, 1982, 22 (7): 262-269.
    [172]Argon S A, Gupta V, Landis H S et al. Intrinsic Toughness of Interfaces Between SiC Coating and Substrates of Si or C Fiber. Journal of Materials Science, 1989, 24 (4): 1406-1412.
    [173]Gupta V, Argon A S, Cornie J A. Interfaces with Controlled Toughness as Mechanical Fuses to Isolate Fibers from Damage. Journal of Materials Science, 1989, 24 (6): 1207-1218.
    [174]Evans A G., Hutchinson J W. Effects of Non-Planarity on the Mixed-Mode Fracture Resistance of Bimaterial Interfaes. Acta Metallurgica, 1989, 37 (3): 909-916.
    [175]Rosenfeld L G, Ritter JE, Lardner T J et al. Use of the Microindentation technique for Determining Interfacial Fracture Energy. Journal of Applied Physics, 1990, 67(7): 3391-3396.
    [176]Wang J-S, Suo Z. Experimental Determination of Interfacial Toughness Curves Using Brazil-Nut Sandwiches. Acta Metallurgica et Materialia, 1990, 38 (7): 1279-1290.
    [177]Jensen H M, Hutchinson J W, Kim D-S. Decohesion of a Cut Prestressed Film on a Substrate. International Journal of Solids and Structures, 1990, 26 (9-10): 1099-1114.
    [178]Chai H. Three-dimensional fracture Analysis of Thin Film Debonding. International Journal of Fracture, 1990, 46 (4): 237-256.
    [179]Liechti K M, Chai Y-S. Asymmetric Shielding in Interfacial Fracture Under In-Plane Shear. Transactions of the ASME. Journal of Applied Mechanics, 1992, 59 (2): 295-304.
    [180]Al-Ani A M, Hancock J W. J-Dominance of Short Cracks in Tension and Bending. Journal of Mechanics and Physics of Solids, 1991, 39(1):23-43.
    [181]Betegon C, Hancock J W. Two-parameter Character Characterization of Elastic-Plastic Crack Tip Fields. Journal of Applied Mechanics, 1991, 58 (1):23-43.
    [182]Du Z-Z, Hancock J W. The Effect of Non-Singular Stress on Crack-Tip Constraint. Journal of Mechanics and Physics of Solids, 1991, 39(4):555-567.
    [183]Wang Y Y. On the Two-Parameter Characterization of Elastic-Plastic Crack- Front Fields in Surface-Cracked Plates. in Constraint Effects in Fracture, ASTM STP1171, Hackett, et al. Eds., American Society for Testing and Materials, Philadelphia, 1993. 120-138.
    [184]O’Dowd N P, Shih C F. Family of Crack-Tip Fields Characterized by Triaxiality Parameter: Part I-Structure of Fields. Journal of the Mechanics and Physics of Solids, 1991, 39 (8): 989-1015.
    [185]O’Dowd N P, Shih C F. Family of Crack-Tip Fields Characterized by Triaxiality Parameter: PartⅡ-Fracture Applications. Journal of the Mechanics and Physics of Solids, 1992, 40 (5): 939-963.
    [186]Batdorf S B, Crose J G. A statistical Theory for the Fracture of Brittle Structure Subjected to Nonuniform Ployaxial Stresses. Journal of Applied Mechanics, 1974, 41(2): 459-464.
    [187]Evans A G. A General Approach for the Statistical Analysis of Multiaxial Fracture. Journal of American Ceramic Society, 1978, 61(7-8): 302-308.
    [188]Matsuo Y. Statistical Theory for Multiaxial Stress States Using Weibull’s Three- Parameter Function. Engineering Fracture Mechanics, 1981, 14(3):527-538.
    [189]Beremin F M. A local Criterion for Cleavage Fracture of a Nuclear Pressure Vessel Steel. Metallurgical Transactions, 1983, 14A(11): 2277-2287.
    [190]Proceedings of the 1996 1st European Mechanics of Material is conference on local Approach to Fracture, EUROMECH-MECAMAT’96.
    [191]12th Bienniel Conference on Fracture of the European-structural-Integrity- Society (ECF12) SHEFFIELD, ENGLAND, SEP, 1998. 14~18.
    [192]R6 assessment of the integrity of structures containing defects. Procedure R6, Revision 3. British Energy Generation Ltd, Gloucester, UK, 1997.
    [193]Pisarski H G., Wallin K. The SINTAP fracture toughness estimation procedure. Engineering Fracture Mechanics, 2000, 67(6): 613~624.
    [194]ESIS P6-98, procedure to measure and calculate local approach criteria using notched tensile specimens, ESIS Document, European Structural Integrity Society, March 1998.
    [195]E1921-97, standard test method for determination of reference temperature, to, for ferric steels in the transition range, ASTM, annual book of ASTM standards, 2001(3):1119-1135.
    [196]Pineau A. Global and local approaches of fracture-transferability of laboratory test results to compoments. In Topics in Fracture and fatigue. A.S. Argon, Eds., Springer-Verlag, New York, 1992. 197-234.
    [197]McClintock F A. ASTM STP 415, 1967. 170-180.
    [198]Mudry F. A local approach to cleavage fracture. Nuclear Engineering and Design, 1987, 105(1): 65-76.
    [199]Beremin F M. A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metallurgical Transactions A (Physical Metallurgy and Materials Science), 1983, 14A (11): 2277-2287.
    [200]F. Minami, A. Bruckner-Foit, D. Munz et al. Estimation procedure for the Weibull parameters used in the local approach. International Journal of Fracture, 1992, 54(3): 197-210.
    [201]Ruggieri C, Minami F, Toyoda M. A statistical approach for fracture of brittle materials based on the Chain-of-Bundles model. Transactions of the ASME. Journal of Applied Mechanic,. 1995, 62(2): 320-328.
    [202]Ruggieri C, Dodds R H Jr. A transferability model for brittle fracture including constraint and ductile tearing effects: a probabilistic approach. InternationalJournal of Fracture, 1996, 79(4): 309-340.
    [203]Ruggieri C, Dodds R H Jr. Probabilistic modeling of brittle fracture including 3-D effects on constraint loss and ductile tearing. Journal de Physique IV (Colloque), 1996, 6(6): 353-362.
    [204]Ruggieri C, Dodds R H Jr. Numerical evaluation of probabilistic fracture parameters using WSTRESS. Engineering Computations, 1998, 15 (1): 49-73.
    [205]Ruggieri C. Probabilistic treatment of fracture using two failure models. Probabilistic Engineering Mechanics, 1998, 13 (4): 309-319.
    [206]Gao X, Ruggieri C, R Dodds R H Jr. Calibration of Weibull stress parameters using fracture toughness data. International Journal of Fracture, 1998, 92 (2): 175-200.
    [207]Ruggieri C, Gao X, Dodds R H Jr. Transferability of elastic-plastic fracture toughness using the Weibull stress approach: Significance of parameter calibration. Engineering Fracture Mechanics, 2000, 67 (2): 101-117.
    [208]Ruggieri C. Influence of threshold parameters on cleavage fracture predictions using the Weibull stress model. International Journal of Fracture, 2001,110 (3): 281-304.
    [209]Satoh S, Tsukamoto M, Minami F. et al. Evaluation of interface strength of plasma sprayed coatings by the local approach. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 3, Materials Engineering, 1996. 157-164.
    [210]Minami F, Satoh S, Tsukamoto M. Evaluation of interface strength of bonded dissimilar materials based on Weibull stress fracture criterion. Mate, 2000, 3-4: 67-72.
    [211]Chen Buo, Dillard D A. Numerical analysis of directionally unstable crack propagation in adhesively bonded joints. International Journal of Solids and Structures, 2001, 38(38-39): 6907-6924.
    [212]Chen Buo, Dillard D A, Dillard J G et al. Crack path selection in adhesively bonded joints: the roles of external loads and specimen geometry. International Journal of Fracture, 2002, 114 (2): 167-190.
    [213]Chen Buo, Dillard D A, Dillard J G et al. Crack path selection in adhesively- bonded joints: The role of material propertie. Journal of Adhesion, 2001, 75 (4): 405-434.
    [214]Timoshenko S P, James M Gere. Mechanics of Materials. Van Nostrand Reinhold Co., Inc., Molly Millars Lane, Workingham, Berkshire, England.
    [215]毛卫国, 戴翠英, 周益春. 在制备热障涂层过程中系统内残余应力场预测. 湘潭大学自然科学学报, 2005, 27(4): 46-52.
    [216]西村康弘. Cr涂层的剥离行为及界面附近应力分布特性. 大阪大学大学院生产科学专业硕士论文.1999.
    [217]Smeylser R E, Gurtin M E. On the J-integral for biomaterial bodies. Internation- al Journal of Fracture, 1971, 13: 382-384.
    [218]刘刘, 杨晓光, 耿瑞. TBC界面裂纹K因子的有限元求解方法. 航空动力学报, 2001, 16(2):16-174.
    [219]Hutchinson J W. Fundamentals of the phenomenological theory of nonlinear fracture mechanics. Journal of Applied Mechanics, 1983, 50(4b): 1042-1050.
    [220]Rice J R. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, 1968, 35: 379-386.
    [221]Hutchinson J W. Singular behavior at the end of a tensile crack tip in a hardening material. Journal of Mechanics and Physics of Solids, 1968, 16(1): 13-31.
    [222]Parks D M. The virtual crack extension method for nonlinear material behaviour. Computer Methods in Applied Mechanics and Engineering, 1977, 12(3):353-364.
    [223]Hellen T K. On the method of virtual crack extensions. International Journal for Numerical Methods in Engineering, 1975, 9(1): 187-196.
    [224]Nakamura T, Shih C F, Freund L B. Analysis of a dynamicaly loaded three-point-bend ductile fracture specimen. Engineering Fracture Mechanics, 1986, 25(3): 323-339.
    [225]Li F Z, Shih C F, Needleman A. A comparison of methods for calculating energy release rates. Engineering Fracture Mechanics, 1985, 21(2): 405-21.
    [226]Shih C F, Moran B, Nakamura T. Energy release rate along a three-dimensional crack front in a thermally stressed body. International Journal of Fracture, 1986, 30(2): 79-102.
    [227]de Lorenzi H G. On the energy release rate and the J-integral for 3D crack configurations. International Journal of Fracture, 1982, 19(3): 183-193.
    [228]雷和荣, 虞吉林. 虚裂纹扩展法计算J积分的研究. 中国科学技术大学学报, 1994, 24(2): 201-213.
    [229]杨新岐, 霍立兴, 张玉凤. 三维能量释放率虚拟裂纹扩展算法及工程应用. 天津大学学报, 1997, 30(1): 37-42.
    [230]王利民, 陈浩然. J 积分在多层介质中的守恒性和其应用. 应用数学和力学, 2001, 22 (10):1097-1104.
    [231]Rice J R. Mechanics of crack tip deformation and extension by fatigue. In Fracture Toughness, ASTM STP 415, American Society for testing and materials, Philadelphia, 1967. 247-311.
    [232]Rice J R, Tracey D M. Computational Fracture Mechanics, in Numerical and Computer Methods in Structural Mechanics, S.J.Fenves et al., Eds., Academic Press, New York, 1973. 585-62.
    [233]Rice J R, Rosengren G. F. Plane strain deformation near a crack tip in a power-law hardening material. Journal of Mechanics and Physics of Solids, 1968, 16: 1-12.
    [234]McMeeking R M. Finite deformation analysis of crack-tip opening in elastic-plastic materials and implications for fracture. Journal of the Mechanics and Physics of Solids, 1977, 25(5): 357-381.
    [235]Shih C F. Relationships between the J-integral and the crack opening displacement for stationary and extending cracks. Journal of the Mechanics and Physics of Solids, 1981, 29 (4): 305-326.
    [236]Tracey D M. Finite element solutions for crack-tip behavior in small-scale yielding. Transactions of the ASME. Series H, Journal of Engineering Materials and Technology, 1976, 98(2): 146-151.
    [237]Shih C F. Tables of Hutchinson-Rice-Rosengren singular field quantities. Brown University Report, MRL E-147.
    [238]McMeeking R M, Park D M. On criteria for J-Dominance of crack-tip fields in Large-Scale Yielding, in Elastic-Plastic Fracture, ASTM STP 668, American Society for Testing and Materials, Philadelphia, 1979. 175-194.
    [239]Shih C F, German M D. Requirements for a one parameter characterization of crack tip fields by the HRR singularity. International Journal of Fracture, 1981, 17 (1): 27-43.
    [240]Park D M. Engineering methodologies for assessing crack front constraint. SEM Spring Conference on Experimental Mechanics. Milwaukee, 1991. 1-8.
    [241]Larsson S G, Carlsson A J. Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials. Journal of the Mechanics and Physics of Solids, 1973, 21 (4): 263-277.
    [242]Rice J R. Limitations to the small scale yielding approximation for crack tip plasticity. Journal of the Mechanics and Physics of Solids, 1974, 22 (1): 17-26.
    [243]Wang Y-Y, Parks D M. Evaluation of the elastic T-stress in surface-cracked plates using the line-spring method. International Journal of Fracture, 1992, 56 (1): 25-40.
    [244]Parks D M. Advances in characterization of elastic-plastic crack-tip fields. Fracture and Fatigue. A.S.Argon, Eds., Springer-Verlag, New York, 1992. 59-98.
    [245]Griffith A A. The theory of rupture. Proceedings of the first international congress for applied mechanics. Delft. 1924. 55-63.
    [246]Orowan E. Fracture and strength of solids. Reports on Progress in Physics, 1948, 12: 185-232.
    [247]Knott J F. Some effects of hydrostatic tension on the fracture behavior of mild steel. Journal of Iron & Steel Institute, 1966, 204: 104-111.
    [248]Averbach B L. Micro and macro formation. International Journal of Fracture Mechanics, 1965, 1: 272-290.
    [249]Smith E. Cleavage fracture in mild steel. International Journal of Fracture Mechanics, 1968, 4: 131-145.
    [250]Ritchie R O, Knott J F, Rice J R. On the relationship between critical tensile stress and fracture toughness in mild steel. Journal of the Mechanics and Physics of Solids, 1973, 21 (6): 395-410.
    [251]Tetelman A S, Wilshaw T R, Rau Jr C A. The critical tensile stress criterion for cleavage. International Journal of Fracture Mechanics, 1968, 4: 147-157.
    [252]Gumbel E J. Statistics of Extremes. Columbia University Press, New York, 1958.
    [253]Epstein B. Elements of the Theory of Extreme Values. Technometrics, 1960, 2: 27-41.
    [254]Weibull W. The phenomenon of rupture in solids. Ingeniors Vetenskaps Akademien, Handlingar, 1939, 153: 55.
    [255]Epstein B. Statistical aspects of fracture problems. Journal of Applied Physics, 1948, 19: 140-147.
    [256]Batdorf S B. A statistical theory for the fracture of brittle structures subjected to nonuniform polyaxial stresses. Transactions of the ASME. Series E, Journal of Applied Mechanics, 1974, 41 (2): 459-464.
    [257]Lin T, Evans A G, Ritchie R O. A statistical model of brittle fracture by transgranular cleavage. Journal of the Mechanics and Physics of Solids, 1986, 34 (5): 477-497.
    [258]Wallin K. The scatter in KIC-results. Engineering Fracture Mechanics, 1984, 19 (6): 1085-1093.
    [259]Anderson T L, Stienstra D. A model to predict the sources and magnitude of scatter in toughness data in the transition region. Journal of Testing and Evaluation, 1989, 17 (1): 46-53.
    [260]Daniels H E. The statistical Theory of the strength of bundles of threads. Proceedings of the Royal Society of London, 1945, 183 (A): 405-435.
    [261]Coleman B D. On the strength of classical fibres and fibre bundles. Journal of the Mechanics and Physics of Solids, 1958, 7: 60-70.
    [262]McCartney L N, Smith R L. Statistical theory of the strength of fiber bundles. Transactions of the ASME. Journal of Applied Mechanics, 1983, 50 (3): 601-608.
    [263]Gücer D E, Gurland J. Comparison of the statistics of two fracture modes. Journal of the Mechanics and Physics of Solids, 1962, 10: 365-373.
    [264]Feller W. Introduction to probability theory and its application, 1957, Vol.1. John Wiley & Sons, Inc. New York.
    [265]Courant R, John F. Introduction to calculus and analysis. 1965, Vol. I, John Wiley & Sons, Inc. New York.
    [266]Freudenthal A M. Statistical approach to brittle fracture. Fracture: An Advanced Treatise. Vol. II. H. Liebowitz, Ed., Academic Press, New York. 1968. 591-619.
    [267]Evans A G, Langdon T G. Progress in Materials Science. B. Chalmers, Ed., Pergamon Press, New York, 1976.
    [268]Bruckner-Foit A, Ehl W, Munz D et al. The size effect of microstructural implications of the weakest link model. Fatigue & Fracture of Engineering Materials & Structures, 1990, 13 (3): 185-200.
    [269]Mann N R, Schafer R E, Singpurwalla N D. Methods for Statistical Analysis of Reliability and Life Data, Jonh Wiley & Sons, New York, 1974.
    [270]Kendall M G, Stuart A.The Advanced Theory of Statistics, 2nd ed., Hafner, New York, 1967.
    [271]Bain L J. Statistical Analysis of Reliability and Life-Testing Models, Marcel Dekker, New York, 1978.
    [272] Ruggieri C, Dodds R H Jr. Wstress: Numerical computation of probabilistic fracture parameters, Report documentation page, University of Illinois. 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700